organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o202-o203

Crystal structure of 1-{2-[(2-meth­­oxy­phen­yl)selan­yl]phen­yl}-4-phenyl-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil, cDepartmento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 12 February 2015; accepted 16 February 2015; online 25 February 2015)

In the title compound, C21H17N3OSe, the dihedral angles between the central five-membered ring and the C- and N-bound rings are 17.89 (10) and 42.35 (10)°, respectively, indicating the mol­ecule is twisted. The dihedral angle between the Se-bound rings is 85.36 (10)°. A close intra­molecular Se⋯O contact of 2.8507 (13) Å is noted. In the crystal, C—H⋯O, C—H⋯N and C—H⋯π inter­actions lead to the formation of supra­molecular layers parallel to (011); these stack with no specific inter­molecular inter­actions between them.

1. Related literature

For background to aryl­seleno-1,2,3-triazoles and to the synthesis of the title compound, see: Deobald et al. (2011[Deobald, A. M., Camargo, L. R. S., Hörner, M., Rodrigues, O. E. D., Alves, D. & Braga, A. L. (2011). Synthesis, pp. 2397-2406.]). For an analysis of intra- and inter­molecular Se⋯O inter­actions, see: Linden et al. (2014[Linden, A., Zhou, Y. & Heimgartner, H. (2014). Acta Cryst. C70, 482-487.]). For a related organoselenium compound with a 1,2,3-triazole residue, see: Camargo et al. (2015[Camargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o200-o201.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17N3OSe

  • Mr = 406.33

  • Triclinic, [P \overline 1]

  • a = 5.6565 (3) Å

  • b = 10.3682 (5) Å

  • c = 15.3358 (7) Å

  • α = 81.604 (4)°

  • β = 80.006 (4)°

  • γ = 85.340 (4)°

  • V = 874.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

2.2. Data collection

  • Agilent SuperNova CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.759, Tmax = 1.000

  • 6845 measured reflections

  • 3869 independent reflections

  • 3548 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.01

  • 3869 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.54 3.472 (2) 165
C14—H14⋯N3ii 0.95 2.58 3.520 (2) 170
C10—H10⋯Cg1iii 0.95 2.82 3.630 (2) 144
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background to arylseleno-1,2,3-triazoles and to the synthesis of the title compound, see: Deobald et al. (2011). For an analysis of intra- and intermolecular Se···O interactions, see: Linden et al. (2014). For a related organoselenium compound with a 1,2,3-triazole residue, see: Camargo et al. (2015).

Experimental top

The compound was prepared in accord with the literature (Deobald et al., 2011). Crystals were obtained by taking 200 mg of sample into a sample vial containing methanol (10 ml) and letting it stand at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents. The C—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
1-{2-[(2-Methoxyphenyl)selanyl]phenyl}-4-phenyl-1H-1,2,3-triazole top
Crystal data top
C21H17N3OSeZ = 2
Mr = 406.33F(000) = 412
Triclinic, P1Dx = 1.543 Mg m3
a = 5.6565 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3682 (5) ÅCell parameters from 4524 reflections
c = 15.3358 (7) Åθ = 2.6–29.2°
α = 81.604 (4)°µ = 2.16 mm1
β = 80.006 (4)°T = 100 K
γ = 85.340 (4)°Prism, colourless
V = 874.83 (8) Å30.30 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova CCD
diffractometer
3548 reflections with I > 2σ(I)
Radiation source: SuperNova (Cu) X-ray SourceRint = 0.040
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 67
Tmin = 0.759, Tmax = 1.000k = 1312
6845 measured reflectionsl = 1919
3869 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.026P)2 + 0.4456P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3869 reflectionsΔρmax = 0.41 e Å3
236 parametersΔρmin = 0.52 e Å3
Crystal data top
C21H17N3OSeγ = 85.340 (4)°
Mr = 406.33V = 874.83 (8) Å3
Triclinic, P1Z = 2
a = 5.6565 (3) ÅMo Kα radiation
b = 10.3682 (5) ŵ = 2.16 mm1
c = 15.3358 (7) ÅT = 100 K
α = 81.604 (4)°0.30 × 0.20 × 0.10 mm
β = 80.006 (4)°
Data collection top
Agilent SuperNova CCD
diffractometer
3869 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3548 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 1.000Rint = 0.040
6845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
3869 reflectionsΔρmin = 0.52 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.46182 (3)0.71551 (2)0.79326 (2)0.01503 (7)
O10.5130 (2)0.51326 (12)0.68268 (9)0.0185 (3)
N10.8216 (3)0.94528 (14)0.79605 (10)0.0128 (3)
N21.0599 (3)0.96928 (15)0.78243 (11)0.0154 (3)
N31.1085 (3)1.03509 (15)0.70214 (10)0.0150 (3)
C10.4930 (4)0.4251 (2)0.62080 (14)0.0255 (5)
H1A0.35700.45490.58970.038*
H1B0.46690.33740.65330.038*
H1C0.64140.42270.57710.038*
C20.6840 (3)0.48102 (18)0.73647 (12)0.0164 (4)
C30.8446 (4)0.37256 (18)0.73332 (13)0.0209 (4)
H30.84040.31390.69160.025*
C41.0113 (4)0.34994 (19)0.79132 (14)0.0238 (4)
H41.11960.27500.78970.029*
C51.0204 (4)0.4358 (2)0.85130 (14)0.0227 (4)
H51.13550.42020.89050.027*
C60.8611 (3)0.54507 (19)0.85434 (13)0.0194 (4)
H60.86840.60410.89560.023*
C70.6917 (3)0.56852 (17)0.79755 (12)0.0150 (4)
C80.5446 (3)0.78849 (18)0.89132 (12)0.0153 (4)
C90.4431 (4)0.73766 (19)0.97760 (13)0.0194 (4)
H90.32360.67580.98560.023*
C100.5126 (4)0.7755 (2)1.05209 (13)0.0223 (4)
H100.44270.73861.11040.027*
C110.6845 (4)0.8671 (2)1.04128 (13)0.0224 (4)
H110.73470.89221.09200.027*
C120.7825 (4)0.92197 (19)0.95603 (13)0.0182 (4)
H120.89740.98630.94850.022*
C130.7135 (3)0.88317 (17)0.88174 (12)0.0133 (4)
C140.7201 (3)0.99764 (17)0.72442 (12)0.0127 (3)
H140.55690.99580.71720.015*
C150.9046 (3)1.05438 (17)0.66405 (12)0.0124 (3)
C160.8998 (3)1.12626 (17)0.57456 (12)0.0126 (4)
C171.0842 (3)1.20866 (18)0.53447 (13)0.0166 (4)
H171.21311.21730.56510.020*
C181.0791 (3)1.27779 (19)0.44998 (13)0.0192 (4)
H181.20471.33340.42330.023*
C190.8925 (3)1.26635 (19)0.40436 (13)0.0184 (4)
H190.89031.31360.34650.022*
C200.7089 (3)1.18527 (18)0.44379 (13)0.0180 (4)
H200.58021.17720.41290.022*
C210.7127 (3)1.11581 (18)0.52828 (12)0.0152 (4)
H210.58611.06060.55470.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.01551 (10)0.01235 (10)0.01832 (11)0.00120 (7)0.00576 (7)0.00192 (7)
O10.0237 (7)0.0152 (7)0.0177 (7)0.0024 (5)0.0049 (6)0.0032 (5)
N10.0117 (7)0.0131 (7)0.0145 (8)0.0021 (6)0.0051 (6)0.0002 (6)
N20.0108 (7)0.0180 (8)0.0185 (8)0.0012 (6)0.0056 (6)0.0015 (6)
N30.0125 (7)0.0174 (8)0.0155 (8)0.0012 (6)0.0040 (6)0.0011 (6)
C10.0338 (12)0.0244 (11)0.0210 (10)0.0045 (9)0.0057 (9)0.0090 (8)
C20.0193 (9)0.0138 (9)0.0147 (9)0.0045 (7)0.0008 (8)0.0010 (7)
C30.0252 (10)0.0148 (9)0.0200 (10)0.0012 (8)0.0030 (8)0.0017 (8)
C40.0218 (10)0.0165 (10)0.0282 (11)0.0032 (8)0.0033 (9)0.0028 (8)
C50.0182 (10)0.0219 (10)0.0265 (11)0.0008 (8)0.0053 (9)0.0021 (8)
C60.0182 (9)0.0181 (9)0.0218 (10)0.0020 (7)0.0031 (8)0.0024 (8)
C70.0148 (9)0.0112 (8)0.0168 (9)0.0014 (7)0.0006 (7)0.0014 (7)
C80.0142 (9)0.0152 (9)0.0168 (9)0.0021 (7)0.0053 (7)0.0016 (7)
C90.0177 (9)0.0185 (10)0.0200 (10)0.0012 (7)0.0018 (8)0.0020 (8)
C100.0228 (10)0.0273 (11)0.0139 (9)0.0043 (8)0.0026 (8)0.0031 (8)
C110.0243 (10)0.0285 (11)0.0154 (10)0.0017 (8)0.0081 (8)0.0020 (8)
C120.0178 (9)0.0205 (10)0.0179 (10)0.0017 (7)0.0074 (8)0.0017 (8)
C130.0129 (8)0.0135 (8)0.0126 (9)0.0018 (7)0.0029 (7)0.0006 (7)
C140.0129 (8)0.0135 (8)0.0129 (9)0.0002 (7)0.0056 (7)0.0021 (7)
C150.0110 (8)0.0123 (8)0.0148 (9)0.0003 (6)0.0031 (7)0.0043 (7)
C160.0122 (8)0.0121 (8)0.0127 (9)0.0015 (7)0.0007 (7)0.0022 (7)
C170.0139 (9)0.0183 (9)0.0183 (10)0.0031 (7)0.0036 (8)0.0022 (7)
C180.0178 (9)0.0187 (9)0.0191 (10)0.0047 (7)0.0002 (8)0.0018 (8)
C190.0199 (10)0.0193 (9)0.0136 (9)0.0020 (8)0.0000 (8)0.0012 (7)
C200.0168 (9)0.0208 (10)0.0174 (10)0.0006 (8)0.0060 (8)0.0021 (8)
C210.0134 (9)0.0160 (9)0.0163 (9)0.0032 (7)0.0023 (7)0.0018 (7)
Geometric parameters (Å, º) top
Se—C81.9202 (19)C8—C131.400 (2)
Se—C71.9224 (19)C9—C101.388 (3)
O1—C21.368 (2)C9—H90.9500
O1—C11.434 (2)C10—C111.387 (3)
N1—C141.351 (2)C10—H100.9500
N1—N21.365 (2)C11—C121.387 (3)
N1—C131.433 (2)C11—H110.9500
N2—N31.313 (2)C12—C131.388 (3)
N3—C151.369 (2)C12—H120.9500
C1—H1A0.9800C14—C151.378 (2)
C1—H1B0.9800C14—H140.9500
C1—H1C0.9800C15—C161.467 (2)
C2—C31.388 (3)C16—C211.392 (3)
C2—C71.404 (3)C16—C171.402 (2)
C3—C41.389 (3)C17—C181.390 (3)
C3—H30.9500C17—H170.9500
C4—C51.380 (3)C18—C191.385 (3)
C4—H40.9500C18—H180.9500
C5—C61.390 (3)C19—C201.388 (3)
C5—H50.9500C19—H190.9500
C6—C71.388 (3)C20—C211.390 (3)
C6—H60.9500C20—H200.9500
C8—C91.393 (3)C21—H210.9500
C8—Se—C796.32 (8)C11—C10—C9119.82 (18)
C2—O1—C1117.14 (16)C11—C10—H10120.1
C14—N1—N2110.78 (14)C9—C10—H10120.1
C14—N1—C13130.06 (15)C12—C11—C10119.69 (19)
N2—N1—C13118.87 (15)C12—C11—H11120.2
N3—N2—N1106.67 (14)C10—C11—H11120.2
N2—N3—C15109.61 (14)C11—C12—C13120.24 (18)
O1—C1—H1A109.5C11—C12—H12119.9
O1—C1—H1B109.5C13—C12—H12119.9
H1A—C1—H1B109.5C12—C13—C8120.86 (16)
O1—C1—H1C109.5C12—C13—N1116.82 (16)
H1A—C1—H1C109.5C8—C13—N1122.32 (16)
H1B—C1—H1C109.5N1—C14—C15104.97 (16)
O1—C2—C3125.05 (17)N1—C14—H14127.5
O1—C2—C7114.90 (17)C15—C14—H14127.5
C3—C2—C7120.05 (19)N3—C15—C14107.96 (16)
C2—C3—C4119.93 (19)N3—C15—C16122.74 (15)
C2—C3—H3120.0C14—C15—C16129.29 (17)
C4—C3—H3120.0C21—C16—C17118.71 (17)
C5—C4—C3120.32 (19)C21—C16—C15121.23 (16)
C5—C4—H4119.8C17—C16—C15120.06 (17)
C3—C4—H4119.8C18—C17—C16120.19 (18)
C4—C5—C6120.0 (2)C18—C17—H17119.9
C4—C5—H5120.0C16—C17—H17119.9
C6—C5—H5120.0C19—C18—C17120.64 (17)
C7—C6—C5120.45 (19)C19—C18—H18119.7
C7—C6—H6119.8C17—C18—H18119.7
C5—C6—H6119.8C18—C19—C20119.46 (18)
C6—C7—C2119.22 (18)C18—C19—H19120.3
C6—C7—Se125.27 (14)C20—C19—H19120.3
C2—C7—Se115.50 (15)C19—C20—C21120.26 (18)
C9—C8—C13117.89 (17)C19—C20—H20119.9
C9—C8—Se117.98 (14)C21—C20—H20119.9
C13—C8—Se123.97 (14)C20—C21—C16120.73 (17)
C10—C9—C8121.44 (18)C20—C21—H21119.6
C10—C9—H9119.3C16—C21—H21119.6
C8—C9—H9119.3
C14—N1—N2—N30.75 (19)C9—C8—C13—N1177.53 (17)
C13—N1—N2—N3175.16 (14)Se—C8—C13—N17.1 (3)
N1—N2—N3—C150.31 (19)C14—N1—C13—C12133.19 (19)
C1—O1—C2—C32.6 (3)N2—N1—C13—C1240.0 (2)
C1—O1—C2—C7178.26 (16)C14—N1—C13—C846.3 (3)
O1—C2—C3—C4179.81 (17)N2—N1—C13—C8140.54 (18)
C7—C2—C3—C40.7 (3)N2—N1—C14—C150.86 (19)
C2—C3—C4—C50.9 (3)C13—N1—C14—C15174.46 (17)
C3—C4—C5—C60.4 (3)N2—N3—C15—C140.2 (2)
C4—C5—C6—C70.2 (3)N2—N3—C15—C16179.29 (16)
C5—C6—C7—C20.5 (3)N1—C14—C15—N30.65 (19)
C5—C6—C7—Se179.52 (14)N1—C14—C15—C16179.64 (17)
O1—C2—C7—C6179.22 (16)N3—C15—C16—C21162.95 (17)
C3—C2—C7—C60.0 (3)C14—C15—C16—C2118.2 (3)
O1—C2—C7—Se0.1 (2)N3—C15—C16—C1717.9 (3)
C3—C2—C7—Se179.15 (13)C14—C15—C16—C17161.00 (18)
C13—C8—C9—C102.4 (3)C21—C16—C17—C180.2 (3)
Se—C8—C9—C10173.23 (15)C15—C16—C17—C18179.43 (17)
C8—C9—C10—C110.9 (3)C16—C17—C18—C190.0 (3)
C9—C10—C11—C121.1 (3)C17—C18—C19—C200.2 (3)
C10—C11—C12—C131.5 (3)C18—C19—C20—C210.2 (3)
C11—C12—C13—C80.0 (3)C19—C20—C21—C160.0 (3)
C11—C12—C13—N1179.48 (17)C17—C16—C21—C200.2 (3)
C9—C8—C13—C121.9 (3)C15—C16—C21—C20179.44 (17)
Se—C8—C13—C12173.39 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.543.472 (2)165
C14—H14···N3ii0.952.583.520 (2)170
C10—H10···Cg1iii0.952.823.630 (2)144
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.543.472 (2)165
C14—H14···N3ii0.952.583.520 (2)170
C10—H10···Cg1iii0.952.823.630 (2)144
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2.
 

Footnotes

Present address: Instituto Federal de Educação, Ciência e Tecnologia Farroupilha Rua Erechim, 860 - Bairro Planalto, 98280-000 Panambi, RS, Brazil.

Acknowledgements

The Brazilian agencies CNPq (305626/2013-2 to JZ-S), CAPES, FAPESC and FAPESP (2010/10855-5 to LRSC) are acknowledged for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCamargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o200–o201.  CrossRef IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationDeobald, A. M., Camargo, L. R. S., Hörner, M., Rodrigues, O. E. D., Alves, D. & Braga, A. L. (2011). Synthesis, pp. 2397–2406.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Zhou, Y. & Heimgartner, H. (2014). Acta Cryst. C70, 482–487.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o202-o203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds