organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o181-o182

Crystal structure of 2-(3-nitro­phen­yl)-1,3-di­thiane

CROSSMARK_Color_square_no_text.svg

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 5 February 2015; accepted 10 February 2015; online 13 February 2015)

In the title compound, C10H11NO2S2, the 1,3-di­thiane ring has a chair conformation with the 1,4-disposed C atoms being above and below the remaining four atoms. The nitro­benzene substituent occupies an equatorial position and forms a dihedral angle of 88.28 (5)° with the least-squares plane through the 1,3-di­thiane ring. The nitro group is twisted out of the plane of the benzene ring to which it is connected, forming a dihedral angle of 10.12 (3)°. In the crystal, mol­ecules aggregate into supra­molecular zigzag chains (glide symmetry along the c axis) via nitro–benzene N—O⋯π [N—O⋯Cg(benzene) = 3.4279 (18) Å and angle at O = 93.95 (11)°] inter­actions. The chains pack with no specific inter­molecular inter­actions between them.

1. Related literature

For background to substituted 1,3-di­thia­nes, see: Ballesteros et al. (2005[Ballesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302-306.]). For nitro–aryl N—O⋯π inter­actions, see: Huang et al. (2008[Huang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720-13723.]). For the structure of the closely related 3-bromo-substituted compound, see: Zukerman-Schpector et al. (2015[Zukerman-Schpector, J., Caracelli, I., Stefani, H. A., Gozhina, O. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o179-o180.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H11NO2S2

  • Mr = 241.32

  • Monoclinic, P 21 /c

  • a = 10.8547 (2) Å

  • b = 13.2655 (3) Å

  • c = 8.0891 (2) Å

  • β = 109.087 (1)°

  • V = 1100.74 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.49 × 0.46 × 0.21 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.687, Tmax = 0.745

  • 7241 measured reflections

  • 2035 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.06

  • 2035 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background to substituted 1,3-dithianes, see: Ballesteros et al. (2005). For nitro–aryl N—O···π interactions, see: Huang et al. (2008). For the structure of the closely related 3-bromo-substituted compound, see: Zukerman-Schpector et al. (2015).

Experimental top

A solution of 3-nitrobenzaldehyde (0.037 mol, 1 equiv.) in chloroform (20 ml) was combined with an equimolar amount of propane-1,3-dithiol (3.7 ml, 0.037 mol) at room temperature. The solution was stirred for 1 h at this temperature, then cooled to -20 °C after which BF3 etherate (0.46 ml, 0.0037 mol, 0.1 equiv.) was added drop-wise. The reaction solution was allowed to warm to room temperature and stirred overnight. After this time, the solution was washed three times each with water, 10% aqueous KOH, then water followed by drying over MgSO4. Evaporation of the solvent furnishes a pure product as colourless crystals in 85% yield. To obtain crystals suitable for X-ray analysis, the product was crystallized from CH3OH. 1H NMR (300 MHz, CDCl3) δ 8.37 (s, 1H), 8.18 (dt, J = 8.3, 2.6 Hz, 1H), 7.83 (ddd, J = 7.2, 3.6, 1.7 Hz, 1H), 7.63–7.48 (m, 1H), 5.26 (s, 1H), 3.10 (ddq, J = 14.4, 12.0, 2.3 Hz, 2H), 2.96 (ddp, J = 13.4, 5.1, 2.7 Hz, 2H), 2.23 (dtq, J = 14.0, 4.6, 2.3 Hz, 1H), 1.98 (dddd, J = 14.3, 12.1, 9.8, 6.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 148.39, 141.18, 133.99, 129.70, 123.36, 123.12, 50.19 (2 x C), 31.75, 24.78. M.pt: 368 K. IR (cm-1): ν 1525 (N—O); 1348 (N—O); 724 and 687 (C—S),

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Upper view: detail of the nitro-N—O···π(benzene) interaction. Lower view: the zigzag supramolecular chain along the c axis (glide symmetry) mediated by nitro-N—O···π(benzene) interactions shown as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents. The nitro-N—O···π(benzene) interactions are shown as purple dashed lines.
2-(3-Nitrophenyl)-1,3-dithiane top
Crystal data top
C10H11NO2S2F(000) = 504
Mr = 241.32Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8547 (2) ÅCell parameters from 4425 reflections
b = 13.2655 (3) Åθ = 2.5–25.4°
c = 8.0891 (2) ŵ = 0.46 mm1
β = 109.087 (1)°T = 293 K
V = 1100.74 (4) Å3Slab, colourless
Z = 40.49 × 0.46 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
1799 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 2.0°
Tmin = 0.687, Tmax = 0.745h = 1312
7241 measured reflectionsk = 1616
2035 independent reflectionsl = 89
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.3472P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.29 e Å3
2035 reflectionsΔρmin = 0.24 e Å3
137 parametersExtinction correction: SHELXL2014 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0192 (17)
Crystal data top
C10H11NO2S2V = 1100.74 (4) Å3
Mr = 241.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8547 (2) ŵ = 0.46 mm1
b = 13.2655 (3) ÅT = 293 K
c = 8.0891 (2) Å0.49 × 0.46 × 0.21 mm
β = 109.087 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1799 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.745Rint = 0.020
7241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2035 reflectionsΔρmin = 0.24 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93087 (4)0.75719 (3)0.69969 (5)0.04460 (16)
S20.93019 (4)0.98623 (3)0.69835 (6)0.04646 (16)
O10.54267 (18)0.88063 (13)0.15045 (19)0.0830 (5)
O20.35484 (16)0.85594 (14)0.1765 (2)0.0917 (6)
N10.47188 (18)0.86855 (11)0.2380 (2)0.0608 (5)
C10.86732 (14)0.87164 (10)0.76325 (19)0.0340 (3)
H10.88870.87190.89070.041*
C21.10282 (17)0.96790 (14)0.8068 (2)0.0511 (4)
H2A1.14941.02480.78040.061*
H2B1.11980.96730.93220.061*
C31.15622 (17)0.87200 (13)0.7556 (2)0.0519 (5)
H3A1.13640.87130.62970.062*
H3B1.25030.87200.80850.062*
C41.10278 (17)0.77709 (14)0.8096 (2)0.0503 (4)
H4A1.11850.77960.93470.060*
H4B1.15030.71980.78680.060*
C50.72187 (15)0.87186 (10)0.6807 (2)0.0353 (3)
C60.66533 (16)0.86907 (11)0.4999 (2)0.0403 (4)
H60.71690.86690.42800.048*
C70.53161 (17)0.86960 (11)0.4295 (2)0.0454 (4)
C80.45093 (17)0.87258 (13)0.5303 (3)0.0538 (5)
H80.36070.87220.47900.065*
C90.50821 (18)0.87617 (13)0.7092 (3)0.0539 (5)
H90.45610.87880.78030.065*
C100.64180 (17)0.87591 (11)0.7842 (2)0.0441 (4)
H100.67890.87850.90530.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (3)0.0379 (2)0.0436 (3)0.00382 (16)0.01201 (19)0.00589 (15)
S20.0441 (3)0.0374 (3)0.0589 (3)0.00061 (16)0.0181 (2)0.00780 (17)
O10.0889 (12)0.1119 (14)0.0382 (8)0.0027 (9)0.0071 (8)0.0037 (7)
O20.0563 (9)0.1212 (14)0.0696 (10)0.0056 (9)0.0178 (8)0.0135 (9)
N10.0629 (11)0.0593 (10)0.0454 (9)0.0066 (7)0.0023 (8)0.0033 (7)
C10.0388 (8)0.0344 (8)0.0294 (7)0.0002 (6)0.0119 (6)0.0002 (5)
C20.0416 (9)0.0581 (11)0.0532 (10)0.0114 (8)0.0152 (8)0.0059 (8)
C30.0368 (8)0.0729 (13)0.0477 (10)0.0044 (8)0.0161 (7)0.0004 (8)
C40.0467 (9)0.0580 (11)0.0433 (9)0.0163 (8)0.0107 (7)0.0050 (7)
C50.0378 (8)0.0338 (8)0.0351 (8)0.0015 (6)0.0128 (6)0.0003 (5)
C60.0426 (9)0.0438 (9)0.0355 (8)0.0009 (6)0.0140 (7)0.0009 (6)
C70.0456 (9)0.0417 (9)0.0408 (9)0.0002 (7)0.0032 (7)0.0022 (6)
C80.0353 (9)0.0542 (11)0.0689 (12)0.0036 (7)0.0131 (8)0.0020 (8)
C90.0462 (10)0.0625 (12)0.0608 (11)0.0065 (8)0.0282 (9)0.0023 (8)
C100.0472 (9)0.0490 (9)0.0403 (9)0.0052 (7)0.0201 (7)0.0006 (7)
Geometric parameters (Å, º) top
S1—C41.8048 (18)C3—H3B0.9700
S1—C11.8102 (14)C4—H4A0.9700
S2—C21.8069 (18)C4—H4B0.9700
S2—C11.8128 (14)C5—C61.389 (2)
O1—N11.214 (2)C5—C101.391 (2)
O2—N11.215 (2)C6—C71.375 (2)
N1—C71.471 (2)C6—H60.9300
C1—C51.500 (2)C7—C81.379 (3)
C1—H10.9800C8—C91.377 (3)
C2—C31.511 (2)C8—H80.9300
C2—H2A0.9700C9—C101.377 (3)
C2—H2B0.9700C9—H90.9300
C3—C41.509 (3)C10—H100.9300
C3—H3A0.9700
C4—S1—C199.55 (8)C3—C4—H4A108.7
C2—S2—C1100.11 (8)S1—C4—H4A108.7
O1—N1—O2123.77 (18)C3—C4—H4B108.7
O1—N1—C7117.90 (17)S1—C4—H4B108.7
O2—N1—C7118.32 (19)H4A—C4—H4B107.6
C5—C1—S1108.59 (10)C6—C5—C10119.13 (15)
C5—C1—S2108.10 (10)C6—C5—C1120.46 (13)
S1—C1—S2113.99 (8)C10—C5—C1120.41 (14)
C5—C1—H1108.7C7—C6—C5118.65 (15)
S1—C1—H1108.7C7—C6—H6120.7
S2—C1—H1108.7C5—C6—H6120.7
C3—C2—S2114.22 (12)C6—C7—C8122.93 (16)
C3—C2—H2A108.7C6—C7—N1118.60 (16)
S2—C2—H2A108.7C8—C7—N1118.46 (16)
C3—C2—H2B108.7C9—C8—C7117.84 (16)
S2—C2—H2B108.7C9—C8—H8121.1
H2A—C2—H2B107.6C7—C8—H8121.1
C4—C3—C2113.89 (15)C10—C9—C8120.77 (16)
C4—C3—H3A108.8C10—C9—H9119.6
C2—C3—H3A108.8C8—C9—H9119.6
C4—C3—H3B108.8C9—C10—C5120.67 (16)
C2—C3—H3B108.8C9—C10—H10119.7
H3A—C3—H3B107.7C5—C10—H10119.7
C3—C4—S1114.37 (12)
C4—S1—C1—C5178.82 (10)C1—C5—C6—C7179.86 (13)
C4—S1—C1—S258.27 (10)C5—C6—C7—C80.1 (2)
C2—S2—C1—C5178.78 (10)C5—C6—C7—N1178.88 (13)
C2—S2—C1—S157.95 (10)O1—N1—C7—C69.5 (2)
C1—S2—C2—C357.35 (14)O2—N1—C7—C6170.67 (16)
S2—C2—C3—C465.25 (19)O1—N1—C7—C8169.54 (17)
C2—C3—C4—S166.18 (19)O2—N1—C7—C810.3 (2)
C1—S1—C4—C358.63 (14)C6—C7—C8—C90.7 (2)
S1—C1—C5—C660.31 (15)N1—C7—C8—C9178.35 (15)
S2—C1—C5—C663.82 (15)C7—C8—C9—C100.5 (3)
S1—C1—C5—C10120.35 (13)C8—C9—C10—C50.1 (2)
S2—C1—C5—C10115.51 (13)C6—C5—C10—C90.6 (2)
C10—C5—C6—C70.5 (2)C1—C5—C10—C9179.98 (14)

Experimental details

Crystal data
Chemical formulaC10H11NO2S2
Mr241.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.8547 (2), 13.2655 (3), 8.0891 (2)
β (°) 109.087 (1)
V3)1100.74 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.49 × 0.46 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
7241, 2035, 1799
Rint0.020
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.06
No. of reflections2035
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS, 306121/2013-2 to IC and 308320/2010-7 to HAS), FAPESP (2012/00424-2 and 2013/2192–2) and CAPES are acknowledged for financial support.

References

First citationBallesteros, L., Noguez, O., Arroyo, G., Velasco, B., Delgado, F. & Miranda, R. (2005). J. Mex. Chem. Soc. 49, 302–306.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, L., Massa, L. & Karle, J. (2008). Proc. Natl Acad. Sci. 105, 13720–13723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Caracelli, I., Stefani, H. A., Gozhina, O. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o179–o180.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o181-o182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds