research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 296-298

Crystal structure of 2-benzyl­amino-4-(4-bromo­phen­yl)-6,7-di­hydro-5H-cyclo­penta­[b]pyridine-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 February 2015; accepted 10 February 2015; online 21 February 2015)

In the title compound C22H18BrN3, the cyclo­pentane ring adopts an envelope conformation with the central methyl­ene C atom as the flap. The dihedral angles between the central pyridine ring and the pendant benzyl and and bromo­benzene rings are 82.65 (1) and 47.23 (1)°, respectively. In the crystal, inversion dimers linked by pairs of N—H⋯Nn (n = nitrile) hydrogen bonds generate R22(12) loops. These dimers are linked by weak ππ inter­actions [centroid–centroid distance = 3.7713 (14) Å] into a layered structure.

1. Chemical context

Cyano­pyridine derivatives exhibit useful anti­cancer and anti­viral activities (Cocco et al., 2005[Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365-1372.]; El-Hawash & Abdel Wahab, 2006[El-Hawash, S. A. M. & Abdel Wahab, A. E. (2006). Arch. Pharm. Chem. Life Sci. 339, 437-447.]). 3-Cyano­pyridine derivatives have been reported for their wide range of applications such as in their anti­microbial, analgesic, anti-hyperglycemic, anti­proliferative and anti­tumor activities (Brandt et al., 2010[Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919-2927.]; El-Sayed et al., 2011[El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & El Ashry, E. S. H. (2011). Eur. J. Med. Chem. 46, 2948-2954.]; Ji et al., 2007[Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253-1262.]). As part of our ongoing work in this area, we synthesized the title compound, which contains a pyridine 3-carbo­nitrile group, and we report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. The nitrile atoms C31 and N3 are displaced from the mean plane of the pyridine ring by 0.1016 (1) and 0.1997 (1) Å, respectively. The cyclo­pentane ring fused with the pyridine ring adopts an envelope conformation with atom C8 as the flap, deviating by 0.3771 (1) Å from the mean plane defined by the other atoms (C5/C6/C7/C9). The amino group is nearly coplanar with the pyridine ring as indicated by the torsion angle N2—C2—C3—C4 = −178.0 (16)°. Steric hindrance rotates the benzene ring (C22–C27) out of the plane of the central pyridine ring by 82.65 (1)°. This twist may be due to the non-bonded inter­actions between one of the ortho H atoms of the benzene ring and atom H21B of the CH2–NH2 chain.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via pairs of N—H⋯Nn (n = nitrile) hydrogen bonds, forming inversion dimers which enclose R22(12) ring motifs (Table 1[link] and Fig. 2[link]). The dimers are further connected by slipped parallel ππ stacking inter­actions involving the pyridine rings of inversion-related mol­ecules [centroid–centroid separation= 3.7713 (12) Å, slippage = 1.018 Å; Cg1 is the centroid of the N1/C2–C6 ring; symmetry code: (i) −x, −y, 1 − z], as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.86 2.23 2.974 (4) 145
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Partial packing diagram of compound (I)[link]. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.

4. Database survey

Similar structures reported in the literature include 2-(2-(4-chloro­phen­yl)-2-oxoeth­oxy)-6,7-di­hydro-5H-cyclo­penta­[b]pyridine-3-carbo­nitrile (Mazina et al., 2005[Mazina, O. S., Rybakov, V. B., Troyanov, S. I., Babaev, E. V. & Aslanov, L. A. (2005). Kristallografiya, 50, 68-78.]) and 2-benzylamino-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclohepta­[b]pyridine-3-carbo­nitrile (Nagalakshmi et al., 2014[Nagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 441-443.]). In both compounds, the fused cyclo­pentane ring has an envelope conformation with the central methyl­ene C atom as the flap.

5. Synthesis and crystallization

A mixture of cyclo­penta­none (1 mmol) 1, 4-bromo benz­alde­hyde (1 mmol), malono­nitrile (1 mmol) and benzyl­amine were taken in ethanol (10 ml) to which p-TSA (1 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. The reaction progress was monitored by thin layer chromatography (TLC). After completion of the reaction, the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to obtain pure product The product was recrystallized from ethyl acetate, affording colourless block-like crystals (yield 68%; m.p. 474–478 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms. The best crystal investigated was of rather poor quality and very weakly diffracting, with no usable data obtained above 49° in 2θ. Nonetheless, the structure solved readily and refined to give acceptable uncertainties on the metrical data.

Table 2
Experimental details

Crystal data
Chemical formula C22H18BrN3
Mr 404.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 8.6471 (3), 18.0807 (5), 12.0395 (4)
β (°) 94.719 (2)
V3) 1875.94 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.20
Crystal size (mm) 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 37065, 3084, 2232
Rint 0.040
(sin θ/λ)max−1) 0.582
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05
No. of reflections 3084
No. of parameters 235
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Cyano­pyridine derivatives exhibit useful anti­cancer and anti­viral activities (Cocco et al., 2005; El-Hawash & Abdel Wahab, 2006). 3-Cyano­pyridine derivatives have been reported for their wide range of applications such as in their anti­microbial, analgesic, anti-hyperglycemic, anti­proliferative and anti­tumor activities (Brandt et al., 2010; El-Sayed et al., 2011; Ji et al., 2007). As part of our ongoing work in this area, we synthesized the title compound, which contains a pyridine 3-carbo­nitrile group, and we report herein its crystal structure.

Structural commentary top

The molecular structure of the title compound (I) is shown in Fig. 1. The nitrile atoms C31 and N3 are displaced from the mean plane of the pyridine ring by 0.1016 (1) and 0.1997 (1) Å, respectively. The cyclo­pentane ring fused with the pyridine ring adopts an envelope conformation with atom C8 as the flap, deviating by 0.3771 (1) Å from the mean plane defined by the other atoms (C5/C6/C7/C9). The amino group is nearly coplanar with the pyridine ring as indicated by the torsion angle N2—C2—C3—C4 = -178.0 (16)°. Steric hindrance rotates the benzene ring (C22–C27) out of the plane of the central pyridine ring by 82.65 (1)°. This twist may be due to the non-bonded inter­actions between one of the ortho H atoms of the benzene ring and atom H21B of the CH2–NH2 chain.

Supra­molecular features top

In the crystal, molecules are linked via pairs of N—H···Nn (n = nitrile) inter­actions, forming inversion dimers which enclose R22(12) ring motifs (Table 1). The dimers are further connected by slipped parallel ππ stacking inter­actions involving the pyridine rings of inversion-related molecules [centroid–centroid separation= 3.7713 (12) Å, slippage = 1.018 Å; Cg1 is the centroid of the N1/C2–C6 ring; symmetry code: (i) -x, -y, 1 - z], as shown in Fig. 2.

Database survey top

Similar structures reported in the literature include 2-(2-(4-chloro­phenyl)-2-oxo­eth­oxy)-6,7-di­hydro-5H-cyclo­penta­[b]pyridine-3-carbo­nitrile (Mazina et al., 2005) and 2-benzyl­amino-4-(4-meth­oxy­phenyl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta[b]pyridine-3-carbo­nitrile (Nagalakshmi et al., 2014). In both compounds, the fused cyclo­pentane ring has an envelope conformation with the central methyl­ene C atom as the flap.

Synthesis and crystallization top

A mixture of cyclo­penta­none (1 mmol) 1, 4-bromo benzaldehyde (1 mmol), malono­nitrile (1 mmol) and benzyl­amine were taken in ethanol (10 ml) to which p-TSA (1 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. The reaction progress was monitored by thin layer chromatography (TLC). After completion of the reaction, the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to obtain pure product The product was recrystallized from ethyl acetate, affording colourless blocks. Melting point: 474–478 K, yield: 68 %.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms. The best crystal investigated was of rather poor quality and very weakly diffracting, with no usable data obtained above 49° in 2θ. Nonetheless, the structure solved readily and refined to give acceptable uncertainties on the metrical data.

Related literature top

For related literature, see: Brandt et al. (2010); Cocco et al. (2005); El-Hawash, Abdel-Wahab & El-Demellawy (2006); El-Sayed, Moustafa, Haikal, Abu-El-Halawa & Ashry (2011); Ji et al. (2007); Mazina et al. (2005); Nagalakshmi et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram of compound (I). For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
2-Benzylamino-4-(4-bromophenyl)-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile top
Crystal data top
C22H18BrN3F(000) = 824
Mr = 404.30Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6471 (3) ÅCell parameters from 2000 reflections
b = 18.0807 (5) Åθ = 2–31°
c = 12.0395 (4) ŵ = 2.20 mm1
β = 94.719 (2)°T = 293 K
V = 1875.94 (10) Å3Block, colourless
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
ω and ϕ scansθmax = 24.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.967, Tmax = 0.974k = 2121
37065 measured reflectionsl = 1313
3084 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.776P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3084 reflectionsΔρmax = 0.32 e Å3
235 parametersΔρmin = 0.54 e Å3
Crystal data top
C22H18BrN3V = 1875.94 (10) Å3
Mr = 404.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6471 (3) ŵ = 2.20 mm1
b = 18.0807 (5) ÅT = 293 K
c = 12.0395 (4) Å0.21 × 0.19 × 0.18 mm
β = 94.719 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2232 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.040
37065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
3084 reflectionsΔρmin = 0.54 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1424 (3)0.02258 (15)0.3665 (2)0.0368 (6)
C30.1545 (3)0.05038 (15)0.4090 (2)0.0370 (6)
C40.0305 (3)0.10033 (15)0.3938 (2)0.0373 (7)
C50.1024 (3)0.07382 (15)0.3339 (2)0.0397 (7)
C60.1033 (3)0.00227 (16)0.2938 (2)0.0395 (7)
C70.2548 (3)0.01578 (19)0.2298 (3)0.0538 (8)
H7A0.29330.06360.25150.065*
H7B0.24460.01580.15020.065*
C80.3606 (4)0.0462 (2)0.2624 (3)0.0612 (9)
H8A0.42110.03040.32250.073*
H8B0.43120.06050.19930.073*
C90.2551 (4)0.11100 (19)0.3002 (3)0.0566 (9)
H9A0.24520.14570.23980.068*
H9B0.29440.13690.36260.068*
C210.2666 (4)0.14468 (15)0.3414 (3)0.0469 (8)
H21A0.16120.16190.32360.056*
H21B0.31450.17680.39890.056*
C220.3542 (3)0.15117 (16)0.2394 (3)0.0477 (8)
C230.4514 (4)0.2097 (2)0.2266 (4)0.0782 (12)
H230.46810.24450.28320.094*
C240.5267 (6)0.2170 (3)0.1270 (6)0.1083 (18)
H240.59130.25720.11670.130*
C250.5029 (7)0.1644 (4)0.0463 (5)0.1124 (19)
H250.55180.16900.01930.135*
C260.4104 (6)0.1059 (4)0.0597 (4)0.1037 (16)
H260.39690.07010.00430.124*
C270.3361 (5)0.0992 (2)0.1556 (3)0.0746 (11)
H270.27200.05870.16420.090*
C310.3004 (4)0.07214 (15)0.4625 (3)0.0417 (7)
C410.0463 (3)0.17640 (15)0.4382 (2)0.0379 (7)
C420.0037 (4)0.23703 (16)0.3719 (3)0.0492 (8)
H420.03960.22920.29960.059*
C430.0239 (4)0.30833 (17)0.4102 (3)0.0557 (9)
H430.00340.34840.36420.067*
C440.0850 (4)0.31911 (16)0.5177 (3)0.0509 (8)
C450.1276 (4)0.26076 (16)0.5862 (3)0.0490 (8)
H450.16890.26910.65890.059*
C460.1085 (3)0.18992 (16)0.5465 (2)0.0443 (7)
H460.13770.15030.59280.053*
N10.0134 (3)0.04595 (12)0.30696 (19)0.0404 (6)
N20.2614 (3)0.07048 (13)0.3849 (2)0.0477 (6)
H20.34110.05540.42620.057*
N30.4210 (3)0.08573 (15)0.5025 (3)0.0621 (8)
Br10.11061 (6)0.41678 (2)0.57329 (4)0.0879 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0354 (16)0.0361 (14)0.0392 (16)0.0024 (12)0.0045 (13)0.0010 (12)
C30.0363 (13)0.0348 (14)0.0400 (16)0.0019 (12)0.0034 (11)0.0004 (12)
C40.0388 (16)0.0376 (15)0.0361 (16)0.0038 (12)0.0067 (13)0.0045 (12)
C50.0343 (16)0.0440 (16)0.0405 (16)0.0059 (13)0.0016 (13)0.0028 (13)
C60.0360 (16)0.0441 (16)0.0382 (16)0.0008 (13)0.0024 (13)0.0024 (13)
C70.0413 (18)0.062 (2)0.056 (2)0.0035 (15)0.0059 (15)0.0018 (16)
C80.0408 (18)0.073 (2)0.068 (2)0.0067 (17)0.0063 (16)0.0006 (19)
C90.0442 (19)0.060 (2)0.064 (2)0.0132 (16)0.0039 (16)0.0023 (17)
C210.0464 (18)0.0350 (15)0.059 (2)0.0044 (13)0.0007 (15)0.0004 (14)
C220.0360 (16)0.0403 (17)0.066 (2)0.0037 (13)0.0006 (15)0.0141 (15)
C230.065 (2)0.055 (2)0.116 (3)0.0057 (19)0.018 (2)0.021 (2)
C240.077 (3)0.088 (3)0.165 (6)0.005 (3)0.040 (4)0.054 (4)
C250.094 (4)0.144 (5)0.105 (4)0.022 (4)0.039 (3)0.046 (4)
C260.090 (3)0.148 (5)0.076 (3)0.005 (3)0.023 (3)0.003 (3)
C270.067 (2)0.088 (3)0.070 (3)0.009 (2)0.013 (2)0.008 (2)
C310.0387 (14)0.0345 (15)0.0511 (18)0.0053 (12)0.0003 (13)0.0038 (13)
C410.0363 (16)0.0360 (15)0.0424 (17)0.0040 (12)0.0092 (13)0.0014 (12)
C420.056 (2)0.0439 (17)0.0476 (19)0.0069 (15)0.0013 (15)0.0040 (14)
C430.068 (2)0.0391 (17)0.060 (2)0.0125 (16)0.0060 (18)0.0093 (15)
C440.059 (2)0.0365 (16)0.060 (2)0.0046 (14)0.0188 (17)0.0043 (15)
C450.061 (2)0.0458 (18)0.0416 (18)0.0007 (15)0.0132 (15)0.0035 (14)
C460.0503 (18)0.0386 (16)0.0443 (19)0.0050 (13)0.0059 (15)0.0052 (13)
N10.0380 (14)0.0380 (13)0.0447 (14)0.0004 (11)0.0003 (11)0.0014 (11)
N20.0420 (14)0.0399 (14)0.0596 (16)0.0090 (11)0.0054 (12)0.0115 (12)
N30.0459 (17)0.0522 (17)0.086 (2)0.0050 (13)0.0084 (16)0.0154 (15)
Br10.1319 (4)0.0405 (2)0.0945 (3)0.0012 (2)0.0293 (3)0.01699 (19)
Geometric parameters (Å, º) top
C2—N11.343 (3)C22—C271.378 (5)
C2—N21.349 (3)C23—C241.418 (7)
C2—C31.416 (4)C23—H230.9300
C3—C41.403 (4)C24—C251.363 (8)
C3—C311.424 (4)C24—H240.9300
C4—C51.390 (4)C25—C261.343 (7)
C4—C411.478 (4)C25—H250.9300
C5—C61.381 (4)C26—C271.372 (6)
C5—C91.508 (4)C26—H260.9300
C6—N11.333 (4)C27—H270.9300
C6—C71.500 (4)C31—N31.139 (4)
C7—C81.519 (5)C41—C421.388 (4)
C7—H7A0.9700C41—C461.391 (4)
C7—H7B0.9700C42—C431.375 (4)
C8—C91.531 (5)C42—H420.9300
C8—H8A0.9700C43—C441.371 (5)
C8—H8B0.9700C43—H430.9300
C9—H9A0.9700C44—C451.371 (4)
C9—H9B0.9700C44—Br11.895 (3)
C21—N21.442 (3)C45—C461.372 (4)
C21—C221.500 (4)C45—H450.9300
C21—H21A0.9700C46—H460.9300
C21—H21B0.9700N2—H20.8600
C22—C231.368 (5)
N1—C2—N2118.3 (2)C23—C22—C21120.6 (3)
N1—C2—C3121.3 (2)C27—C22—C21120.8 (3)
N2—C2—C3120.3 (3)C22—C23—C24119.8 (4)
C4—C3—C2121.3 (3)C22—C23—H23120.1
C4—C3—C31121.4 (2)C24—C23—H23120.1
C2—C3—C31117.3 (2)C25—C24—C23119.0 (4)
C5—C4—C3115.9 (2)C25—C24—H24120.5
C5—C4—C41123.8 (2)C23—C24—H24120.5
C3—C4—C41120.3 (3)C26—C25—C24121.4 (5)
C6—C5—C4119.0 (3)C26—C25—H25119.3
C6—C5—C9110.1 (3)C24—C25—H25119.3
C4—C5—C9130.9 (3)C25—C26—C27119.7 (5)
N1—C6—C5126.1 (3)C25—C26—H26120.2
N1—C6—C7122.6 (3)C27—C26—H26120.2
C5—C6—C7111.3 (3)C26—C27—C22121.5 (4)
C6—C7—C8103.1 (3)C26—C27—H27119.2
C6—C7—H7A111.1C22—C27—H27119.2
C8—C7—H7A111.1N3—C31—C3175.7 (3)
C6—C7—H7B111.1C42—C41—C46117.7 (3)
C8—C7—H7B111.1C42—C41—C4121.0 (3)
H7A—C7—H7B109.1C46—C41—C4121.3 (2)
C7—C8—C9106.5 (3)C43—C42—C41121.8 (3)
C7—C8—H8A110.4C43—C42—H42119.1
C9—C8—H8A110.4C41—C42—H42119.1
C7—C8—H8B110.4C44—C43—C42118.6 (3)
C9—C8—H8B110.4C44—C43—H43120.7
H8A—C8—H8B108.6C42—C43—H43120.7
C5—C9—C8103.1 (3)C45—C44—C43121.5 (3)
C5—C9—H9A111.2C45—C44—Br1119.1 (3)
C8—C9—H9A111.1C43—C44—Br1119.4 (2)
C5—C9—H9B111.1C44—C45—C46119.3 (3)
C8—C9—H9B111.2C44—C45—H45120.3
H9A—C9—H9B109.1C46—C45—H45120.3
N2—C21—C22113.8 (2)C45—C46—C41121.1 (3)
N2—C21—H21A108.8C45—C46—H46119.4
C22—C21—H21A108.8C41—C46—H46119.4
N2—C21—H21B108.8C6—N1—C2116.4 (2)
C22—C21—H21B108.8C2—N2—C21125.7 (2)
H21A—C21—H21B107.7C2—N2—H2117.2
C23—C22—C27118.6 (4)C21—N2—H2117.2
N1—C2—C3—C42.1 (4)C23—C24—C25—C260.2 (8)
N2—C2—C3—C4178.0 (3)C24—C25—C26—C271.0 (9)
N1—C2—C3—C31174.6 (3)C25—C26—C27—C220.2 (7)
N2—C2—C3—C315.3 (4)C23—C22—C27—C261.4 (6)
C2—C3—C4—C50.6 (4)C21—C22—C27—C26177.3 (4)
C31—C3—C4—C5175.9 (3)C5—C4—C41—C4247.5 (4)
C2—C3—C4—C41179.5 (2)C3—C4—C41—C42131.3 (3)
C31—C3—C4—C413.0 (4)C5—C4—C41—C46134.4 (3)
C3—C4—C5—C60.5 (4)C3—C4—C41—C4646.8 (4)
C41—C4—C5—C6178.3 (3)C46—C41—C42—C431.0 (4)
C3—C4—C5—C9179.1 (3)C4—C41—C42—C43177.1 (3)
C41—C4—C5—C90.3 (5)C41—C42—C43—C441.3 (5)
C4—C5—C6—N10.3 (4)C42—C43—C44—C450.8 (5)
C9—C5—C6—N1179.1 (3)C42—C43—C44—Br1178.9 (2)
C4—C5—C6—C7178.9 (3)C43—C44—C45—C460.1 (5)
C9—C5—C6—C70.0 (4)Br1—C44—C45—C46179.7 (2)
N1—C6—C7—C8166.1 (3)C44—C45—C46—C410.2 (5)
C5—C6—C7—C814.7 (4)C42—C41—C46—C450.2 (4)
C6—C7—C8—C923.4 (4)C4—C41—C46—C45177.9 (3)
C6—C5—C9—C814.7 (3)C5—C6—N1—C21.1 (4)
C4—C5—C9—C8166.6 (3)C7—C6—N1—C2179.8 (3)
C7—C8—C9—C523.4 (4)N2—C2—N1—C6177.9 (3)
N2—C21—C22—C23138.8 (3)C3—C2—N1—C62.2 (4)
N2—C21—C22—C2742.5 (4)N1—C2—N2—C213.3 (4)
C27—C22—C23—C242.2 (5)C3—C2—N2—C21176.6 (3)
C21—C22—C23—C24176.6 (3)C22—C21—N2—C298.5 (3)
C22—C23—C24—C251.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.232.974 (4)145
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.862.232.974 (4)145
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H18BrN3
Mr404.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6471 (3), 18.0807 (5), 12.0395 (4)
β (°) 94.719 (2)
V3)1875.94 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
37065, 3084, 2232
Rint0.040
(sin θ/λ)max1)0.582
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05
No. of reflections3084
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009).

 

Acknowledgements

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

References

First citationBrandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Hawash, S. A. M. & Abdel Wahab, A. E. (2006). Arch. Pharm. Chem. Life Sci. 339, 437–447.  CAS Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & El Ashry, E. S. H. (2011). Eur. J. Med. Chem. 46, 2948–2954.  CAS PubMed Google Scholar
First citationJi, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazina, O. S., Rybakov, V. B., Troyanov, S. I., Babaev, E. V. & Aslanov, L. A. (2005). Kristallografiya, 50, 68–78.  Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 441–443.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 296-298
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds