organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of S-hexyl (E)-3-(4-meth­oxy­benzyl­­idene)di­thio­carbazate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, cDepartment of Chemical and Pharmaceutical Sciences, Via Giorgieri 1, 34127 Trieste, Italy, and dDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
*Correspondence e-mail: sabina_sust@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 February 2015; accepted 15 February 2015; online 25 February 2015)

In the title compound, C15H22N2OS2, the di­thio­carbazate group adopts an EE conformation with respect to the C=N bond of the benzyl­idene moiety. The hexyl side chain adopts an extended conformation and the C—S—C—C torsion angle is −93.36 (13)°. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

1. Related literature

For a related structure and background references to Schiff bases, see: Howlader et al. (2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103-o104.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22N2OS2

  • Mr = 310.47

  • Triclinic, [P \overline 1]

  • a = 4.55596 (8) Å

  • b = 12.4224 (3) Å

  • c = 14.9619 (3) Å

  • α = 75.7300 (9)°

  • β = 84.7599 (10)°

  • γ = 84.6141 (9)°

  • V = 814.99 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.93 mm−1

  • T = 173 K

  • 0.29 × 0.26 × 0.17 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.350, Tmax = 0.607

  • 9377 measured reflections

  • 2932 independent reflections

  • 2385 reflections with F2 > 2σ(F2)

  • Rint = 0.082

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.131

  • S = 1.08

  • 2932 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9⋯S1i 0.92 (3) 2.51 (3) 3.3614 (18) 154 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Chemical context top

As part of our ongoing structural studies of S-containing Schiff bases (Howlader et al., 2015), we now describe the structure of the title compound.

Structural commentary top

The molecule of the title compound is shown in Fig. 1. The Schiff base exists in thione tautomeric form with the di­thio­carbazate fragment adopting an EE configuration with respect to the C=N bond of the benzyl­idene moiety. The β-nitro­gen and the thio­keto sulphur are trans located with respect to the C(9)—N(2) bond. With the exception of the S-hexyl chain the molecule shows co-planar atoms indicating an electron delocalization within it. The bond lengths and angles are close comparable to those detected in the S-hexyl (E)-3-(4-methyl­benzyl­idene)di­thio­carbazate (Howlader et al., 2015) which differs for a methyl replacing the meth­oxy group -O(1)—CH3. However a different conformation is exhibited by the hexyl chain in the two molecules likely induced by packing requirements. In fact the torsion angle S(2)—C(10)—C(11)—C(12) is of 173.99 (13) and 66.61 (1)° in the present complex and in the methyl derivative, respectively.

Supra­molecular features top

The crystal packing evidences the ligand molecules piled along axis a and connected in pair by N2—H···S1 hydrogen bonds (H···S = 2.51 (3) Å, N···S = 3.361 (2) Å, O–H···S angle = 154 (2)°) as shown in Fig. 2. On the other hand no appreciable ππ inter­action among aromatic rings is present in the crystal packing.

Synthesis and crystallization top

To an ethano­lic solution of KOH (2.81 g, 0.05 mol) hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added and the mixture was stirred at 273 K. To this solution carbon di­sulfide (3.81 g, 0.05 mol) was added dropwise with constant stirring for one hour. Then n-bromo­hexane (8.25 g, 0.05 mol) was added dropwise with vigorous stirring at 273 K for an additional hour. Finally, 4-meth­oxy­benzaldehyde (6.81 g, 0.05 mol) in ethanol was added and the mixture refluxed for 30 min. The mixture was filtered while hot and then the filtrate was cooled to 273 K giving a precipitate of the Schiff base product. It was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl2. Colourless blocks of the title compound were obtained by slow evaporation of an ethanol/chloro­form (2:1) solution after 29 days (m.p. 369 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were located geometrically and treated as riding atoms with C—H = 0.95–0.99 Å and Uĩso(H) = 1.2Ueq(C). The hydrogen atom at N2 was detected on the difference Fourier map and freely refined.

Related literature top

For a related structure and background references to Schiff bases, see: Howlader et al. (2015).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2010); cell refinement: RAPID-AUTO (Rigaku, 2010); data reduction: RAPID-AUTO (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (ellipsoid probability at 50%) of molecule (1).
[Figure 2] Fig. 2. Crystal packing of (1) showing pair of molecules connected by N—H..·S interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
S-Hexyl (E)-3-(4-methoxybenzylidene)dithiocarbazate top
Crystal data top
C15H22N2OS2Z = 2
Mr = 310.47F(000) = 332.00
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 4.55596 (8) ÅCell parameters from 8917 reflections
b = 12.4224 (3) Åθ = 3.1–68.2°
c = 14.9619 (3) ŵ = 2.93 mm1
α = 75.7300 (9)°T = 173 K
β = 84.7599 (10)°Prism, colorless
γ = 84.6141 (9)°0.29 × 0.26 × 0.17 mm
V = 814.99 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2385 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.082
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 55
Tmin = 0.350, Tmax = 0.607k = 1414
9377 measured reflectionsl = 1717
2932 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
2932 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H22N2OS2γ = 84.6141 (9)°
Mr = 310.47V = 814.99 (3) Å3
Triclinic, P1Z = 2
a = 4.55596 (8) ÅCu Kα radiation
b = 12.4224 (3) ŵ = 2.93 mm1
c = 14.9619 (3) ÅT = 173 K
α = 75.7300 (9)°0.29 × 0.26 × 0.17 mm
β = 84.7599 (10)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2385 reflections with F2 > 2σ(F2)
Tmin = 0.350, Tmax = 0.607Rint = 0.082
9377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.55 e Å3
2932 reflectionsΔρmin = 0.34 e Å3
187 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15957 (13)0.58111 (4)0.61120 (3)0.0472 (3)
S20.02305 (12)0.40174 (4)0.77974 (3)0.0394 (2)
O11.3023 (4)0.11118 (12)0.72987 (10)0.0557 (5)
N10.4025 (4)0.31956 (12)0.65318 (11)0.0372 (5)
N20.2334 (4)0.41308 (13)0.61147 (12)0.0397 (5)
C11.4937 (6)0.16105 (19)0.66823 (17)0.0612 (7)
C21.1429 (5)0.01440 (15)0.69352 (14)0.0411 (6)
C30.9556 (6)0.03120 (17)0.75560 (14)0.0512 (7)
C40.7806 (5)0.12633 (16)0.72645 (14)0.0437 (6)
C50.7833 (5)0.18084 (15)0.63242 (13)0.0360 (5)
C60.9755 (5)0.13648 (16)0.57096 (13)0.0410 (5)
C71.1522 (5)0.03933 (17)0.60045 (14)0.0416 (6)
C80.5930 (5)0.28016 (16)0.59886 (14)0.0386 (5)
C90.0392 (5)0.46598 (15)0.66220 (13)0.0361 (5)
C100.2390 (5)0.49416 (16)0.82844 (13)0.0383 (5)
C110.0961 (5)0.58123 (16)0.86125 (13)0.0380 (5)
C120.3195 (5)0.65013 (15)0.91114 (13)0.0371 (5)
C130.1786 (5)0.72953 (16)0.95358 (14)0.0389 (5)
C140.3987 (5)0.80105 (16)1.00112 (15)0.0443 (6)
C150.2532 (5)0.87615 (16)1.04683 (15)0.0478 (6)
H11.63610.10810.63500.0734*
H21.37690.18130.62380.0734*
H31.60000.22810.70350.0734*
H40.94960.00470.81960.0615*
H50.65550.15610.77020.0525*
H60.98610.17360.50730.0492*
H71.27920.00960.55710.0499*
H80.60980.31690.53510.0464*
H90.238 (6)0.437 (2)0.5482 (18)0.066 (8)*
H100.37740.53210.78120.0460*
H110.35590.44930.88120.0460*
H120.00250.63160.80740.0455*
H130.05730.54400.90360.0455*
H140.46020.69340.86670.0445*
H150.43350.59890.96050.0445*
H160.05960.77910.90440.0467*
H170.04210.68590.99930.0467*
H180.52930.84760.95490.0532*
H190.52390.75181.04850.0532*
H200.13480.83061.09590.0574*
H210.40570.92251.07350.0574*
H220.12510.92411.00070.0574*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (5)0.0390 (4)0.0377 (4)0.0190 (3)0.0040 (3)0.0083 (3)
S20.0510 (4)0.0320 (3)0.0342 (3)0.0070 (3)0.0034 (3)0.0094 (2)
O10.0693 (12)0.0408 (9)0.0489 (9)0.0207 (8)0.0009 (8)0.0058 (7)
N10.0397 (11)0.0302 (9)0.0415 (10)0.0059 (8)0.0050 (8)0.0104 (7)
N20.0460 (12)0.0356 (9)0.0352 (10)0.0096 (8)0.0016 (8)0.0092 (8)
C10.0696 (18)0.0483 (13)0.0608 (15)0.0272 (13)0.0060 (13)0.0151 (11)
C20.0467 (14)0.0316 (11)0.0433 (12)0.0069 (10)0.0043 (10)0.0091 (9)
C30.0699 (18)0.0436 (12)0.0353 (11)0.0114 (12)0.0014 (11)0.0068 (9)
C40.0531 (15)0.0405 (12)0.0363 (11)0.0092 (11)0.0019 (10)0.0132 (9)
C50.0366 (13)0.0328 (10)0.0393 (11)0.0018 (9)0.0032 (9)0.0115 (9)
C60.0461 (14)0.0402 (11)0.0345 (11)0.0060 (10)0.0003 (9)0.0096 (9)
C70.0436 (14)0.0405 (11)0.0399 (11)0.0073 (10)0.0018 (9)0.0140 (9)
C80.0422 (13)0.0366 (11)0.0368 (11)0.0034 (10)0.0015 (9)0.0110 (9)
C90.0384 (12)0.0292 (10)0.0412 (11)0.0023 (9)0.0026 (9)0.0110 (8)
C100.0418 (13)0.0363 (11)0.0363 (10)0.0015 (10)0.0017 (9)0.0112 (9)
C110.0404 (13)0.0358 (10)0.0380 (11)0.0028 (10)0.0024 (9)0.0117 (9)
C120.0390 (13)0.0329 (10)0.0386 (11)0.0003 (10)0.0017 (9)0.0097 (9)
C130.0404 (13)0.0331 (10)0.0432 (11)0.0019 (10)0.0015 (9)0.0115 (9)
C140.0461 (14)0.0356 (11)0.0521 (13)0.0006 (10)0.0029 (11)0.0155 (10)
C150.0592 (16)0.0336 (11)0.0517 (13)0.0005 (11)0.0003 (11)0.0148 (10)
Geometric parameters (Å, º) top
S1—C91.6713 (19)C1—H10.980
S2—C91.7408 (19)C1—H20.980
S2—C101.809 (2)C1—H30.980
O1—C11.424 (3)C3—H40.950
O1—C21.362 (3)C4—H50.950
N1—N21.377 (2)C6—H60.950
N1—C81.281 (3)C7—H70.950
N2—C91.343 (3)C8—H80.950
C2—C31.391 (3)C10—H100.990
C2—C71.387 (3)C10—H110.990
C3—C41.362 (3)C11—H120.990
C4—C51.402 (3)C11—H130.990
C5—C61.389 (3)C12—H140.990
C5—C81.449 (3)C12—H150.990
C6—C71.385 (3)C13—H160.990
C10—C111.512 (4)C13—H170.990
C11—C121.529 (3)C14—H180.990
C12—C131.513 (4)C14—H190.990
C13—C141.522 (3)C15—H200.980
C14—C151.514 (4)C15—H210.980
N2—H90.92 (3)C15—H220.980
C9—S2—C10102.71 (9)C7—C6—H6119.260
C1—O1—C2117.93 (16)C2—C7—H7120.107
N2—N1—C8115.16 (16)C6—C7—H7120.106
N1—N2—C9120.57 (16)N1—C8—H8119.244
O1—C2—C3116.35 (17)C5—C8—H8119.248
O1—C2—C7124.76 (19)S2—C10—H10108.855
C3—C2—C7118.89 (18)S2—C10—H11108.851
C2—C3—C4121.27 (18)C11—C10—H10108.851
C3—C4—C5120.7 (2)C11—C10—H11108.850
C4—C5—C6117.88 (17)H10—C10—H11107.702
C4—C5—C8121.99 (19)C10—C11—H12109.133
C6—C5—C8120.13 (17)C10—C11—H13109.138
C5—C6—C7121.48 (17)C12—C11—H12109.128
C2—C7—C6119.8 (2)C12—C11—H13109.124
N1—C8—C5121.51 (17)H12—C11—H13107.854
S2—C9—S1126.46 (13)C11—C12—H14108.871
S2—C9—N2113.32 (13)C11—C12—H15108.874
S1—C9—N2120.22 (14)C13—C12—H14108.869
S2—C10—C11113.57 (15)C13—C12—H15108.863
C10—C11—C12112.36 (17)H14—C12—H15107.709
C11—C12—C13113.50 (17)C12—C13—H16108.730
C12—C13—C14114.11 (18)C12—C13—H17108.731
C13—C14—C15113.33 (19)C14—C13—H16108.724
N1—N2—H9120.7 (15)C14—C13—H17108.719
C9—N2—H9118.5 (15)H16—C13—H17107.637
O1—C1—H1109.480C13—C14—H18108.903
O1—C1—H2109.467C13—C14—H19108.907
O1—C1—H3109.466C15—C14—H18108.906
H1—C1—H2109.470C15—C14—H19108.918
H1—C1—H3109.471H18—C14—H19107.733
H2—C1—H3109.473C14—C15—H20109.466
C2—C3—H4119.366C14—C15—H21109.469
C4—C3—H4119.363C14—C15—H22109.479
C3—C4—H5119.668H20—C15—H21109.471
C5—C4—H5119.669H20—C15—H22109.465
C5—C6—H6119.260H21—C15—H22109.476
C9—S2—C10—C1193.36 (13)C2—C3—C4—C50.4 (4)
C10—S2—C9—S12.95 (18)C3—C4—C5—C61.8 (4)
C10—S2—C9—N2177.54 (14)C3—C4—C5—C8178.0 (2)
C1—O1—C2—C3179.23 (18)C4—C5—C6—C72.3 (3)
C1—O1—C2—C70.2 (3)C4—C5—C8—N13.6 (4)
N2—N1—C8—C5178.88 (17)C6—C5—C8—N1176.24 (19)
C8—N1—N2—C9175.79 (17)C8—C5—C6—C7177.54 (18)
N1—N2—C9—S21.8 (3)C5—C6—C7—C21.3 (4)
N1—N2—C9—S1178.61 (15)S2—C10—C11—C12173.99 (10)
O1—C2—C3—C4178.38 (19)C10—C11—C12—C13173.87 (13)
O1—C2—C7—C6178.73 (19)C11—C12—C13—C14178.35 (13)
C3—C2—C7—C60.2 (4)C12—C13—C14—C15177.40 (13)
C7—C2—C3—C40.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.92 (3)2.51 (3)3.3614 (18)154 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.92 (3)2.51 (3)3.3614 (18)154 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103–o104.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds