research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 284-287

Crystal structure of bis­­[1-(2-hy­dr­oxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN3]silver(I) tetra­fluorido­borate methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bHaskins Laboratories, Dept. of Chemistry, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 19 January 2015; accepted 9 February 2015; online 21 February 2015)

1-(2-Hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole (metronidazole, MET) is a medication that is used to treat infections by a variety of anaerobic organisms, but there are relatively few reports of the structures of metal compounds that exhibit coordination of metronidazole. We have demonstrated that MET reacts with AgBF4 to give [Ag(MET)2]BF4·CH3OH, in which the AgI cation is coordinated by two MET ligands with a trans arrangement. The structure of [Ag(MET)2]BF4 exhibits some inter­esting differences from its nitrate counterpart, [Ag(MET)2]NO3 [Fun et al. (2008). Acta Cryst. E64, m668]. For instance, although the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry with a mol­ecular inversion center, but the latter has a syn-like arrangement. In the crystal, the BF4 anion is linked by an O—H⋯F hydrogen bond to the methanol solvent molecule, which is, in turn, linked to the cation by an O—H⋯O hydrogen bond; the components of the structure are linked by O—H⋯O hydrogen bonds, forming chains along [001]. One of the MET ligands and the BF4 anion are disordered over two sets of sites with ratios of refined occupancies 0.501 (17):0.499 (17) and 0.539 (19):0.461 (19), respectively.

1. Chemical context

1-(2-Hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole, also known as metronidazole (MET) or Flagyl, is a medication used particularly for treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, but is also effective against anaerobic bacteria (Freeman et al., 1997[Freeman, C. D., Klutman, N. E. & Lamp, K. C. (1997). Drugs, 54, 679-708.]; Miljkovic et al., 2014[Miljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, Lj., Kalicanin, B. & Savic, V. (2014). Pharmazie, 69, 571-577.]; Soares et al., 2012[Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. & Feres, M. (2012). J. Appl. Oral Sci. 20, 295-309.]; Samuelson, 1999[Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533-1541.]; Lofmark et al., 2010[Lofmark, S., Edlund, C. & Nord, C. E. (2010). Clin. Infect. Dis. 50(Suppl. 1), S16-S23.]). There are relatively few reports of the structures of metal compounds that exhibit coordination of MET. For example, with respect to silver, only the nitrate compound, [Ag(MET)2]NO3, has been structurally characterized by X-ray diffraction (Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668-m669.]). Herein, we describe the structure of the tetra­fluorido­borate derivative, [Ag(MET)2]BF4, which is obtained by addition of MET to AgBF4 in methanol (see Scheme).

2. Structural commentary

Crystals of composition [Ag(MET)2]BF4·MeOH were obtained from a solution in methanol. The asymmetric unit consists of a silver cation, [Ag(MET)2]+, a tetra­fluorido­borate anion, BF4, and a solvent methanol mol­ecule. The silver atom of [Ag(MET)2]+ is coordinated by two MET ligands in a trans manner by their N3 nitro­gen atoms, as illustrated in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the cation of the title compound, with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown.

One of the MET ligands exhibits disorder resulting from rotation about the Ag—N bond [the dihedral angle between the planes of the disordered 5-membered rings is 11.0 (9)°]. The Ag—N bond lengths [Ag—N11 = 2.082 (15), Ag—N11A = 2.163 (16) and Ag—N21 = 2.1193 (15) Å] are comparable to those values in the nitrate derivative, [2.1489 (11) and 2.1475 (11) Å; Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668-m669.]). There are, however, some inter­esting differences between the two compounds.

First, while the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry, and the latter has a syn-like arrangement. Thus, the C13—N11⋯N21—C23 torsion angle for [Ag(MET)2]BF4 is 160.8 (9)° [148.6 (11)° for the minor component of disorder], while the value for [Ag(MET)2]NO3 is 24.10° (Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668-m669.]). These differences are illustrated in Fig. 2[link], which shows that the [Ag(MET)2]+ unit of [Ag(MET)2]BF4 has an approximate inversion center at the AgI ion, whereas [Ag(MET)2]NO3 does not.

[Figure 2]
Figure 2
Comparison of the [Ag(MET)2]+ units in [Ag(MET)2]BF4 (top) and [Ag(MET)2]NO3 (bottom).

A second inter­esting difference is that the N11—Ag—N21 angle of 175.7 (5)° for [Ag(MET)2]BF4 is much closer to 180° than is the corresponding value for [Ag(MET)2]NO3 [165.34 (4)°; Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668-m669.]). It is possible that this could be attributed to the tetra­fluorido­borate ligand being considered a non-coordinating ion relative to nitrate, and this is reflected by the fact that [Ag(MET)2]NO3 exhibits Ag⋯O contacts of 2.63 and 2.67 Å, which are comparable to distances in other silver nitrate compounds (Wu et al., 2012[Wu, J., Huang, C., Li, G.-Q., Tian, H.-Y. & Jiang, R.-W. (2012). Acta Cryst. E68, m185-m186.]).

3. Supra­molecular features

The hy­droxy­ethyl group of one of the MET ligands [O21—H] serves as a donor in an inter­molecular hydrogen-bonding inter­action with the other hy­droxy­ethyl group [O11—H] of an adjacent mol­ecule. In turn, the latter hy­droxy­ethyl group serves as a hydrogen-bond donor to a methanol mol­ecule, which also hydrogen bonds to a tetra­fluorido­borate anion. In the crystal, the components of the structure are linked into chains along [001] by the O—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F2 0.84 1.84 2.673 (9) 173
O11—H11A⋯O1 0.84 1.86 2.697 (10) 175
O21—H21A⋯O11i 0.84 1.91 2.726 (11) 164
O21—H21A⋯O11Ai 0.84 1.87 2.712 (11) 176
Symmetry code: (i) x, y, z-1.
[Figure 3]
Figure 3
Part of a hydrogen-bonded chain along [001]. The disorder is not shown and hydrogen bonds are shown as dashed lines.

4. Database survey

In addition to coordination to silver, metronidazole has also been shown to coordinate to other metals, and structurally characterized compounds have been reported for Co (Galván-Tejada et al., 2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]), Cu (Galván-Tejada et al., 2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]; Barba-Behrens et al., 1991[Barba-Behrens, N., María Mutio-Rico, A., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333-1341.]; Athar et al., 2005[Athar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320-1330.]; Ratajczak-Sitarz et al., 1998[Ratajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326-331.]; Bharti et al., 2002[Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704-2712.]), Zn (Galván-Tejada et al., 2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]), Ru (Wu et al., 2003[Wu, A., Kennedy, D. C., Patrick, B. O. & James, B. R. (2003). Inorg. Chem. 42, 7579-7586.]; Kennedy et al., 2006[Kennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974-1982.]), Rh (Dyson et al., 1990[Dyson, T. M., Morrison, E. C., Tocher, D. A., Dale, L. D. & Edwards, D. I. (1990). Inorg. Chim. Acta, 169, 127-131.]; Nothenberg et al., 1994[Nothenberg, M. S., Zyngier, S. B., Giesbrecht, A. M., Gambardella, M. T. P., Santos, R. H. A., Kimura, E. & Najjar, R. (1994). J. Braz. Chem. Soc. 5, 23-29.]), Pd (Bharti et al., 2002[Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704-2712.]; De Bondt et al., 1994[De Bondt, H. L., Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1994). Acta Cryst. C50, 180-181.]; Rochon et al., 1993[Rochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703-1706.]) and Pt (Bharti et al., 2002[Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704-2712.]; Bales et al., 1983[Bales, J. R., Coulson, C. J., Gilmour, D. W., Mazid, M. A., Neidle, S., Kuroda, R., Peart, B. J., Ramsden, C. A. & Sadler, P. J. (1983). J. Chem. Soc. Chem. Commun. pp. 432-433.]). In these compounds, the coordination number of the central atom ranges from four for Cu, Zn, Pd and Pt to six for Ru and Rh.

5. Synthesis and crystallization

Crystals of composition [Ag(MET)2]BF4·MeOH were obtained by combining AgBF4 with MET in a 1:2 molar ratio in methanol and allowing the solution to evaporate slowly at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were refined using a riding-model approximation with C—H = 0.95–0.99 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C,O). One of the MET ligands was refined as rotationally disordered with occupancies of 0.501 (17) and 0.499 (17) and the configurations were modeled using the SAME command in SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The tetra­fluorido­borate counter-ion was also refined as disordered and was modeled with two site occupancies, 0.539 (19) and 0.461 (19).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C6H9N3O3)2]BF4·CH4O
Mr 569.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 130
a, b, c (Å) 9.2592 (10), 10.5339 (10), 12.3995 (12)
α, β, γ (°) 106.940 (11), 92.788 (9), 112.439 (10)
V3) 1051.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 1.00 × 0.51 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.551, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17164, 6401, 6107
Rint 0.023
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.12
No. of reflections 6401
No. of parameters 440
No. of restraints 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −1.03
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

1-(2-hy­droxy­ethyl)-2-methyl-5-nitro-1H-imidazole, also known as metronidazole (MET) or Flagyl, is a medication used particularly for treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, but is also effective against anaerobic bacteria (Freeman et al., 1997; Miljkovic et al., 2014; Soares et al., 2012; Samuelson, 1999; Lofmark et al., 2010). There are relatively few reports of the structures of metal compounds that exhibit coordination of MET. For example, with respect to silver, only the nitrate compound, [Ag(MET)2]NO3, has been structurally characterized by X-ray diffraction (Fun et al., 2008). Herein, we describe the structure of the tetra­fluoridoborate derivative, [Ag(MET)2]BF4, which is obtained by addition of MET to AgBF4 in methanol (see Scheme below).

Structural commentary top

Crystals of composition [Ag(MET)2]BF4·MeOH were obtained from a solution in methanol. The asymmetric unit consists of a silver cation, [Ag(MET)2]+, a tetra­fluoridoborate anion, BF4, and a solvent methanol molecule. The silver atom of [Ag(MET)2]+ is coordinated by two MET ligands in a trans manner by their N3 nitro­gen atoms, as illustrated in Fig. 1.

One of the MET ligands exhibits disorder resulting from rotation about the Ag—N bond [the dihedral angle between the planes of the disordered 5-membered rings is 11.0 (9)°]. The Ag—N bond lengths [Ag—N11 = 2.082 (15), Ag—N11A = 2.163 (16) and Ag—N21 = 2.1193 (15) Å] are comparable to those values in the nitrate derivative, [2.1489 (11) and 2.1475 (11) Å; Fun et al., 2008). There are, however, some inter­esting differences between the two compounds.

First, while the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry, and the latter has a syn-like arrangement. Thus, the C13—N11···N21—C23 torsion angle for [Ag(MET)2]BF4 is 160.8 (9)° [147.0 (8)° for the minor component of disorder], while the value for [Ag(MET)2]NO3 is 24.10° (Fun et al., 2008). These differences are illustrated in Fig. 2, which shows that the [Ag(MET)2]+ unit of [Ag(MET)2]BF4 has an approximate inversion center at the AgI ion, whereas [Ag(MET)2]NO3 does not.

A second inter­esting difference is that the N11—Ag—N21 angle of 175.7 (5)° for [Ag(MET)2]BF4 is much closer to 180° than is the corresponding value for [Ag(MET)2]NO3 [165.34 (4)°; Fun et al., 2008). It is possible that this could be attributed to the tetra­fluoridoborate ligand being considered a non-coordinating ion relative to nitrate, and this is reflected by the fact that [Ag(MET)2]NO3 exhibits Ag···O contacts of 2.63 and 2.67 Å, which are comparable to distances in other silver nitrate compounds (Wu et al., 2012).

Supra­molecular features top

The hy­droxy­ethyl group of one of the MET ligands [O21—H] serves as a donor in an inter­molecular hydrogen-bonding inter­action with the other hy­droxy­ethyl group [O11—H] of an adjacent molecule. In turn, the latter hy­droxy­ethyl group serves as a hydrogen-bond donor to a methanol molecule, which also hydrogen bonds to a tetra­fluoridoborate anion. In the crystal, the components of the structure are linked into chains along [001] by the O—H···O hydrogen bonds (Table 1 and Fig. 3).

Database survey top

In addition to coordination to silver, metronidazole has also been shown to coordinate to other metals, and structurally characterized compounds have been reported for Co (Galván-Tejada et al., 2002), Cu (Galván-Tejada et al., 2002; Barba-Behrens et al., 1991; Athar et al., 2005; Ratajczak-Sitarz et al., 1998; Bharti et al., 2002), Zn (Galván-Tejada et al., 2002), Ru (Wu et al., 2003; Kennedy et al., 2006), Rh (Dyson et al., 1990; Nothenberg et al., 1994), Pd (Bharti et al., 2002; Debondt et al., 1994; Rochon et al., 1993) and Pt (Bharti et al., 2002; Bales et al., 1983). In these compounds, the coordination number of the central atom ranges from four for Cu, Zn, Pd and Pt to six for Ru and Rh.

Synthesis and crystallization top

Crystals of composition [Ag(MET)2]BF4.MeOH were obtained by combining AgBF4 with MET in a 1:2 molar ratio in methanol and allowing the solution to evaporate slowly at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were refined using a riding-model approximation with C—H = 0.95–0.99 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C,O). One of the MET ligands was refined as rotationally disordered with occupancies of 0.501 (17) and 0.499 (17) and the configurations were modeled using the SAME command in SHELXL2013 (Sheldrick, 2015). The tetra­fluoridoborate counter-ion was also refined as disordered and was modeled with two site occupancies, 0.539 (19) and 0.461 (19).

Related literature top

For related literature, see: Athar et al. (2005); Bales et al. (1983); Barba-Behrens, Mutio-Rico, Joseph-Nathan & Contreras (1991); Bharti et al. (2002); Debondt et al. (1994); Dyson et al. (1990); Freeman et al. (1997); Fun et al. (2008); Galván-Tejada, Bernes, Castillo-Blum, Noth, Vicente & Barba-Behrens (2002); Kennedy et al. (2006); Lofmark et al. (2010); Miljkovic et al. (2014); Nothenberg et al. (1994); Ratajczak-Sitarz, Katrusiak, Wojakowska, Januszczyk, Krzyminiewski & Pietrzak (1998); Rochon et al. (1993); Samuelson (1999); Sheldrick (2008, 2015); Soares et al. (2012); Wu et al. (2003, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation of the title compound, with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Comparison of the [Ag(MET)2]+ units in [Ag(MET)2]BF4 (top) and [Ag(MET)2]NO3 (bottom).
[Figure 3] Fig. 3. Part of a hydrogen-bonded chain along [001]. The disorder is not shown and hydrogen bonds are shown as dashed lines.
Bis[1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole-κN3]silver(I) tetrafluoridoborate methanol monosolvate top
Crystal data top
[Ag(C6H9N3O3)2](BF4)·CH4OZ = 2
Mr = 569.04F(000) = 572
Triclinic, P1Dx = 1.797 Mg m3
a = 9.2592 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5339 (10) ÅCell parameters from 9065 reflections
c = 12.3995 (12) Åθ = 2.3–32.9°
α = 106.940 (11)°µ = 1.04 mm1
β = 92.788 (9)°T = 130 K
γ = 112.439 (10)°Block, colourless
V = 1051.7 (2) Å31.00 × 0.51 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
6107 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 30.5°, θmin = 1.8°
Tmin = 0.551, Tmax = 0.747h = 1313
17164 measured reflectionsk = 1515
6401 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0161P)2 + 1.0163P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.007
S = 1.12Δρmax = 1.00 e Å3
6401 reflectionsΔρmin = 1.03 e Å3
440 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
144 restraintsExtinction coefficient: 0.0027 (4)
Crystal data top
[Ag(C6H9N3O3)2](BF4)·CH4Oγ = 112.439 (10)°
Mr = 569.04V = 1051.7 (2) Å3
Triclinic, P1Z = 2
a = 9.2592 (10) ÅMo Kα radiation
b = 10.5339 (10) ŵ = 1.04 mm1
c = 12.3995 (12) ÅT = 130 K
α = 106.940 (11)°1.00 × 0.51 × 0.31 mm
β = 92.788 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
6401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
6107 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.747Rint = 0.023
17164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028144 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.12Δρmax = 1.00 e Å3
6401 reflectionsΔρmin = 1.03 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag0.34662 (2)0.82628 (2)0.00390 (2)0.02854 (5)
N110.4710 (18)0.786 (2)0.1171 (7)0.018 (2)0.501 (17)
N120.5696 (15)0.7754 (15)0.2748 (8)0.0211 (16)0.501 (17)
N130.7178 (8)0.6262 (7)0.1956 (9)0.0273 (14)0.501 (17)
O110.3317 (11)0.6459 (13)0.4129 (9)0.0404 (16)0.501 (17)
H11A0.28630.59260.34530.048*0.501 (17)
O120.7349 (8)0.5491 (6)0.1064 (9)0.0406 (13)0.501 (17)
O130.7868 (7)0.6518 (5)0.2921 (10)0.0368 (14)0.501 (17)
C110.5471 (13)0.6968 (12)0.0851 (8)0.0227 (15)0.501 (17)
H11B0.55350.64750.00920.027*0.501 (17)
C120.6111 (12)0.6925 (11)0.1829 (8)0.0197 (15)0.501 (17)
C130.4855 (12)0.8352 (11)0.2301 (9)0.0149 (15)0.501 (17)
C140.3914 (18)0.9109 (16)0.2896 (10)0.039 (4)0.501 (17)
H14A0.34770.94700.23750.047*0.501 (17)
H14B0.45990.99320.35720.047*0.501 (17)
H14C0.30430.84280.31360.047*0.501 (17)
C150.5998 (12)0.7981 (8)0.3981 (7)0.0282 (14)0.501 (17)
H15A0.58160.88410.44160.034*0.501 (17)
H15B0.71240.81900.42200.034*0.501 (17)
C160.4946 (13)0.6673 (12)0.4271 (9)0.0346 (19)0.501 (17)
H16A0.50350.57920.37720.042*0.501 (17)
H16B0.53160.68060.50760.042*0.501 (17)
N11A0.470 (2)0.778 (2)0.1207 (9)0.028 (3)0.499 (17)
N12A0.5515 (16)0.7755 (15)0.2949 (8)0.0179 (12)0.499 (17)
N13A0.7308 (8)0.6471 (7)0.2389 (8)0.0224 (12)0.499 (17)
O11A0.2839 (10)0.6195 (10)0.4105 (9)0.0349 (13)0.499 (17)
H11C0.24960.57800.33980.042*0.499 (17)
O12A0.7814 (9)0.5918 (10)0.1564 (8)0.0368 (16)0.499 (17)
O13A0.7663 (7)0.6551 (5)0.3379 (7)0.0314 (11)0.499 (17)
C11A0.5764 (13)0.7137 (13)0.1118 (8)0.0212 (15)0.499 (17)
H11D0.61210.67880.04340.025*0.499 (17)
C12A0.6218 (12)0.7076 (11)0.2150 (7)0.0170 (13)0.499 (17)
C13A0.4578 (12)0.8126 (11)0.2331 (8)0.0140 (15)0.499 (17)
C14A0.3830 (17)0.9117 (14)0.2874 (9)0.033 (4)0.499 (17)
H14D0.46021.01320.30730.039*0.499 (17)
H14E0.34900.89320.35710.039*0.499 (17)
H14F0.29060.89400.23380.039*0.499 (17)
C15A0.5567 (9)0.7874 (8)0.4170 (6)0.0213 (11)0.499 (17)
H15C0.52640.86700.45710.026*0.499 (17)
H15D0.66710.81400.45210.026*0.499 (17)
C16A0.4482 (11)0.6486 (10)0.4345 (9)0.0275 (16)0.499 (17)
H16C0.46610.56590.38400.033*0.499 (17)
H16D0.47580.65570.51480.033*0.499 (17)
N210.20394 (19)0.85591 (17)0.12498 (13)0.0280 (3)
N220.06590 (19)0.82730 (17)0.28744 (13)0.0270 (3)
N230.0132 (2)1.0346 (2)0.2186 (2)0.0433 (5)
O210.25596 (17)0.86179 (17)0.45811 (12)0.0340 (3)
H21A0.26080.78420.49750.051*
O220.0234 (2)1.1214 (2)0.1326 (2)0.0737 (7)
O230.0629 (3)1.0220 (3)0.3151 (2)0.0775 (8)
C210.1481 (2)0.9618 (2)0.10391 (19)0.0350 (4)
H21B0.16521.03440.03190.042*
C220.0644 (2)0.94554 (19)0.20292 (19)0.0306 (4)
C230.1525 (2)0.77595 (19)0.23615 (14)0.0250 (3)
C240.1834 (3)0.6463 (2)0.29385 (16)0.0349 (4)
H24A0.24550.62900.23790.042*
H24B0.24290.66360.35520.042*
H24C0.08210.56080.32650.042*
C250.0068 (2)0.7652 (3)0.40921 (17)0.0375 (5)
H25A0.11170.76910.41810.045*
H25B0.02360.66170.43900.045*
C260.0986 (3)0.8488 (3)0.4785 (2)0.0456 (6)
H26A0.05350.79760.56120.055*
H26B0.09970.94730.45800.055*
C10.0949 (3)0.4974 (3)0.1155 (3)0.0598 (7)
H1A0.05730.57210.15200.072*
H1B0.00450.40810.06820.072*
H1C0.17060.53280.06720.072*
O10.1702 (3)0.4678 (3)0.20073 (19)0.0787 (8)
H10.18560.39260.17060.094*
B10.3719 (2)0.2457 (2)0.19180 (16)0.0263 (4)
F10.4132 (11)0.1347 (10)0.1303 (10)0.0303 (13)0.461 (19)
F20.2428 (8)0.2394 (9)0.1193 (6)0.0313 (12)0.461 (19)
F30.4916 (8)0.3783 (7)0.2162 (11)0.0487 (18)0.461 (19)
F40.3177 (7)0.2190 (9)0.2882 (5)0.0395 (15)0.461 (19)
F1A0.4089 (12)0.1282 (10)0.1456 (10)0.045 (2)0.539 (19)
F2A0.2240 (8)0.2191 (10)0.1397 (9)0.0575 (19)0.539 (19)
F3A0.4837 (8)0.3671 (8)0.1725 (8)0.0457 (13)0.539 (19)
F4A0.3783 (17)0.2765 (12)0.3073 (4)0.080 (2)0.539 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.03598 (8)0.02979 (7)0.02076 (7)0.01318 (6)0.00356 (5)0.01063 (5)
N110.020 (4)0.016 (3)0.025 (4)0.013 (3)0.012 (3)0.008 (3)
N120.021 (3)0.022 (2)0.020 (3)0.012 (2)0.003 (2)0.002 (2)
N130.0202 (18)0.018 (2)0.045 (4)0.0087 (15)0.004 (3)0.012 (2)
O110.040 (4)0.050 (5)0.0295 (18)0.023 (3)0.007 (3)0.004 (3)
O120.040 (2)0.034 (2)0.055 (4)0.0256 (18)0.018 (2)0.010 (2)
O130.0310 (19)0.0325 (17)0.051 (4)0.0180 (14)0.004 (2)0.015 (2)
C110.026 (4)0.020 (3)0.024 (3)0.010 (3)0.008 (3)0.010 (3)
C120.019 (2)0.015 (2)0.024 (4)0.0092 (18)0.004 (3)0.002 (3)
C130.007 (3)0.009 (3)0.025 (2)0.002 (3)0.0010 (18)0.0077 (17)
C140.054 (6)0.047 (7)0.028 (6)0.033 (5)0.004 (4)0.016 (5)
C150.035 (4)0.025 (2)0.024 (3)0.018 (3)0.005 (2)0.0024 (18)
C160.042 (5)0.047 (4)0.024 (3)0.028 (4)0.002 (3)0.011 (2)
N11A0.033 (5)0.027 (6)0.027 (5)0.011 (4)0.007 (3)0.014 (4)
N12A0.020 (2)0.0159 (18)0.019 (3)0.0107 (16)0.0043 (19)0.004 (2)
N13A0.019 (2)0.020 (2)0.032 (3)0.0085 (16)0.006 (2)0.012 (2)
O11A0.031 (3)0.036 (3)0.0304 (18)0.008 (2)0.010 (3)0.0074 (17)
O12A0.041 (3)0.049 (3)0.050 (3)0.035 (3)0.030 (3)0.032 (3)
O13A0.034 (2)0.0296 (15)0.033 (3)0.0163 (13)0.0055 (17)0.0111 (16)
C11A0.025 (4)0.024 (3)0.021 (3)0.015 (3)0.009 (3)0.010 (3)
C12A0.0166 (19)0.018 (3)0.016 (3)0.0060 (19)0.001 (2)0.007 (3)
C13A0.006 (3)0.008 (3)0.022 (2)0.004 (3)0.0011 (17)0.0072 (17)
C14A0.057 (6)0.042 (6)0.023 (5)0.045 (6)0.018 (4)0.009 (4)
C15A0.024 (3)0.0262 (19)0.015 (2)0.012 (2)0.0007 (16)0.0060 (14)
C16A0.037 (4)0.025 (2)0.022 (2)0.012 (3)0.009 (3)0.0104 (16)
N210.0342 (8)0.0243 (7)0.0263 (7)0.0143 (6)0.0021 (6)0.0072 (6)
N220.0333 (8)0.0331 (8)0.0280 (7)0.0192 (6)0.0108 (6)0.0207 (6)
N230.0287 (8)0.0314 (9)0.0875 (16)0.0166 (7)0.0213 (9)0.0373 (10)
O210.0335 (7)0.0498 (8)0.0312 (7)0.0258 (6)0.0119 (5)0.0185 (6)
O220.0565 (11)0.0321 (9)0.1166 (19)0.0296 (9)0.0178 (12)0.0075 (10)
O230.1030 (17)0.131 (2)0.0963 (16)0.1008 (17)0.0702 (14)0.0957 (17)
C210.0299 (9)0.0222 (8)0.0454 (11)0.0116 (7)0.0000 (8)0.0007 (7)
C220.0243 (8)0.0201 (7)0.0522 (11)0.0102 (6)0.0080 (7)0.0173 (8)
C230.0348 (9)0.0254 (8)0.0225 (7)0.0163 (7)0.0063 (6)0.0135 (6)
C240.0541 (12)0.0358 (10)0.0248 (8)0.0301 (9)0.0044 (8)0.0089 (7)
C250.0317 (9)0.0647 (14)0.0302 (9)0.0243 (9)0.0083 (7)0.0295 (9)
C260.0383 (11)0.0888 (18)0.0413 (11)0.0383 (12)0.0188 (9)0.0481 (13)
C10.0312 (11)0.0628 (17)0.0691 (18)0.0079 (11)0.0019 (11)0.0160 (14)
O10.0709 (13)0.0848 (15)0.0653 (13)0.0613 (13)0.0276 (11)0.0290 (11)
B10.0270 (9)0.0233 (8)0.0235 (8)0.0066 (7)0.0073 (7)0.0053 (7)
F10.037 (3)0.028 (2)0.031 (2)0.0183 (18)0.0130 (18)0.0090 (19)
F20.037 (3)0.029 (2)0.0255 (16)0.015 (2)0.0004 (15)0.0061 (13)
F30.0250 (17)0.0217 (15)0.083 (5)0.0004 (12)0.007 (3)0.007 (3)
F40.039 (2)0.055 (3)0.0244 (17)0.0204 (19)0.0125 (14)0.0110 (17)
F1A0.070 (4)0.031 (2)0.039 (3)0.025 (2)0.010 (2)0.0146 (19)
F2A0.0192 (14)0.047 (3)0.074 (4)0.0064 (16)0.001 (2)0.015 (3)
F3A0.0341 (16)0.0302 (19)0.068 (3)0.0038 (13)0.006 (2)0.023 (2)
F4A0.125 (6)0.081 (4)0.0201 (16)0.033 (5)0.019 (2)0.008 (2)
Geometric parameters (Å, º) top
Ag—N112.082 (15)C15A—C16A1.510 (9)
Ag—N212.1193 (15)C15A—H15C0.9900
Ag—N11A2.163 (16)C15A—H15D0.9900
N11—C131.325 (9)C16A—H16C0.9900
N11—C111.365 (9)C16A—H16D0.9900
N12—C131.356 (9)N21—C231.338 (2)
N12—C121.389 (9)N21—C211.365 (2)
N12—C151.467 (8)N22—C231.350 (2)
N13—O121.224 (6)N22—C221.380 (3)
N13—O131.233 (6)N22—C251.466 (3)
N13—C121.436 (8)N23—O231.212 (3)
O11—C161.431 (9)N23—O221.221 (3)
O11—H11A0.8400N23—C221.429 (2)
C11—C121.345 (9)O21—C261.413 (2)
C11—H11B0.9500O21—H21A0.8400
C13—C141.479 (9)C21—C221.349 (3)
C14—H14A0.9800C21—H21B0.9500
C14—H14B0.9800C23—C241.486 (2)
C14—H14C0.9800C24—H24A0.9800
C15—C161.509 (9)C24—H24B0.9800
C15—H15A0.9900C24—H24C0.9800
C15—H15B0.9900C25—C261.527 (3)
C16—H16A0.9900C25—H25A0.9900
C16—H16B0.9900C25—H25B0.9900
N11A—C13A1.365 (8)C26—H26A0.9900
N11A—C11A1.379 (9)C26—H26B0.9900
N12A—C13A1.369 (9)C1—O11.410 (4)
N12A—C12A1.389 (9)C1—H1A0.9800
N12A—C15A1.483 (8)C1—H1B0.9800
N13A—O13A1.226 (5)C1—H1C0.9800
N13A—O12A1.231 (6)O1—H10.8400
N13A—C12A1.445 (8)B1—F31.346 (6)
O11A—C16A1.430 (9)B1—F4A1.366 (4)
O11A—H11C0.8400B1—F2A1.373 (6)
C11A—C12A1.355 (9)B1—F41.381 (4)
C11A—H11D0.9500B1—F1A1.382 (7)
C13A—C14A1.491 (9)B1—F11.395 (6)
C14A—H14D0.9800B1—F3A1.399 (5)
C14A—H14E0.9800B1—F21.428 (6)
C14A—H14F0.9800
N11—Ag—N21175.7 (5)N12A—C15A—H15D108.9
C13—N11—C11111.5 (7)C16A—C15A—H15D108.9
C13—N11—Ag128.4 (6)H15C—C15A—H15D107.7
C11—N11—Ag121.4 (7)O11A—C16A—C15A112.9 (7)
C13—N12—C12106.6 (7)O11A—C16A—H16C109.0
C13—N12—C15122.1 (7)C15A—C16A—H16C109.0
C12—N12—C15131.2 (7)O11A—C16A—H16D109.0
O12—N13—O13125.0 (6)C15A—C16A—H16D109.0
O12—N13—C12115.7 (5)H16C—C16A—H16D107.8
O13—N13—C12119.2 (5)C23—N21—C21106.99 (16)
C16—O11—H11A109.5C23—N21—Ag126.88 (12)
C12—C11—N11105.1 (7)C21—N21—Ag126.14 (13)
C12—C11—H11B127.5C23—N22—C22105.84 (15)
N11—C11—H11B127.5C23—N22—C25124.53 (16)
C11—C12—N12109.3 (7)C22—N22—C25129.62 (16)
C11—C12—N13127.3 (6)O23—N23—O22123.6 (2)
N12—C12—N13123.2 (6)O23—N23—C22119.0 (2)
N11—C13—N12107.3 (7)O22—N23—C22117.3 (2)
N11—C13—C14122.3 (8)C26—O21—H21A109.5
N12—C13—C14127.2 (10)C22—C21—N21108.23 (17)
C13—C14—H14A109.5C22—C21—H21B125.9
C13—C14—H14B109.5N21—C21—H21B125.9
H14A—C14—H14B109.5C21—C22—N22108.31 (15)
C13—C14—H14C109.5C21—C22—N23126.3 (2)
H14A—C14—H14C109.5N22—C22—N23125.40 (19)
H14B—C14—H14C109.5N21—C23—N22110.63 (15)
N12—C15—C16112.0 (8)N21—C23—C24124.38 (15)
N12—C15—H15A109.2N22—C23—C24124.97 (16)
C16—C15—H15A109.2C23—C24—H24A109.5
N12—C15—H15B109.2C23—C24—H24B109.5
C16—C15—H15B109.2H24A—C24—H24B109.5
H15A—C15—H15B107.9C23—C24—H24C109.5
O11—C16—C15112.1 (8)H24A—C24—H24C109.5
O11—C16—H16A109.2H24B—C24—H24C109.5
C15—C16—H16A109.2N22—C25—C26110.98 (19)
O11—C16—H16B109.2N22—C25—H25A109.4
C15—C16—H16B109.2C26—C25—H25A109.4
H16A—C16—H16B107.9N22—C25—H25B109.4
C13A—N11A—C11A103.4 (6)C26—C25—H25B109.4
C13A—N11A—Ag122.6 (6)H25A—C25—H25B108.0
C11A—N11A—Ag132.1 (8)O21—C26—C25111.84 (15)
C13A—N12A—C12A104.6 (7)O21—C26—H26A109.2
C13A—N12A—C15A127.3 (7)C25—C26—H26A109.2
C12A—N12A—C15A127.5 (7)O21—C26—H26B109.2
O13A—N13A—O12A125.3 (5)C25—C26—H26B109.2
O13A—N13A—C12A118.6 (5)H26A—C26—H26B107.9
O12A—N13A—C12A116.1 (5)O1—C1—H1A109.5
C16A—O11A—H11C109.5O1—C1—H1B109.5
C12A—C11A—N11A110.0 (10)H1A—C1—H1B109.5
C12A—C11A—H11D124.5O1—C1—H1C109.5
N11A—C11A—H11D124.5H1A—C1—H1C109.5
C11A—C12A—N12A107.9 (7)H1B—C1—H1C109.5
C11A—C12A—N13A125.8 (7)C1—O1—H1109.5
N12A—C12A—N13A126.2 (7)F4A—B1—F2A110.2 (4)
N11A—C13A—N12A112.9 (7)F3—B1—F4112.8 (4)
N11A—C13A—C14A123.6 (8)F4A—B1—F1A110.7 (5)
N12A—C13A—C14A122.9 (9)F2A—B1—F1A110.7 (5)
C13A—C14A—H14D109.5F3—B1—F1111.9 (5)
C13A—C14A—H14E109.5F4—B1—F1109.9 (6)
H14D—C14A—H14E109.5F4A—B1—F3A108.5 (4)
C13A—C14A—H14F109.5F2A—B1—F3A108.4 (5)
H14D—C14A—H14F109.5F1A—B1—F3A108.4 (5)
H14E—C14A—H14F109.5F3—B1—F2107.7 (5)
N12A—C15A—C16A113.4 (8)F4—B1—F2107.7 (3)
N12A—C15A—H15C108.9F1—B1—F2106.5 (5)
C16A—C15A—H15C108.9
C13—N11—C11—C121.2 (14)Ag—N11A—C13A—N12A178.7 (9)
Ag—N11—C11—C12179.8 (8)C11A—N11A—C13A—C14A166.5 (12)
N11—C11—C12—N121.2 (14)Ag—N11A—C13A—C14A12 (2)
N11—C11—C12—N13173.5 (11)C12A—N12A—C13A—N11A4.3 (15)
C13—N12—C12—C113.1 (15)C15A—N12A—C13A—N11A176.3 (12)
C15—N12—C12—C11175.3 (13)C12A—N12A—C13A—C14A168.1 (12)
C13—N12—C12—N13171.8 (10)C15A—N12A—C13A—C14A20 (2)
C15—N12—C12—N1310 (2)C13A—N12A—C15A—C16A93.2 (15)
O12—N13—C12—C1110.3 (15)C12A—N12A—C15A—C16A77.0 (15)
O13—N13—C12—C11168.2 (11)N12A—C15A—C16A—O11A71.9 (10)
O12—N13—C12—N12175.6 (11)C23—N21—C21—C220.5 (2)
O13—N13—C12—N125.8 (16)Ag—N21—C21—C22179.02 (13)
C11—N11—C13—N123.2 (14)N21—C21—C22—N220.6 (2)
Ag—N11—C13—N12178.0 (9)N21—C21—C22—N23179.57 (17)
C11—N11—C13—C14168.5 (12)C23—N22—C22—C210.4 (2)
Ag—N11—C13—C1410 (2)C25—N22—C22—C21179.75 (19)
C12—N12—C13—N113.8 (14)C23—N22—C22—N23179.73 (17)
C15—N12—C13—N11174.8 (11)C25—N22—C22—N230.4 (3)
C12—N12—C13—C14167.9 (13)O23—N23—C22—C21168.6 (2)
C15—N12—C13—C1411 (2)O22—N23—C22—C2110.3 (3)
C13—N12—C15—C16103.4 (13)O23—N23—C22—N2211.6 (3)
C12—N12—C15—C1674.8 (16)O22—N23—C22—N22169.5 (2)
N12—C15—C16—O1168.9 (10)C21—N21—C23—N220.2 (2)
C13A—N11A—C11A—C12A1.5 (18)Ag—N21—C23—N22179.28 (12)
Ag—N11A—C11A—C12A179.9 (13)C21—N21—C23—C24178.24 (19)
N11A—C11A—C12A—N12A2.1 (15)Ag—N21—C23—C242.2 (3)
N11A—C11A—C12A—N13A179.3 (10)C22—N22—C23—N210.1 (2)
C13A—N12A—C12A—C11A3.7 (15)C25—N22—C23—N21179.47 (17)
C15A—N12A—C12A—C11A175.8 (12)C22—N22—C23—C24178.57 (18)
C13A—N12A—C12A—N13A179.0 (10)C25—N22—C23—C242.1 (3)
C15A—N12A—C12A—N13A7 (2)C23—N22—C25—C2696.7 (2)
O13A—N13A—C12A—C11A176.7 (10)C22—N22—C25—C2682.5 (2)
O12A—N13A—C12A—C11A2.9 (15)N22—C25—C26—O2152.0 (3)
O13A—N13A—C12A—N12A0.1 (16)C13—N11—N21—C23160.8 (9)
O12A—N13A—C12A—N12A179.7 (11)C13A—N11A—N21—C23148.6 (11)
C11A—N11A—C13A—N12A0.8 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F20.841.842.673 (9)173
O11—H11A···O10.841.862.697 (10)175
O21—H21A···O11i0.841.912.726 (11)164
O21—H21A···O11Ai0.841.872.712 (11)176
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F20.841.842.673 (9)172.5
O11—H11A···O10.841.862.697 (10)175.1
O21—H21A···O11i0.841.912.726 (11)163.5
O21—H21A···O11Ai0.841.872.712 (11)175.8
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ag(C6H9N3O3)2](BF4)·CH4O
Mr569.04
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)9.2592 (10), 10.5339 (10), 12.3995 (12)
α, β, γ (°)106.940 (11), 92.788 (9), 112.439 (10)
V3)1051.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)1.00 × 0.51 × 0.31
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.551, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
17164, 6401, 6107
Rint0.023
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.12
No. of reflections6401
No. of parameters440
No. of restraints144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.03

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

First citationAthar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320–1330.  CSD CrossRef PubMed CAS Google Scholar
First citationBales, J. R., Coulson, C. J., Gilmour, D. W., Mazid, M. A., Neidle, S., Kuroda, R., Peart, B. J., Ramsden, C. A. & Sadler, P. J. (1983). J. Chem. Soc. Chem. Commun. pp. 432–433.  CrossRef Google Scholar
First citationBarba-Behrens, N., María Mutio-Rico, A., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341.  CAS Google Scholar
First citationBharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704–2712.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Bondt, H. L., Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1994). Acta Cryst. C50, 180–181.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDyson, T. M., Morrison, E. C., Tocher, D. A., Dale, L. D. & Edwards, D. I. (1990). Inorg. Chim. Acta, 169, 127–131.  CSD CrossRef CAS Google Scholar
First citationFreeman, C. D., Klutman, N. E. & Lamp, K. C. (1997). Drugs, 54, 679–708.  CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668–m669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974–1982.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLofmark, S., Edlund, C. & Nord, C. E. (2010). Clin. Infect. Dis. 50(Suppl. 1), S16–S23.  Google Scholar
First citationMiljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, Lj., Kalicanin, B. & Savic, V. (2014). Pharmazie, 69, 571–577.  CAS PubMed Google Scholar
First citationNothenberg, M. S., Zyngier, S. B., Giesbrecht, A. M., Gambardella, M. T. P., Santos, R. H. A., Kimura, E. & Najjar, R. (1994). J. Braz. Chem. Soc. 5, 23–29.  CrossRef CAS Google Scholar
First citationRatajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326–331.  CAS Google Scholar
First citationRochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703–1706.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533–1541.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. & Feres, M. (2012). J. Appl. Oral Sci. 20, 295–309.  CrossRef CAS PubMed Google Scholar
First citationWu, J., Huang, C., Li, G.-Q., Tian, H.-Y. & Jiang, R.-W. (2012). Acta Cryst. E68, m185–m186.  CSD CrossRef IUCr Journals Google Scholar
First citationWu, A., Kennedy, D. C., Patrick, B. O. & James, B. R. (2003). Inorg. Chem. 42, 7579–7586.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 284-287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds