organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o204-o205

Crystal structure of 4-phenyl-1-{2-[(2,4,6-tri­methyl­phen­yl)selan­yl]phen­yl}-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil, cDepartmento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 12 February 2015; accepted 16 February 2015; online 25 February 2015)

In the title compound, C23H21N3Se, the C-bound phenyl ring is almost coplanar with the central five-membered ring [dihedral angle = 2.84 (10)°], but the N-bound benzene ring is inclined [dihedral angle = 47.52 (10)°]. The dihedral angle between the Se-bound rings is 69.24 (9)°. An intra­molecular Se⋯N inter­action of 3.0248 (15) Å is noted. In the crystal, C—H⋯π inter­actions connect mol­ecules into double layers that stack along the a axis with no directional inter­actions between them.

1. Related literature

For background and synthesis of aryl­seleno-1,2,3-triazoles, including of the title compound, see: Deobald et al. (2011[Deobald, A. M., Camargo, L. R. S., Hörner, M., Rodrigues, O. E. D., Alves, D. & Braga, A. L. (2011). Synthesis, pp. 2397-2406.]). For Se⋯N inter­actions, see: Pati & Zade (2014[Pati, P. B. & Zade, S. S. (2014). Cryst. Growth Des. 14, 1695-1700.]). For a related organoselenium compound with a 1,2,3-triazole residue, see: Camargo et al. (2015[Camargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o200-o201.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H21N3Se

  • Mr = 418.39

  • Monoclinic, P 21 /c

  • a = 21.3924 (4) Å

  • b = 6.9332 (1) Å

  • c = 12.9204 (2) Å

  • β = 92.231 (2)°

  • V = 1914.87 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Agilent SuperNova CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.809, Tmax = 1.000

  • 9275 measured reflections

  • 4252 independent reflections

  • 3740 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.063

  • S = 1.03

  • 4252 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C15 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.68 3.481 (2) 143
C7—H7a⋯Cg2ii 0.98 2.61 3.492 (2) 150
C16—H16⋯Cg3iii 0.95 2.66 3.399 (2) 135
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemAxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background and synthesis of arylseleno-1,2,3-triazoles, including of the title compound, see: Deobald et al. (2011). For Se···N interactions, see: Pati & Zade (2014). For a related organoselenium compound with a 1,2,3-triazole residue, see: Camargo et al. (2015).

Experimental top

The compound was prepared in accord with the literature (Deobald et al., 2011). Crystals were obtained by taking 200 mg of sample into a sample vial containing methanol (5 ml) and ethyl acetate (5 ml) and letting it stand at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents. The C—H···π interactions are shown as purple dashed lines.
4-Phenyl-1-{2-[(2,4,6-trimethylphenyl)selanyl]phenyl}-1H-1,2,3-triazole top
Crystal data top
C23H21N3SeF(000) = 856
Mr = 418.39Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.3924 (4) ÅCell parameters from 4584 reflections
b = 6.9332 (1) Åθ = 2.4–29.3°
c = 12.9204 (2) ŵ = 1.97 mm1
β = 92.231 (2)°T = 100 K
V = 1914.87 (5) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova CCD
diffractometer
3740 reflections with I > 2σ(I)
Radiation source: SuperNova (Cu) X-ray SourceRint = 0.026
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 2527
Tmin = 0.809, Tmax = 1.000k = 87
9275 measured reflectionsl = 1612
4252 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.1744P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4252 reflectionsΔρmax = 0.38 e Å3
247 parametersΔρmin = 0.39 e Å3
Crystal data top
C23H21N3SeV = 1914.87 (5) Å3
Mr = 418.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.3924 (4) ŵ = 1.97 mm1
b = 6.9332 (1) ÅT = 100 K
c = 12.9204 (2) Å0.20 × 0.15 × 0.10 mm
β = 92.231 (2)°
Data collection top
Agilent SuperNova CCD
diffractometer
4252 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3740 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.026
9275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
4252 reflectionsΔρmin = 0.39 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.76393 (2)0.40426 (3)0.12277 (2)0.01683 (7)
N10.65328 (7)0.6076 (2)0.23160 (12)0.0130 (3)
N20.65949 (7)0.6956 (2)0.13866 (12)0.0175 (4)
N30.60302 (7)0.7185 (2)0.09728 (12)0.0171 (3)
C10.83935 (8)0.2521 (3)0.13795 (14)0.0132 (4)
C20.84041 (9)0.0834 (3)0.19790 (14)0.0143 (4)
C30.89540 (9)0.0249 (3)0.20417 (15)0.0168 (4)
H30.89660.13930.24470.020*
C40.94859 (9)0.0300 (3)0.15272 (15)0.0181 (4)
C50.94552 (9)0.1966 (3)0.09317 (15)0.0182 (4)
H50.98140.23470.05710.022*
C60.89188 (9)0.3100 (3)0.08433 (14)0.0157 (4)
C70.78440 (9)0.0169 (3)0.25528 (16)0.0192 (4)
H7A0.79440.10430.29120.029*
H7B0.74900.00330.20600.029*
H7C0.77340.11520.30600.029*
C81.00802 (10)0.0852 (4)0.16441 (17)0.0291 (5)
H8A0.99840.22280.15700.044*
H8B1.02770.06150.23300.044*
H8C1.03670.04640.11090.044*
C90.89247 (10)0.4894 (3)0.01805 (17)0.0250 (5)
H9A0.88300.60210.06050.038*
H9B0.86090.47750.03860.038*
H9C0.93390.50500.01070.038*
C100.76174 (8)0.4997 (3)0.26208 (14)0.0130 (4)
C110.81423 (9)0.4896 (3)0.32961 (14)0.0146 (4)
H110.85240.44010.30550.017*
C120.81130 (9)0.5511 (3)0.43132 (15)0.0153 (4)
H120.84730.54210.47640.018*
C130.75617 (9)0.6257 (3)0.46787 (15)0.0163 (4)
H130.75410.66520.53810.020*
C140.70405 (9)0.6421 (3)0.40097 (15)0.0160 (4)
H140.66630.69540.42480.019*
C150.70724 (8)0.5805 (3)0.29941 (14)0.0123 (4)
C160.59254 (8)0.5762 (3)0.24976 (15)0.0145 (4)
H160.57560.51840.30910.017*
C170.56039 (8)0.6464 (3)0.16345 (15)0.0135 (4)
C180.49267 (9)0.6540 (3)0.13925 (15)0.0151 (4)
C190.46969 (9)0.7268 (3)0.04465 (15)0.0198 (4)
H190.49800.77220.00470.024*
C200.40557 (9)0.7336 (3)0.02211 (16)0.0240 (5)
H200.39020.78460.04220.029*
C210.36407 (9)0.6660 (3)0.09340 (17)0.0221 (5)
H210.32030.66880.07750.026*
C220.38639 (9)0.5945 (3)0.18778 (17)0.0223 (4)
H220.35790.54930.23690.027*
C230.45047 (9)0.5887 (3)0.21079 (16)0.0186 (4)
H230.46550.53990.27580.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.01516 (10)0.02217 (11)0.01296 (10)0.00690 (8)0.00215 (7)0.00303 (8)
N10.0107 (7)0.0140 (8)0.0142 (8)0.0002 (6)0.0017 (6)0.0018 (7)
N20.0137 (8)0.0231 (9)0.0157 (8)0.0002 (7)0.0015 (6)0.0047 (7)
N30.0119 (8)0.0213 (9)0.0182 (8)0.0012 (7)0.0001 (6)0.0031 (7)
C10.0109 (9)0.0163 (9)0.0121 (9)0.0018 (7)0.0019 (7)0.0050 (8)
C20.0144 (9)0.0154 (9)0.0131 (9)0.0029 (8)0.0009 (7)0.0050 (8)
C30.0212 (10)0.0146 (9)0.0145 (9)0.0024 (8)0.0002 (8)0.0005 (8)
C40.0155 (10)0.0244 (11)0.0141 (9)0.0035 (8)0.0022 (7)0.0044 (8)
C50.0133 (9)0.0272 (11)0.0142 (9)0.0034 (8)0.0013 (7)0.0026 (9)
C60.0168 (9)0.0168 (10)0.0134 (9)0.0023 (8)0.0002 (7)0.0020 (8)
C70.0183 (10)0.0189 (10)0.0208 (10)0.0021 (8)0.0042 (8)0.0006 (9)
C80.0208 (11)0.0446 (14)0.0218 (11)0.0143 (10)0.0007 (9)0.0016 (11)
C90.0254 (11)0.0257 (11)0.0241 (11)0.0018 (9)0.0027 (9)0.0078 (10)
C100.0162 (9)0.0105 (9)0.0124 (9)0.0008 (7)0.0006 (7)0.0003 (8)
C110.0122 (9)0.0147 (9)0.0167 (9)0.0008 (7)0.0006 (7)0.0013 (8)
C120.0164 (9)0.0138 (9)0.0154 (9)0.0005 (8)0.0034 (7)0.0011 (8)
C130.0199 (10)0.0167 (10)0.0125 (9)0.0016 (8)0.0021 (7)0.0013 (8)
C140.0134 (9)0.0154 (9)0.0196 (10)0.0012 (7)0.0052 (8)0.0007 (8)
C150.0109 (9)0.0096 (9)0.0165 (9)0.0020 (7)0.0005 (7)0.0032 (8)
C160.0111 (9)0.0124 (9)0.0201 (10)0.0004 (7)0.0033 (7)0.0009 (8)
C170.0122 (9)0.0107 (9)0.0178 (9)0.0007 (7)0.0015 (7)0.0014 (8)
C180.0137 (9)0.0116 (9)0.0199 (10)0.0010 (7)0.0005 (8)0.0027 (8)
C190.0174 (10)0.0259 (11)0.0162 (10)0.0017 (8)0.0016 (8)0.0032 (9)
C200.0196 (10)0.0305 (12)0.0215 (10)0.0059 (9)0.0055 (8)0.0053 (10)
C210.0124 (9)0.0234 (11)0.0300 (12)0.0015 (8)0.0042 (8)0.0089 (10)
C220.0145 (10)0.0182 (10)0.0344 (12)0.0018 (8)0.0030 (9)0.0016 (10)
C230.0151 (9)0.0160 (10)0.0245 (10)0.0005 (8)0.0004 (8)0.0048 (9)
Geometric parameters (Å, º) top
Se—C101.9199 (18)C9—H9C0.9800
Se—C11.9311 (18)C10—C151.396 (3)
N1—C161.347 (2)C10—C111.397 (2)
N1—N21.358 (2)C11—C121.385 (3)
N1—C151.434 (2)C11—H110.9500
N2—N31.311 (2)C12—C131.387 (3)
N3—C171.369 (2)C12—H120.9500
C1—C61.402 (3)C13—C141.389 (3)
C1—C21.403 (3)C13—H130.9500
C2—C31.395 (3)C14—C151.384 (3)
C2—C71.506 (3)C14—H140.9500
C3—C41.393 (3)C16—C171.376 (3)
C3—H30.9500C16—H160.9500
C4—C51.388 (3)C17—C181.471 (3)
C4—C81.504 (3)C18—C231.393 (3)
C5—C61.392 (3)C18—C191.394 (3)
C5—H50.9500C19—C201.392 (3)
C6—C91.510 (3)C19—H190.9500
C7—H7A0.9800C20—C211.385 (3)
C7—H7B0.9800C20—H200.9500
C7—H7C0.9800C21—C221.384 (3)
C8—H8A0.9800C21—H210.9500
C8—H8B0.9800C22—C231.392 (3)
C8—H8C0.9800C22—H220.9500
C9—H9A0.9800C23—H230.9500
C9—H9B0.9800
C10—Se—C198.26 (8)C15—C10—C11117.77 (17)
C16—N1—N2110.77 (15)C15—C10—Se120.88 (13)
C16—N1—C15129.16 (16)C11—C10—Se121.34 (14)
N2—N1—C15119.66 (14)C12—C11—C10120.82 (17)
N3—N2—N1107.14 (14)C12—C11—H11119.6
N2—N3—C17109.07 (15)C10—C11—H11119.6
C6—C1—C2121.05 (16)C11—C12—C13120.54 (17)
C6—C1—Se118.43 (14)C11—C12—H12119.7
C2—C1—Se120.48 (14)C13—C12—H12119.7
C3—C2—C1118.44 (17)C12—C13—C14119.42 (18)
C3—C2—C7119.49 (17)C12—C13—H13120.3
C1—C2—C7122.06 (17)C14—C13—H13120.3
C4—C3—C2121.86 (18)C15—C14—C13119.79 (17)
C4—C3—H3119.1C15—C14—H14120.1
C2—C3—H3119.1C13—C14—H14120.1
C5—C4—C3118.04 (17)C14—C15—C10121.60 (17)
C5—C4—C8121.29 (19)C14—C15—N1118.08 (16)
C3—C4—C8120.65 (19)C10—C15—N1120.30 (16)
C4—C5—C6122.45 (18)N1—C16—C17104.89 (16)
C4—C5—H5118.8N1—C16—H16127.6
C6—C5—H5118.8C17—C16—H16127.6
C5—C6—C1118.15 (18)N3—C17—C16108.13 (16)
C5—C6—C9119.12 (18)N3—C17—C18121.92 (17)
C1—C6—C9122.73 (17)C16—C17—C18129.94 (18)
C2—C7—H7A109.5C23—C18—C19118.95 (17)
C2—C7—H7B109.5C23—C18—C17120.39 (17)
H7A—C7—H7B109.5C19—C18—C17120.66 (18)
C2—C7—H7C109.5C20—C19—C18120.43 (19)
H7A—C7—H7C109.5C20—C19—H19119.8
H7B—C7—H7C109.5C18—C19—H19119.8
C4—C8—H8A109.5C21—C20—C19120.09 (19)
C4—C8—H8B109.5C21—C20—H20120.0
H8A—C8—H8B109.5C19—C20—H20120.0
C4—C8—H8C109.5C22—C21—C20119.93 (18)
H8A—C8—H8C109.5C22—C21—H21120.0
H8B—C8—H8C109.5C20—C21—H21120.0
C6—C9—H9A109.5C21—C22—C23120.1 (2)
C6—C9—H9B109.5C21—C22—H22119.9
H9A—C9—H9B109.5C23—C22—H22120.0
C6—C9—H9C109.5C22—C23—C18120.50 (19)
H9A—C9—H9C109.5C22—C23—H23119.8
H9B—C9—H9C109.5C18—C23—H23119.8
C16—N1—N2—N30.6 (2)C11—C10—C15—C142.5 (3)
C15—N1—N2—N3173.99 (15)Se—C10—C15—C14177.07 (14)
N1—N2—N3—C170.3 (2)C11—C10—C15—N1175.45 (16)
C6—C1—C2—C30.8 (3)Se—C10—C15—N14.9 (2)
Se—C1—C2—C3178.16 (13)C16—N1—C15—C1443.5 (3)
C6—C1—C2—C7179.33 (17)N2—N1—C15—C14128.46 (18)
Se—C1—C2—C72.0 (2)C16—N1—C15—C10138.4 (2)
C1—C2—C3—C40.1 (3)N2—N1—C15—C1049.6 (2)
C7—C2—C3—C4179.96 (18)N2—N1—C16—C170.7 (2)
C2—C3—C4—C50.6 (3)C15—N1—C16—C17173.24 (17)
C2—C3—C4—C8177.51 (18)N2—N3—C17—C160.1 (2)
C3—C4—C5—C60.7 (3)N2—N3—C17—C18179.00 (17)
C8—C4—C5—C6177.43 (18)N1—C16—C17—N30.5 (2)
C4—C5—C6—C10.0 (3)N1—C16—C17—C18179.26 (18)
C4—C5—C6—C9179.89 (18)N3—C17—C18—C23176.52 (18)
C2—C1—C6—C50.8 (3)C16—C17—C18—C232.1 (3)
Se—C1—C6—C5178.15 (14)N3—C17—C18—C193.3 (3)
C2—C1—C6—C9179.32 (18)C16—C17—C18—C19178.05 (19)
Se—C1—C6—C91.9 (2)C23—C18—C19—C200.2 (3)
C15—C10—C11—C122.5 (3)C17—C18—C19—C20179.96 (18)
Se—C10—C11—C12177.11 (14)C18—C19—C20—C210.6 (3)
C10—C11—C12—C130.6 (3)C19—C20—C21—C221.0 (3)
C11—C12—C13—C141.3 (3)C20—C21—C22—C230.6 (3)
C12—C13—C14—C151.3 (3)C21—C22—C23—C180.2 (3)
C13—C14—C15—C100.7 (3)C19—C18—C23—C220.6 (3)
C13—C14—C15—N1177.35 (16)C17—C18—C23—C22179.55 (18)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C15 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.683.481 (2)143
C7—H7a···Cg2ii0.982.613.492 (2)150
C16—H16···Cg3iii0.952.663.399 (2)135
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C15 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.683.481 (2)143
C7—H7a···Cg2ii0.982.613.492 (2)150
C16—H16···Cg3iii0.952.663.399 (2)135
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Present address: Instituto Federal de Educação, Ciência e Tecnologia Farroupilha Rua Erechim, 860 - Bairro Planalto, 98280-000 Panambi, RS, Brazil.

Acknowledgements

The Brazilian agencies CNPq (305626/2013–2 to JZ-S), CAPES, FAPESC and FAPESP (2010/10855-5 to LRSC) are acknowledged for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCamargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o200–o201.  CrossRef IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemAxon.com  Google Scholar
First citationDeobald, A. M., Camargo, L. R. S., Hörner, M., Rodrigues, O. E. D., Alves, D. & Braga, A. L. (2011). Synthesis, pp. 2397–2406.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPati, P. B. & Zade, S. S. (2014). Cryst. Growth Des. 14, 1695–1700.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o204-o205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds