organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o197-o198

Crystal structure of 4,6-di­amino-2-(methyl­sulfan­yl)pyridine-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, cDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 3 February 2015; accepted 13 February 2015; online 21 February 2015)

The title pyrimidine derivative, C7H8N4S, is essentially planar, with a maximum deviation of 0.029 (2) Å from the mean plane of the non-H atoms. In the crystal, mol­ecules are linked by an inter­molecular bifurcated N—H⋯N hydrogen bond between the cyano N atom and the two amino groups, an N—H⋯N hydrogen bond between the two amino groups and a weak C—H⋯π inter­action, forming a three-dimensional network.

1. Related literature

For the abundance of pyridines in pharmaceuticals and natural products, see: Zhang et al. (2010[Zhang, X., Li, D., Fan, X., Wang, X., Li, X., Qu, G. & Wang, J. (2010). Mol. Divers. 14, 159-167.]). For various applications of pyridine-containing compounds, see: Murata et al. (2003[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.]). For the use of polyfunctional pyridines in preparing a variety of heterocyclic compounds, see: Al-Haiza et al. (2003[Al-Haiza, M. A., Mostafa1, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275-286.]). For the synthesis of the title compound, see: Abu-Shanab (1999[Abu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430-431.]). For a similar structure, see: Mohamed et al. (2014[Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993-o994.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H8N4S

  • Mr = 180.23

  • Orthorhombic, P 21 21 21

  • a = 5.0863 (7) Å

  • b = 12.698 (2) Å

  • c = 13.069 (2) Å

  • V = 844.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.40 × 0.09 × 0.05 mm

2.2. Data collection

  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.984

  • 9083 measured reflections

  • 1487 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.06

  • 1487 reflections

  • 122 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.86 (3) 2.43 (3) 3.225 (4) 155 (3)
N2—H2B⋯N4ii 0.86 (2) 2.26 (3) 3.083 (4) 161 (3)
N3—H3B⋯N4iii 0.85 (2) 2.31 (2) 3.128 (3) 161 (2)
C7—H7ACg1iv 0.98 2.77 3.552 (4) 137
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyridine ring is a core structure in a number of pharmaceuticals and natural products (Zhang et al., 2010). 2-Amino-3-cyanopyridines have been identified as IKK-β inhibitors (Murata et al., 2003). Besides this, they are important and useful intermediates in preparing variety of heterocyclic compounds (Al-Haiza et al., 2003). Such findings and following to our on-going study on synthesis of bio-active heterocyclic molecules we report in this study the synthesis and crystal structure determination of the title compound.

The molecule of the title compound, Fig. 1, is a tetra-substituted pyrimidine derivative, which is essentially planar with C7–S1–C5–C4, C3–C2–C1–N2, N3–C3–C4–C5 and C6–C4–C3–C2 torsion angles being 180.0 (2), 179.9 (2), 179.0 (2) and 179.7 (2)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar structure (Mohamed et al., 2014). In the crystal structure, intermolecular N—H···N hydrogen bonds and a weak C—H···π interaction feature in the crystal packing (Table 1, Fig. 2).

Related literature top

For the abundance of pyridines in pharmaceuticals and natural products, see: Zhang et al. (2010). For various applications of pyridine-containing compounds, see: Murata et al. (2003). For the use of polyfunctional pyridines in preparing a variety of heterocyclic compounds, see: Al-Haiza et al. (2003). For the synthesis of the title compound, see: Abu-Shanab (1999). For a similar structure, see: Mohamed et al. (2014).

Experimental top

The title compound was prepared according to the reported method (Abu-Shanab, 1999). Crystals of the product were obtained in a good yield (77%) and were suitable for X-ray diffraction (M.p. 426–428 K).

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C) . The H atoms attached to N2 and N3 were found in a difference Fourier map and their positions were refined with bond length and angle restraints of N—H = 0.86 (1) and H···H = 1.40 (3) Å, and with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding (dashed lines) and packing of the title compound viewed down the a axis.
4,6-Diamino-2-(methylsulfanyl)pyridine-3-carbonitrile top
Crystal data top
C7H8N4SF(000) = 376
Mr = 180.23Dx = 1.418 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3713 reflections
a = 5.0863 (7) Åθ = 2.2–25.0°
b = 12.698 (2) ŵ = 0.33 mm1
c = 13.069 (2) ÅT = 200 K
V = 844.1 (2) Å3Needle, yellow
Z = 40.40 × 0.09 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
1487 independent reflections
Radiation source: XOS X-beam microfocus source1353 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.833, Tmax = 0.984k = 1512
9083 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.1689P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.20 e Å3
1487 reflectionsΔρmin = 0.13 e Å3
122 parametersAbsolute structure: Flack (1983)
6 restraintsAbsolute structure parameter: 0.01 (4)
Crystal data top
C7H8N4SV = 844.1 (2) Å3
Mr = 180.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0863 (7) ŵ = 0.33 mm1
b = 12.698 (2) ÅT = 200 K
c = 13.069 (2) Å0.40 × 0.09 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
1487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1353 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.984Rint = 0.037
9083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.13 e Å3
1487 reflectionsAbsolute structure: Flack (1983)
122 parametersAbsolute structure parameter: 0.01 (4)
6 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.05518 (13)0.80355 (6)0.72687 (5)0.0304 (2)
N10.8883 (4)0.62615 (18)0.63890 (15)0.0256 (7)
N20.7653 (6)0.4785 (2)0.55086 (19)0.0410 (9)
N30.3276 (4)0.5616 (2)0.86570 (18)0.0282 (7)
N40.6450 (4)0.7998 (2)0.94969 (16)0.0322 (7)
C10.7297 (5)0.5407 (2)0.6340 (2)0.0277 (8)
C20.5369 (5)0.5181 (2)0.70666 (18)0.0268 (8)
C30.5066 (4)0.5834 (2)0.79017 (17)0.0222 (8)
C40.6745 (5)0.67178 (19)0.79768 (17)0.0217 (8)
C50.8576 (4)0.6892 (2)0.71847 (18)0.0238 (7)
C60.6581 (5)0.7431 (2)0.88141 (19)0.0242 (8)
C71.2520 (6)0.7927 (3)0.6128 (2)0.0387 (10)
H20.427200.458200.698700.0320*
H2A0.894 (5)0.487 (3)0.509 (2)0.0620*
H2B0.682 (6)0.4202 (18)0.545 (3)0.0620*
H3A0.210 (5)0.5167 (19)0.849 (2)0.0420*
H3B0.286 (6)0.6117 (17)0.9060 (19)0.0420*
H7A1.328300.721900.609000.0580*
H7B1.393300.845100.614900.0580*
H7C1.141400.805100.552600.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0274 (3)0.0303 (4)0.0334 (3)0.0054 (3)0.0014 (3)0.0023 (3)
N10.0259 (13)0.0261 (12)0.0249 (11)0.0002 (10)0.0014 (9)0.0017 (10)
N20.0562 (18)0.0331 (16)0.0338 (14)0.0117 (13)0.0185 (12)0.0121 (12)
N30.0290 (13)0.0291 (13)0.0266 (12)0.0026 (11)0.0033 (10)0.0050 (10)
N40.0355 (12)0.0340 (14)0.0270 (11)0.0016 (12)0.0010 (10)0.0054 (12)
C10.0328 (15)0.0254 (15)0.0248 (13)0.0026 (12)0.0010 (11)0.0012 (12)
C20.0305 (14)0.0224 (14)0.0275 (13)0.0049 (12)0.0014 (12)0.0042 (11)
C30.0222 (15)0.0245 (14)0.0200 (12)0.0035 (10)0.0029 (10)0.0026 (11)
C40.0213 (12)0.0242 (15)0.0195 (12)0.0044 (10)0.0036 (9)0.0002 (10)
C50.0207 (12)0.0268 (13)0.0240 (11)0.0031 (11)0.0051 (10)0.0041 (13)
C60.0207 (12)0.0261 (14)0.0258 (14)0.0003 (11)0.0032 (11)0.0034 (12)
C70.0364 (15)0.045 (2)0.0347 (15)0.0091 (15)0.0057 (12)0.0038 (15)
Geometric parameters (Å, º) top
S1—C51.769 (3)N2—H2B0.86 (2)
S1—C71.801 (3)N3—H3A0.86 (2)
N1—C11.354 (3)C3—C41.414 (3)
N1—C51.322 (3)N3—H3B0.85 (2)
N2—C11.355 (4)C4—C51.410 (3)
N3—C31.371 (3)C4—C61.423 (3)
N4—C61.149 (3)C2—H20.9500
C1—C21.395 (4)C7—H7A0.9800
C2—C31.379 (3)C7—H7B0.9800
N2—H2A0.86 (3)C7—H7C0.9800
C5—S1—C7101.63 (14)C5—C4—C6120.2 (2)
C1—N1—C5116.9 (2)C3—C4—C5118.2 (2)
N1—C1—N2115.2 (2)C3—C4—C6121.6 (2)
N1—C1—C2123.5 (2)N1—C5—C4124.1 (2)
N2—C1—C2121.3 (2)S1—C5—N1118.61 (17)
C1—C2—C3119.6 (2)S1—C5—C4117.28 (18)
C1—N2—H2A123 (2)N4—C6—C4179.3 (3)
C1—N2—H2B121 (3)C1—C2—H2120.00
H2A—N2—H2B115 (3)C3—C2—H2120.00
N3—C3—C2121.5 (2)S1—C7—H7A109.00
N3—C3—C4120.8 (2)S1—C7—H7B109.00
C2—C3—C4117.7 (2)S1—C7—H7C109.00
C3—N3—H3A114.6 (18)H7A—C7—H7B109.00
C3—N3—H3B117.3 (18)H7A—C7—H7C110.00
H3A—N3—H3B119 (3)H7B—C7—H7C110.00
C7—S1—C5—C4180.0 (2)C1—C2—C3—N3177.1 (2)
C7—S1—C5—N10.5 (2)N3—C3—C4—C5179.0 (2)
C1—N1—C5—C40.9 (4)N3—C3—C4—C62.3 (4)
C1—N1—C5—S1178.60 (18)C2—C3—C4—C51.5 (3)
C5—N1—C1—C21.2 (4)C2—C3—C4—C6179.7 (2)
C5—N1—C1—N2179.4 (2)C3—C4—C5—N12.3 (4)
N2—C1—C2—C3179.9 (2)C6—C4—C5—S11.6 (3)
N1—C1—C2—C31.8 (4)C6—C4—C5—N1179.0 (2)
C1—C2—C3—C40.4 (3)C3—C4—C5—S1177.24 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.86 (3)2.43 (3)3.225 (4)155 (3)
N2—H2B···N4ii0.86 (2)2.26 (3)3.083 (4)161 (3)
N3—H3B···N4iii0.85 (2)2.31 (2)3.128 (3)161 (2)
C7—H7A···Cg1iv0.982.773.552 (4)137
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.86 (3)2.43 (3)3.225 (4)155 (3)
N2—H2B···N4ii0.86 (2)2.26 (3)3.083 (4)161 (3)
N3—H3B···N4iii0.85 (2)2.31 (2)3.128 (3)161 (2)
C7—H7A···Cg1iv0.982.773.552 (4)137
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+2; (iv) x+1, y, z.
 

Acknowledgements

The authors would like express their gratitude to the University of Tennessee for providing the X-ray data.

References

First citationAbu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430–431.  Google Scholar
First citationAl-Haiza, M. A., Mostafa1, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993–o994.  CSD CrossRef IUCr Journals Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Li, D., Fan, X., Wang, X., Li, X., Qu, G. & Wang, J. (2010). Mol. Divers. 14, 159–167.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o197-o198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds