organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5,7-di­phenyl-4,7-di­hydro­tetra­zolo[1,5-a]pyrimidine

CROSSMARK_Color_square_no_text.svg

aChemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
*Correspondence e-mail: jhein2@ucmerced.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 29 December 2014; accepted 11 February 2015; online 21 February 2015)

In the title mol­ecule, C16H13N5, the plane of the tetra­zole ring forms dihedral angles of 16.37 (7) and 76.59 (7)° with the two phenyl rings. The dihedral angle between the phenyl rings is 68.05 (6)°. The pyrimidine ring is in a flattened boat conformation. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers.

1. Related literature

For the synthesis, see: Desenko et al. (2001[Desenko, S. M., Gladkov, E. S., Komykhov, S. A., Shishkin, O. V. & Orlov, V. D. (2001). Chem. Heterocycl. Compd. 37, 747-754.]); Ghorbani-Vaghei et al. (2013[Ghorbani-Vaghei, R., Toghraei-Semiromi, Z., Amiri, M. & Karimi-Nami, R. (2013). Mol. Divers. 17, 307-318.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H13N5

  • Mr = 275.31

  • Orthorhombic, P b c n

  • a = 12.6931 (8) Å

  • b = 10.9284 (6) Å

  • c = 18.8915 (12) Å

  • V = 2620.5 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.28 × 0.22 × 0.15 mm

2.2. Data collection

  • Bruker D8 APEX Cu diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.631, Tmax = 0.753

  • 13662 measured reflections

  • 2357 independent reflections

  • 2047 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.06

  • 2357 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.94 (2) 1.99 (2) 2.908 (2) 165 (1)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound was synthesized via condensation between chalcone and aminotetrazole using a literature procedure to produce a racemic mixture (Desenko et al., 2001; Ghorbani-Vaghei et al., 2013). Successive recrystallization of this compound from a variety of solvents identified multiple crystal isoforms, which appear to be metastable and rearrange to give the crystal structure reported herein.

The molecular structure of the title compound is shown in Fig. 1. The tetrazole ring [N2–N5/C16] forms dihedral angles of 16.37 (7) [C1–C6] and 76.59 (7)° [C10–C15] with the two phenyl rings. The dihedral angle between the phenyl rings is 68.05 (6)°. The pyrimidine ring [N1/N2/C7/C8/C9/C16] is in a flattened boat conformation with N1 and C9 deviating by 0.1222 (10) and 0.2478 (13) Å respectively, from the mean plane of the other four atoms [N2/C7/C8/C16]. In the crystal, pairs of molecules are linked by N—H···N hydrogen bonds to form invesion dimers.

Related literature top

For the synthesis, see: Desenko et al. (2001); Ghorbani-Vaghei et al. (2013).

Experimental top

1H-Tetrazol-5-amine (2.0g, 23.51mmol) and (E)-chalcone (5.39g, 25.9mmol) was added to DMF (3.92ml) in an oven dried vial then stirred overnight at 423K. Then while still heating, the product was diluted with toluene (0.4mL) and stirred for 2 more hours. The solid precipitate was collected via vacuum filtration, rinsed with toluene and placed on high vacuum until dry. 4.34g of white solid was collected. X-ray quality crystals were grown from slow evaporation of a solution of the title compound in dichloromethane.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to N was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A pair of molecules linked by intermolecular N—H···N hydrogen bonds (dashed lines).
5,7-Diphenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine top
Crystal data top
C16H13N5Dx = 1.396 Mg m3
Mr = 275.31Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 6133 reflections
a = 12.6931 (8) Åθ = 4.2–68.2°
b = 10.9284 (6) ŵ = 0.71 mm1
c = 18.8915 (12) ÅT = 100 K
V = 2620.5 (3) Å3Block, colorless
Z = 80.28 × 0.22 × 0.15 mm
F(000) = 1152
Data collection top
Bruker D8 APEX Cu
diffractometer
2357 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker FR-5912047 reflections with I > 2σ(I)
Multilayer Mirrors monochromatorRint = 0.048
Detector resolution: 8.0 pixels mm-1θmax = 68.2°, θmin = 4.7°
ω and ϕ scansh = 1015
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1311
Tmin = 0.631, Tmax = 0.753l = 2215
13662 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.7255P]
where P = (Fo2 + 2Fc2)/3
2357 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13N5V = 2620.5 (3) Å3
Mr = 275.31Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 12.6931 (8) ŵ = 0.71 mm1
b = 10.9284 (6) ÅT = 100 K
c = 18.8915 (12) Å0.28 × 0.22 × 0.15 mm
Data collection top
Bruker D8 APEX Cu
diffractometer
2357 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2047 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.753Rint = 0.048
13662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.13 e Å3
2357 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Experimental. Absortion correction: SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0847 before and 0.0589 after correction. The Ratio of minimum to maximum transmission is 0.8385. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.47790 (8)0.87666 (9)1.05756 (5)0.0178 (2)
N40.47318 (8)0.77893 (9)1.10314 (6)0.0196 (3)
N30.39481 (9)0.70757 (10)1.08856 (6)0.0206 (3)
N20.34601 (8)0.75851 (10)1.03147 (6)0.0175 (3)
N10.36681 (8)0.92953 (10)0.95763 (5)0.0174 (2)
H10.4132 (13)0.9922 (16)0.9444 (8)0.034 (4)*
C160.39775 (10)0.86051 (11)1.01341 (6)0.0158 (3)
C90.24638 (10)0.71622 (12)1.00051 (7)0.0184 (3)
H90.25080.62590.99250.022*
C80.23680 (10)0.77919 (12)0.93004 (7)0.0191 (3)
H80.18970.74520.89630.023*
C70.29038 (10)0.88019 (11)0.91166 (6)0.0170 (3)
C100.15611 (10)0.74218 (12)1.05162 (7)0.0188 (3)
C110.13730 (11)0.66105 (12)1.10670 (7)0.0222 (3)
H110.17860.58891.11090.027*
C120.05843 (11)0.68479 (13)1.15568 (7)0.0263 (3)
H120.04660.62941.19360.032*
C130.00323 (11)0.78893 (13)1.14952 (7)0.0263 (3)
H130.05790.80451.18270.032*
C140.01545 (11)0.87026 (13)1.09460 (7)0.0258 (3)
H140.02640.94201.09030.031*
C150.09509 (10)0.84739 (12)1.04586 (7)0.0218 (3)
H150.10790.90371.00860.026*
C60.27368 (10)0.94608 (11)0.84397 (6)0.0181 (3)
C10.18077 (11)0.92813 (12)0.80523 (7)0.0226 (3)
H1A0.12850.87370.82270.027*
C20.16440 (11)0.98872 (13)0.74191 (7)0.0266 (3)
H20.10180.97410.71570.032*
C30.23888 (11)1.07083 (13)0.71640 (7)0.0255 (3)
H30.22671.11370.67340.031*
C40.33095 (11)1.08969 (12)0.75403 (7)0.0238 (3)
H40.38231.14540.73670.029*
C50.34843 (10)1.02735 (11)0.81705 (7)0.0206 (3)
H50.41231.04030.84220.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0175 (5)0.0196 (5)0.0163 (5)0.0002 (4)0.0011 (4)0.0016 (4)
N40.0181 (5)0.0212 (5)0.0195 (5)0.0002 (4)0.0005 (4)0.0035 (5)
N30.0184 (5)0.0232 (5)0.0203 (6)0.0003 (4)0.0025 (5)0.0041 (5)
N20.0169 (5)0.0183 (5)0.0173 (5)0.0012 (4)0.0019 (4)0.0020 (4)
N10.0186 (5)0.0177 (5)0.0159 (5)0.0024 (5)0.0029 (4)0.0010 (4)
C160.0155 (6)0.0160 (6)0.0159 (6)0.0006 (5)0.0008 (5)0.0013 (5)
C90.0177 (6)0.0185 (6)0.0191 (6)0.0036 (5)0.0016 (5)0.0018 (5)
C80.0174 (6)0.0223 (6)0.0177 (6)0.0020 (5)0.0017 (5)0.0024 (5)
C70.0151 (6)0.0205 (6)0.0154 (6)0.0021 (5)0.0004 (5)0.0036 (5)
C100.0182 (6)0.0214 (6)0.0168 (6)0.0056 (5)0.0032 (5)0.0023 (5)
C110.0233 (7)0.0219 (6)0.0213 (7)0.0047 (6)0.0011 (5)0.0003 (6)
C120.0286 (7)0.0301 (7)0.0203 (7)0.0105 (6)0.0014 (6)0.0002 (6)
C130.0201 (7)0.0368 (8)0.0219 (7)0.0059 (6)0.0021 (6)0.0082 (6)
C140.0216 (7)0.0313 (7)0.0244 (7)0.0018 (6)0.0035 (6)0.0050 (6)
C150.0209 (7)0.0246 (7)0.0198 (6)0.0014 (6)0.0029 (5)0.0004 (6)
C60.0192 (6)0.0187 (6)0.0162 (6)0.0035 (5)0.0001 (5)0.0029 (5)
C10.0199 (7)0.0252 (7)0.0226 (7)0.0008 (6)0.0013 (6)0.0004 (6)
C20.0242 (7)0.0329 (7)0.0227 (7)0.0052 (6)0.0057 (6)0.0013 (6)
C30.0318 (8)0.0266 (7)0.0181 (6)0.0079 (6)0.0015 (6)0.0023 (6)
C40.0291 (7)0.0227 (6)0.0197 (6)0.0005 (6)0.0011 (6)0.0007 (6)
C50.0219 (7)0.0212 (6)0.0188 (6)0.0000 (5)0.0022 (5)0.0017 (6)
Geometric parameters (Å, º) top
N5—N41.3732 (15)C12—H120.9500
N5—C161.3274 (16)C12—C131.386 (2)
N4—N31.2937 (16)C13—H130.9500
N3—N21.3627 (15)C13—C141.387 (2)
N2—C161.3381 (16)C14—H140.9500
N2—C91.4680 (16)C14—C151.3899 (19)
N1—H10.937 (18)C15—H150.9500
N1—C161.3541 (16)C6—C11.4018 (18)
N1—C71.4093 (16)C6—C51.3955 (18)
C9—H91.0000C1—H1A0.9500
C9—C81.5035 (18)C1—C21.3831 (19)
C9—C101.5250 (18)C2—H20.9500
C8—H80.9500C2—C31.390 (2)
C8—C71.3421 (18)C3—H30.9500
C7—C61.4829 (17)C3—C41.3832 (19)
C10—C111.3877 (19)C4—H40.9500
C10—C151.3905 (19)C4—C51.3896 (19)
C11—H110.9500C5—H50.9500
C11—C121.3879 (19)
C16—N5—N4104.90 (10)C11—C12—H12119.8
N3—N4—N5111.65 (10)C13—C12—C11120.32 (13)
N4—N3—N2105.77 (10)C13—C12—H12119.8
N3—N2—C9125.34 (10)C12—C13—H13120.2
C16—N2—N3108.61 (10)C12—C13—C14119.51 (13)
C16—N2—C9125.69 (11)C14—C13—H13120.2
C16—N1—H1115.6 (10)C13—C14—H14119.8
C16—N1—C7117.77 (10)C13—C14—C15120.31 (13)
C7—N1—H1123.2 (10)C15—C14—H14119.8
N5—C16—N2109.07 (11)C10—C15—H15119.9
N5—C16—N1129.58 (11)C14—C15—C10120.14 (13)
N2—C16—N1121.35 (11)C14—C15—H15119.9
N2—C9—H9108.8C1—C6—C7120.16 (12)
N2—C9—C8106.17 (10)C5—C6—C7121.75 (12)
N2—C9—C10109.66 (10)C5—C6—C1118.09 (12)
C8—C9—H9108.8C6—C1—H1A119.6
C8—C9—C10114.50 (11)C2—C1—C6120.72 (13)
C10—C9—H9108.8C2—C1—H1A119.6
C9—C8—H8117.8C1—C2—H2119.8
C7—C8—C9124.36 (12)C1—C2—C3120.46 (13)
C7—C8—H8117.8C3—C2—H2119.8
N1—C7—C6116.36 (11)C2—C3—H3120.2
C8—C7—N1120.28 (11)C4—C3—C2119.52 (12)
C8—C7—C6123.37 (12)C4—C3—H3120.2
C11—C10—C9119.02 (12)C3—C4—H4119.9
C11—C10—C15119.41 (12)C3—C4—C5120.14 (13)
C15—C10—C9121.52 (12)C5—C4—H4119.9
C10—C11—H11119.8C6—C5—H5119.5
C12—C11—C10120.30 (13)C4—C5—C6121.04 (12)
C12—C11—H11119.8C4—C5—H5119.5
N5—N4—N3—N20.30 (13)C9—C10—C11—C12177.42 (11)
N4—N5—C16—N20.52 (13)C9—C10—C15—C14178.02 (12)
N4—N5—C16—N1179.19 (12)C8—C9—C10—C11158.67 (11)
N4—N3—N2—C160.03 (13)C8—C9—C10—C1523.84 (17)
N4—N3—N2—C9173.39 (11)C8—C7—C6—C118.98 (19)
N3—N2—C16—N50.36 (14)C8—C7—C6—C5161.31 (12)
N3—N2—C16—N1179.38 (11)C7—N1—C16—N5168.75 (12)
N3—N2—C9—C8167.03 (11)C7—N1—C16—N210.94 (17)
N3—N2—C9—C1068.78 (15)C7—C6—C1—C2179.78 (12)
N2—C9—C8—C719.03 (17)C7—C6—C5—C4179.09 (12)
N2—C9—C10—C1182.14 (14)C10—C9—C8—C7102.10 (14)
N2—C9—C10—C1595.35 (14)C10—C11—C12—C130.9 (2)
N1—C7—C6—C1160.74 (11)C11—C10—C15—C140.54 (19)
N1—C7—C6—C518.97 (17)C11—C12—C13—C140.9 (2)
C16—N5—N4—N30.52 (13)C12—C13—C14—C150.3 (2)
C16—N2—C9—C820.66 (16)C13—C14—C15—C100.5 (2)
C16—N2—C9—C10103.54 (14)C15—C10—C11—C120.12 (19)
C16—N1—C7—C812.02 (17)C6—C1—C2—C31.5 (2)
C16—N1—C7—C6168.25 (11)C1—C6—C5—C40.62 (19)
C9—N2—C16—N5173.03 (11)C1—C2—C3—C41.4 (2)
C9—N2—C16—N17.23 (19)C2—C3—C4—C50.3 (2)
C9—C8—C7—N14.52 (19)C3—C4—C5—C60.7 (2)
C9—C8—C7—C6175.19 (11)C5—C6—C1—C20.50 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.937 (18)1.992 (18)2.9075 (15)165.3 (14)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.937 (18)1.992 (18)2.9075 (15)165.3 (14)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank Christopher Daley, A. Rheingold and C. Moore (UCSD) for performing X-ray crystallography. Funding for this work was provided by the University of California, Merced and National Science Foundation (CHE-1300686)

References

First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesenko, S. M., Gladkov, E. S., Komykhov, S. A., Shishkin, O. V. & Orlov, V. D. (2001). Chem. Heterocycl. Compd. 37, 747–754.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorbani-Vaghei, R., Toghraei-Semiromi, Z., Amiri, M. & Karimi-Nami, R. (2013). Mol. Divers. 17, 307–318.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds