organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o179-o180

Crystal structure of 2-(3-bromo­phen­yl)-1,3-di­thiane

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 4 February 2015; accepted 10 February 2015; online 13 February 2015)

In the title compound, C10H11BrS2, the 1,3-di­thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the remaining four atoms. The bromo­benzene ring occupies an equatorial position and forms a dihedral angle of 86.38 (12)° with the least-squares plane through the 1,3-di­thiane ring. Thus, to a first approximation the mol­ecule has mirror symmetry with the mirror containing the bromo­benzene ring and the 1,4-disposed C atoms of the 1,3-di­thiane ring. In the crystal, mol­ecules associate via weak methyl­ene–bromo­benzene C—H⋯π and ππ [CgCg = 3.7770 (14) Å for centrosymmetrically related bromo­benzene rings] inter­actions, forming supra­molecular layers parallel to [10-1]; these stack with no specific inter­molecular inter­actions between them.

1. Related literature

For the original synthesis and characterization of the title compound, see: Ballesteros et al. (2005[Ballesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302-306.]). For the structure of the unsubstituted parent compound which is virtually superimposable on the title compound, see: Kalff & Romers (1966[Kalff, H. T. & Romers, C. (1966). Acta Cryst. 20, 490-496.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H11BrS2

  • Mr = 275.22

  • Monoclinic, P 21 /c

  • a = 8.9821 (4) Å

  • b = 11.3871 (5) Å

  • c = 11.0550 (5) Å

  • β = 99.604 (3)°

  • V = 1114.86 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 296 K

  • 0.33 × 0.28 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.374, Tmax = 0.745

  • 7307 measured reflections

  • 2060 independent reflections

  • 1820 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.06

  • 2060 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2b⋯Cg1i 0.97 2.83 3.668 (4) 146
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the original synthesis and characterization of the title compound, see: Ballesteros et al. (2005). For the structure of the unsubstituted parent compound which is virtually superimposable on the title compound, see: Kalff & Romers (1966).

Experimental top

A solution of 3-bromobenzaldehyde (0.037 mol, 1 equiv.) in chloroform (20 ml) was combined with an equimolar amount of propane-1,3-dithiol (3.7 ml, 0.037 mol) at room temperature. The solution was stirred for 1 h at this temperature, then cooled to -20 °C after which BF3 etherate (0.46 ml, 0.0037 mol, 0.1 equiv.) was added drop-wise. The reaction solution was allowed to warm to room temperature and stirred overnight. After this time, the solution was washed three times each with water, 10% aqueous KOH, then water followed by drying over MgSO4. Evaporation of the solvent furnishes a pure product as colourless crystals in 90% yield. To obtain crystals suitable for X-ray analysis, the product was crystallized from CH3OH. The spectroscopic data matched those reported in the literature (Ballesteros et al., 2005).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to [101] mediated by C—H···π and ππ interactions shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents. The C—H···π and ππ interactions shown as orange and purple dashed lines, respectively.
2-(3-Bromophenyl)-1,3-dithiane top
Crystal data top
C10H11BrS2F(000) = 552
Mr = 275.22Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9821 (4) ÅCell parameters from 4286 reflections
b = 11.3871 (5) Åθ = 2.6–25.4°
c = 11.0550 (5) ŵ = 4.01 mm1
β = 99.604 (3)°T = 296 K
V = 1114.86 (9) Å3Prism, colourless
Z = 40.33 × 0.28 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
1820 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 2.3°
Tmin = 0.374, Tmax = 0.745h = 910
7307 measured reflectionsk = 1312
2060 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.6522P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
2060 reflectionsΔρmax = 0.54 e Å3
118 parametersΔρmin = 0.65 e Å3
Crystal data top
C10H11BrS2V = 1114.86 (9) Å3
Mr = 275.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9821 (4) ŵ = 4.01 mm1
b = 11.3871 (5) ÅT = 296 K
c = 11.0550 (5) Å0.33 × 0.28 × 0.16 mm
β = 99.604 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2060 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1820 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.745Rint = 0.029
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
2060 reflectionsΔρmin = 0.65 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.71577 (4)1.19362 (3)1.06788 (3)0.06773 (15)
S10.60308 (9)0.70880 (7)0.76097 (6)0.0565 (2)
S20.86833 (7)0.65738 (6)0.96061 (6)0.04880 (19)
C10.7115 (3)0.7543 (2)0.9063 (2)0.0373 (5)
H10.64390.75420.96740.045*
C20.5426 (4)0.5670 (3)0.8068 (3)0.0657 (8)
H2A0.47990.57840.86920.079*
H2B0.48050.53060.73660.079*
C30.6689 (4)0.4839 (3)0.8560 (3)0.0649 (8)
H3A0.62620.40760.86900.078*
H3B0.73420.47460.79500.078*
C40.7631 (3)0.5247 (3)0.9752 (3)0.0587 (7)
H4A0.83310.46281.00650.070*
H4B0.69690.53781.03490.070*
C50.7677 (2)0.8778 (2)0.8960 (2)0.0377 (5)
C60.7265 (3)0.9638 (2)0.9723 (2)0.0382 (5)
H60.66610.94501.03010.046*
C70.7754 (3)1.0778 (2)0.9623 (2)0.0432 (6)
C80.8665 (3)1.1081 (3)0.8788 (2)0.0526 (7)
H80.89941.18510.87330.063*
C90.9078 (3)1.0224 (3)0.8039 (2)0.0575 (7)
H90.96921.04170.74690.069*
C100.8598 (3)0.9074 (3)0.8115 (2)0.0496 (6)
H100.88920.85030.76020.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0883 (3)0.0415 (2)0.0730 (2)0.00622 (14)0.01259 (18)0.00728 (13)
S10.0631 (5)0.0554 (4)0.0434 (4)0.0065 (3)0.0132 (3)0.0005 (3)
S20.0406 (3)0.0434 (4)0.0579 (4)0.0002 (3)0.0047 (3)0.0017 (3)
C10.0393 (12)0.0381 (13)0.0343 (12)0.0000 (10)0.0053 (9)0.0026 (10)
C20.0624 (18)0.0590 (19)0.0669 (18)0.0188 (15)0.0145 (15)0.0067 (15)
C30.075 (2)0.0415 (16)0.073 (2)0.0107 (14)0.0016 (16)0.0100 (14)
C40.0611 (18)0.0409 (15)0.0682 (18)0.0039 (13)0.0062 (14)0.0077 (13)
C50.0353 (12)0.0419 (13)0.0339 (11)0.0019 (10)0.0002 (9)0.0037 (10)
C60.0390 (12)0.0402 (13)0.0348 (11)0.0006 (10)0.0043 (9)0.0028 (10)
C70.0449 (14)0.0395 (13)0.0412 (13)0.0015 (10)0.0041 (10)0.0014 (10)
C80.0559 (16)0.0479 (16)0.0507 (15)0.0157 (13)0.0007 (12)0.0100 (12)
C90.0554 (17)0.072 (2)0.0476 (15)0.0166 (14)0.0153 (13)0.0098 (14)
C100.0502 (15)0.0592 (17)0.0414 (13)0.0046 (13)0.0130 (11)0.0015 (12)
Geometric parameters (Å, º) top
Br1—C71.897 (3)C4—H4A0.9700
S1—C21.803 (3)C4—H4B0.9700
S1—C11.810 (2)C5—C61.383 (3)
S2—C41.803 (3)C5—C101.389 (4)
S2—C11.811 (2)C6—C71.381 (3)
C1—C51.505 (3)C6—H60.9300
C1—H10.9800C7—C81.375 (4)
C2—C31.507 (4)C8—C91.371 (4)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.385 (4)
C3—C41.515 (4)C9—H90.9300
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700
C2—S1—C198.61 (12)S2—C4—H4A108.8
C4—S2—C198.59 (13)C3—C4—H4B108.8
C5—C1—S1109.74 (15)S2—C4—H4B108.8
C5—C1—S2110.01 (16)H4A—C4—H4B107.7
S1—C1—S2113.16 (13)C6—C5—C10119.2 (2)
C5—C1—H1107.9C6—C5—C1119.3 (2)
S1—C1—H1107.9C10—C5—C1121.5 (2)
S2—C1—H1107.9C7—C6—C5119.7 (2)
C3—C2—S1114.8 (2)C7—C6—H6120.1
C3—C2—H2A108.6C5—C6—H6120.1
S1—C2—H2A108.6C8—C7—C6121.5 (3)
C3—C2—H2B108.6C8—C7—Br1120.0 (2)
S1—C2—H2B108.6C6—C7—Br1118.53 (19)
H2A—C2—H2B107.5C9—C8—C7118.6 (3)
C4—C3—C2113.5 (3)C9—C8—H8120.7
C4—C3—H3A108.9C7—C8—H8120.7
C2—C3—H3A108.9C8—C9—C10121.2 (3)
C4—C3—H3B108.9C8—C9—H9119.4
C2—C3—H3B108.9C10—C9—H9119.4
H3A—C3—H3B107.7C9—C10—C5119.8 (3)
C3—C4—S2113.8 (2)C9—C10—H10120.1
C3—C4—H4A108.8C5—C10—H10120.1
C2—S1—C1—C5175.91 (19)S2—C1—C5—C1066.0 (3)
C2—S1—C1—S260.79 (17)C10—C5—C6—C70.9 (3)
C4—S2—C1—C5175.20 (17)C1—C5—C6—C7179.0 (2)
C4—S2—C1—S161.65 (17)C5—C6—C7—C80.9 (4)
C1—S1—C2—C358.8 (3)C5—C6—C7—Br1179.66 (17)
S1—C2—C3—C465.2 (4)C6—C7—C8—C90.5 (4)
C2—C3—C4—S265.7 (4)Br1—C7—C8—C9179.9 (2)
C1—S2—C4—C360.0 (3)C7—C8—C9—C100.2 (4)
S1—C1—C5—C6120.8 (2)C8—C9—C10—C50.3 (4)
S2—C1—C5—C6114.1 (2)C6—C5—C10—C90.7 (4)
S1—C1—C5—C1059.1 (3)C1—C5—C10—C9179.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2b···Cg1i0.972.833.668 (4)146
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2b···Cg1i0.972.833.668 (4)146
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS, 306121/2013-2 to IC and 308320/2010-7 to HAS), FAPESP (2012/00424-2 and 2013/21925-2) and CAPES are acknowledged for financial support.

References

First citationBallesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302–306.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalff, H. T. & Romers, C. (1966). Acta Cryst. 20, 490–496.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o179-o180
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds