research communications
H-imidazole-κN3]silver(I) tetrafluoridoborate methanol monosolvate
of bis[1-(2-hydroxyethyl)-2-methyl-5-nitro-1aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bHaskins Laboratories, Dept. of Chemistry, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu
1-(2-Hydroxyethyl)-2-methyl-5-nitro-1H-imidazole (metronidazole, MET) is a medication that is used to treat infections by a variety of anaerobic organisms, but there are relatively few reports of the structures of metal compounds that exhibit coordination of metronidazole. We have demonstrated that MET reacts with AgBF4 to give [Ag(MET)2]BF4·CH3OH, in which the AgI cation is coordinated by two MET ligands with a trans arrangement. The structure of [Ag(MET)2]BF4 exhibits some interesting differences from its nitrate counterpart, [Ag(MET)2]NO3 [Fun et al. (2008). Acta Cryst. E64, m668]. For instance, although the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry with a molecular inversion center, but the latter has a syn-like arrangement. In the crystal, the BF4− anion is linked by an O—H⋯F hydrogen bond to the methanol solvent molecule, which is, in turn, linked to the cation by an O—H⋯O hydrogen bond; the components of the structure are linked by O—H⋯O hydrogen bonds, forming chains along [001]. One of the MET ligands and the BF4− anion are disordered over two sets of sites with ratios of refined occupancies 0.501 (17):0.499 (17) and 0.539 (19):0.461 (19), respectively.
Keywords: crystal structure; silver; metronidazole; Flagyl; tetrafluoridoborate; hydrogen bonding.
CCDC reference: 1048516
1. Chemical context
1-(2-Hydroxyethyl)-2-methyl-5-nitro-1H-imidazole, also known as metronidazole (MET) or Flagyl, is a medication used particularly for treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, but is also effective against anaerobic bacteria (Freeman et al., 1997; Miljkovic et al., 2014; Soares et al., 2012; Samuelson, 1999; Lofmark et al., 2010). There are relatively few reports of the structures of metal compounds that exhibit coordination of MET. For example, with respect to silver, only the nitrate compound, [Ag(MET)2]NO3, has been structurally characterized by X-ray diffraction (Fun et al., 2008). Herein, we describe the structure of the tetrafluoridoborate derivative, [Ag(MET)2]BF4, which is obtained by addition of MET to AgBF4 in methanol (see Scheme).
2. Structural commentary
Crystals of composition [Ag(MET)2]BF4·MeOH were obtained from a solution in methanol. The consists of a silver cation, [Ag(MET)2]+, a tetrafluoridoborate anion, BF4−, and a solvent methanol molecule. The silver atom of [Ag(MET)2]+ is coordinated by two MET ligands in a trans manner by their N3 nitrogen atoms, as illustrated in Fig. 1.
One of the MET ligands exhibits disorder resulting from rotation about the Ag—N bond [the dihedral angle between the planes of the disordered 5-membered rings is 11.0 (9)°]. The Ag—N bond lengths [Ag—N11 = 2.082 (15), Ag—N11A = 2.163 (16) and Ag—N21 = 2.1193 (15) Å] are comparable to those values in the nitrate derivative, [2.1489 (11) and 2.1475 (11) Å; Fun et al., 2008). There are, however, some interesting differences between the two compounds.
First, while the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry, and the latter has a syn-like arrangement. Thus, the C13—N11⋯N21—C23 torsion angle for [Ag(MET)2]BF4 is 160.8 (9)° [148.6 (11)° for the minor component of disorder], while the value for [Ag(MET)2]NO3 is 24.10° (Fun et al., 2008). These differences are illustrated in Fig. 2, which shows that the [Ag(MET)2]+ unit of [Ag(MET)2]BF4 has an approximate inversion center at the AgI ion, whereas [Ag(MET)2]NO3 does not.
A second interesting difference is that the N11—Ag—N21 angle of 175.7 (5)° for [Ag(MET)2]BF4 is much closer to 180° than is the corresponding value for [Ag(MET)2]NO3 [165.34 (4)°; Fun et al., 2008). It is possible that this could be attributed to the tetrafluoridoborate ligand being considered a non-coordinating ion relative to nitrate, and this is reflected by the fact that [Ag(MET)2]NO3 exhibits Ag⋯O contacts of 2.63 and 2.67 Å, which are comparable to distances in other silver nitrate compounds (Wu et al., 2012).
3. Supramolecular features
The hydroxyethyl group of one of the MET ligands [O21—H] serves as a donor in an intermolecular hydrogen-bonding interaction with the other hydroxyethyl group [O11—H] of an adjacent molecule. In turn, the latter hydroxyethyl group serves as a hydrogen-bond donor to a methanol molecule, which also hydrogen bonds to a tetrafluoridoborate anion. In the crystal, the components of the structure are linked into chains along [001] by the O—H⋯O hydrogen bonds (Table 1 and Fig. 3).
4. Database survey
In addition to coordination to silver, metronidazole has also been shown to coordinate to other metals, and structurally characterized compounds have been reported for Co (Galván-Tejada et al., 2002), Cu (Galván-Tejada et al., 2002; Barba-Behrens et al., 1991; Athar et al., 2005; Ratajczak-Sitarz et al., 1998; Bharti et al., 2002), Zn (Galván-Tejada et al., 2002), Ru (Wu et al., 2003; Kennedy et al., 2006), Rh (Dyson et al., 1990; Nothenberg et al., 1994), Pd (Bharti et al., 2002; De Bondt et al., 1994; Rochon et al., 1993) and Pt (Bharti et al., 2002; Bales et al., 1983). In these compounds, the of the central atom ranges from four for Cu, Zn, Pd and Pt to six for Ru and Rh.
5. Synthesis and crystallization
Crystals of composition [Ag(MET)2]BF4·MeOH were obtained by combining AgBF4 with MET in a 1:2 molar ratio in methanol and allowing the solution to evaporate slowly at room temperature.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were refined using a riding-model approximation with C—H = 0.95–0.99 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C,O). One of the MET ligands was refined as rotationally disordered with occupancies of 0.501 (17) and 0.499 (17) and the configurations were modeled using the SAME command in SHELXL2013 (Sheldrick, 2015). The tetrafluoridoborate counter-ion was also refined as disordered and was modeled with two site occupancies, 0.539 (19) and 0.461 (19).
details are summarized in Table 2Supporting information
CCDC reference: 1048516
10.1107/S2056989015002819/lh5749sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002819/lh5749Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015002819/lh5749Isup3.mol
Supporting information file. DOI: 10.1107/S2056989015002819/lh5749Isup4.txt
1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole, also known as metronidazole (MET) or Flagyl, is a medication used particularly for treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, but is also effective against anaerobic bacteria (Freeman et al., 1997; Miljkovic et al., 2014; Soares et al., 2012; Samuelson, 1999; Lofmark et al., 2010). There are relatively few reports of the structures of metal compounds that exhibit coordination of MET. For example, with respect to silver, only the nitrate compound, [Ag(MET)2]NO3, has been structurally characterized by X-ray diffraction (Fun et al., 2008). Herein, we describe the structure of the tetrafluoridoborate derivative, [Ag(MET)2]BF4, which is obtained by addition of MET to AgBF4 in methanol (see Scheme below).
Crystals of composition [Ag(MET)2]BF4·MeOH were obtained from a solution in methanol. The
consists of a silver cation, [Ag(MET)2]+, a tetrafluoridoborate anion, BF4–, and a solvent methanol molecule. The silver atom of [Ag(MET)2]+ is coordinated by two MET ligands in a trans manner by their N3 nitrogen atoms, as illustrated in Fig. 1.One of the MET ligands exhibits disorder resulting from rotation about the Ag—N bond [the dihedral angle between the planes of the disordered 5-membered rings is 11.0 (9)°]. The Ag—N bond lengths [Ag—N11 = 2.082 (15), Ag—N11A = 2.163 (16) and Ag—N21 = 2.1193 (15) Å] are comparable to those values in the nitrate derivative, [2.1489 (11) and 2.1475 (11) Å; Fun et al., 2008). There are, however, some interesting differences between the two compounds.
First, while the two MET ligands of both [Ag(MET)2]BF4 and [Ag(MET)2]NO3 are almost coplanar, the former compound has an anti-like geometry, and the latter has a syn-like arrangement. Thus, the C13—N11···N21—C23 torsion angle for [Ag(MET)2]BF4 is 160.8 (9)° [147.0 (8)° for the minor component of disorder], while the value for [Ag(MET)2]NO3 is 24.10° (Fun et al., 2008). These differences are illustrated in Fig. 2, which shows that the [Ag(MET)2]+ unit of [Ag(MET)2]BF4 has an approximate inversion center at the AgI ion, whereas [Ag(MET)2]NO3 does not.
A second interesting difference is that the N11—Ag—N21 angle of 175.7 (5)° for [Ag(MET)2]BF4 is much closer to 180° than is the corresponding value for [Ag(MET)2]NO3 [165.34 (4)°; Fun et al., 2008). It is possible that this could be attributed to the tetrafluoridoborate ligand being considered a non-coordinating ion relative to nitrate, and this is reflected by the fact that [Ag(MET)2]NO3 exhibits Ag···O contacts of 2.63 and 2.67 Å, which are comparable to distances in other silver nitrate compounds (Wu et al., 2012).
The hydroxyethyl group of one of the MET ligands [O21—H] serves as a donor in an intermolecular hydrogen-bonding interaction with the other hydroxyethyl group [O11—H] of an adjacent molecule. In turn, the latter hydroxyethyl group serves as a hydrogen-bond donor to a methanol molecule, which also hydrogen bonds to a tetrafluoridoborate anion. In the crystal, the components of the structure are linked into chains along [001] by the O—H···O hydrogen bonds (Table 1 and Fig. 3).
In addition to coordination to silver, metronidazole has also been shown to coordinate to other metals, and structurally characterized compounds have been reported for Co (Galván-Tejada et al., 2002), Cu (Galván-Tejada et al., 2002; Barba-Behrens et al., 1991; Athar et al., 2005; Ratajczak-Sitarz et al., 1998; Bharti et al., 2002), Zn (Galván-Tejada et al., 2002), Ru (Wu et al., 2003; Kennedy et al., 2006), Rh (Dyson et al., 1990; Nothenberg et al., 1994), Pd (Bharti et al., 2002; Debondt et al., 1994; Rochon et al., 1993) and Pt (Bharti et al., 2002; Bales et al., 1983). In these compounds, the
of the central atom ranges from four for Cu, Zn, Pd and Pt to six for Ru and Rh.Crystals of composition [Ag(MET)2]BF4.MeOH were obtained by combining AgBF4 with MET in a 1:2 molar ratio in methanol and allowing the solution to evaporate slowly at room temperature.
Crystal data, data collection and structure
details are summarized in Table 2. Hydrogen atoms were refined using a riding-model approximation with C—H = 0.95–0.99 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C,O). One of the MET ligands was refined as rotationally disordered with occupancies of 0.501 (17) and 0.499 (17) and the configurations were modeled using the SAME command in SHELXL2013 (Sheldrick, 2015). The tetrafluoridoborate counter-ion was also refined as disordered and was modeled with two site occupancies, 0.539 (19) and 0.461 (19).Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the cation of the title compound, with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown. | |
Fig. 2. Comparison of the [Ag(MET)2]+ units in [Ag(MET)2]BF4 (top) and [Ag(MET)2]NO3 (bottom). | |
Fig. 3. Part of a hydrogen-bonded chain along [001]. The disorder is not shown and hydrogen bonds are shown as dashed lines. |
[Ag(C6H9N3O3)2](BF4)·CH4O | Z = 2 |
Mr = 569.04 | F(000) = 572 |
Triclinic, P1 | Dx = 1.797 Mg m−3 |
a = 9.2592 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5339 (10) Å | Cell parameters from 9065 reflections |
c = 12.3995 (12) Å | θ = 2.3–32.9° |
α = 106.940 (11)° | µ = 1.04 mm−1 |
β = 92.788 (9)° | T = 130 K |
γ = 112.439 (10)° | Block, colourless |
V = 1051.7 (2) Å3 | 1.00 × 0.51 × 0.31 mm |
Bruker APEXII CCD diffractometer | 6107 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 30.5°, θmin = 1.8° |
Tmin = 0.551, Tmax = 0.747 | h = −13→13 |
17164 measured reflections | k = −15→15 |
6401 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0161P)2 + 1.0163P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max = 0.007 |
S = 1.12 | Δρmax = 1.00 e Å−3 |
6401 reflections | Δρmin = −1.03 e Å−3 |
440 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
144 restraints | Extinction coefficient: 0.0027 (4) |
[Ag(C6H9N3O3)2](BF4)·CH4O | γ = 112.439 (10)° |
Mr = 569.04 | V = 1051.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2592 (10) Å | Mo Kα radiation |
b = 10.5339 (10) Å | µ = 1.04 mm−1 |
c = 12.3995 (12) Å | T = 130 K |
α = 106.940 (11)° | 1.00 × 0.51 × 0.31 mm |
β = 92.788 (9)° |
Bruker APEXII CCD diffractometer | 6401 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 6107 reflections with I > 2σ(I) |
Tmin = 0.551, Tmax = 0.747 | Rint = 0.023 |
17164 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 144 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.12 | Δρmax = 1.00 e Å−3 |
6401 reflections | Δρmin = −1.03 e Å−3 |
440 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag | 0.34662 (2) | 0.82628 (2) | −0.00390 (2) | 0.02854 (5) | |
N11 | 0.4710 (18) | 0.786 (2) | 0.1171 (7) | 0.018 (2) | 0.501 (17) |
N12 | 0.5696 (15) | 0.7754 (15) | 0.2748 (8) | 0.0211 (16) | 0.501 (17) |
N13 | 0.7178 (8) | 0.6262 (7) | 0.1956 (9) | 0.0273 (14) | 0.501 (17) |
O11 | 0.3317 (11) | 0.6459 (13) | 0.4129 (9) | 0.0404 (16) | 0.501 (17) |
H11A | 0.2863 | 0.5926 | 0.3453 | 0.048* | 0.501 (17) |
O12 | 0.7349 (8) | 0.5491 (6) | 0.1064 (9) | 0.0406 (13) | 0.501 (17) |
O13 | 0.7868 (7) | 0.6518 (5) | 0.2921 (10) | 0.0368 (14) | 0.501 (17) |
C11 | 0.5471 (13) | 0.6968 (12) | 0.0851 (8) | 0.0227 (15) | 0.501 (17) |
H11B | 0.5535 | 0.6475 | 0.0092 | 0.027* | 0.501 (17) |
C12 | 0.6111 (12) | 0.6925 (11) | 0.1829 (8) | 0.0197 (15) | 0.501 (17) |
C13 | 0.4855 (12) | 0.8352 (11) | 0.2301 (9) | 0.0149 (15) | 0.501 (17) |
C14 | 0.3914 (18) | 0.9109 (16) | 0.2896 (10) | 0.039 (4) | 0.501 (17) |
H14A | 0.3477 | 0.9470 | 0.2375 | 0.047* | 0.501 (17) |
H14B | 0.4599 | 0.9932 | 0.3572 | 0.047* | 0.501 (17) |
H14C | 0.3043 | 0.8428 | 0.3136 | 0.047* | 0.501 (17) |
C15 | 0.5998 (12) | 0.7981 (8) | 0.3981 (7) | 0.0282 (14) | 0.501 (17) |
H15A | 0.5816 | 0.8841 | 0.4416 | 0.034* | 0.501 (17) |
H15B | 0.7124 | 0.8190 | 0.4220 | 0.034* | 0.501 (17) |
C16 | 0.4946 (13) | 0.6673 (12) | 0.4271 (9) | 0.0346 (19) | 0.501 (17) |
H16A | 0.5035 | 0.5792 | 0.3772 | 0.042* | 0.501 (17) |
H16B | 0.5316 | 0.6806 | 0.5076 | 0.042* | 0.501 (17) |
N11A | 0.470 (2) | 0.778 (2) | 0.1207 (9) | 0.028 (3) | 0.499 (17) |
N12A | 0.5515 (16) | 0.7755 (15) | 0.2949 (8) | 0.0179 (12) | 0.499 (17) |
N13A | 0.7308 (8) | 0.6471 (7) | 0.2389 (8) | 0.0224 (12) | 0.499 (17) |
O11A | 0.2839 (10) | 0.6195 (10) | 0.4105 (9) | 0.0349 (13) | 0.499 (17) |
H11C | 0.2496 | 0.5780 | 0.3398 | 0.042* | 0.499 (17) |
O12A | 0.7814 (9) | 0.5918 (10) | 0.1564 (8) | 0.0368 (16) | 0.499 (17) |
O13A | 0.7663 (7) | 0.6551 (5) | 0.3379 (7) | 0.0314 (11) | 0.499 (17) |
C11A | 0.5764 (13) | 0.7137 (13) | 0.1118 (8) | 0.0212 (15) | 0.499 (17) |
H11D | 0.6121 | 0.6788 | 0.0434 | 0.025* | 0.499 (17) |
C12A | 0.6218 (12) | 0.7076 (11) | 0.2150 (7) | 0.0170 (13) | 0.499 (17) |
C13A | 0.4578 (12) | 0.8126 (11) | 0.2331 (8) | 0.0140 (15) | 0.499 (17) |
C14A | 0.3830 (17) | 0.9117 (14) | 0.2874 (9) | 0.033 (4) | 0.499 (17) |
H14D | 0.4602 | 1.0132 | 0.3073 | 0.039* | 0.499 (17) |
H14E | 0.3490 | 0.8932 | 0.3571 | 0.039* | 0.499 (17) |
H14F | 0.2906 | 0.8940 | 0.2338 | 0.039* | 0.499 (17) |
C15A | 0.5567 (9) | 0.7874 (8) | 0.4170 (6) | 0.0213 (11) | 0.499 (17) |
H15C | 0.5264 | 0.8670 | 0.4571 | 0.026* | 0.499 (17) |
H15D | 0.6671 | 0.8140 | 0.4521 | 0.026* | 0.499 (17) |
C16A | 0.4482 (11) | 0.6486 (10) | 0.4345 (9) | 0.0275 (16) | 0.499 (17) |
H16C | 0.4661 | 0.5659 | 0.3840 | 0.033* | 0.499 (17) |
H16D | 0.4758 | 0.6557 | 0.5148 | 0.033* | 0.499 (17) |
N21 | 0.20394 (19) | 0.85591 (17) | −0.12498 (13) | 0.0280 (3) | |
N22 | 0.06590 (19) | 0.82730 (17) | −0.28744 (13) | 0.0270 (3) | |
N23 | −0.0132 (2) | 1.0346 (2) | −0.2186 (2) | 0.0433 (5) | |
O21 | 0.25596 (17) | 0.86179 (17) | −0.45811 (12) | 0.0340 (3) | |
H21A | 0.2608 | 0.7842 | −0.4975 | 0.051* | |
O22 | −0.0234 (2) | 1.1214 (2) | −0.1326 (2) | 0.0737 (7) | |
O23 | −0.0629 (3) | 1.0220 (3) | −0.3151 (2) | 0.0775 (8) | |
C21 | 0.1481 (2) | 0.9618 (2) | −0.10391 (19) | 0.0350 (4) | |
H21B | 0.1652 | 1.0344 | −0.0319 | 0.042* | |
C22 | 0.0644 (2) | 0.94554 (19) | −0.20292 (19) | 0.0306 (4) | |
C23 | 0.1525 (2) | 0.77595 (19) | −0.23615 (14) | 0.0250 (3) | |
C24 | 0.1834 (3) | 0.6463 (2) | −0.29385 (16) | 0.0349 (4) | |
H24A | 0.2455 | 0.6290 | −0.2379 | 0.042* | |
H24B | 0.2429 | 0.6636 | −0.3552 | 0.042* | |
H24C | 0.0821 | 0.5608 | −0.3265 | 0.042* | |
C25 | −0.0068 (2) | 0.7652 (3) | −0.40921 (17) | 0.0375 (5) | |
H25A | −0.1117 | 0.7691 | −0.4181 | 0.045* | |
H25B | −0.0236 | 0.6617 | −0.4390 | 0.045* | |
C26 | 0.0986 (3) | 0.8488 (3) | −0.4785 (2) | 0.0456 (6) | |
H26A | 0.0535 | 0.7976 | −0.5612 | 0.055* | |
H26B | 0.0997 | 0.9473 | −0.4580 | 0.055* | |
C1 | 0.0949 (3) | 0.4974 (3) | 0.1155 (3) | 0.0598 (7) | |
H1A | 0.0573 | 0.5721 | 0.1520 | 0.072* | |
H1B | 0.0045 | 0.4081 | 0.0682 | 0.072* | |
H1C | 0.1706 | 0.5328 | 0.0672 | 0.072* | |
O1 | 0.1702 (3) | 0.4678 (3) | 0.20073 (19) | 0.0787 (8) | |
H1 | 0.1856 | 0.3926 | 0.1706 | 0.094* | |
B1 | 0.3719 (2) | 0.2457 (2) | 0.19180 (16) | 0.0263 (4) | |
F1 | 0.4132 (11) | 0.1347 (10) | 0.1303 (10) | 0.0303 (13) | 0.461 (19) |
F2 | 0.2428 (8) | 0.2394 (9) | 0.1193 (6) | 0.0313 (12) | 0.461 (19) |
F3 | 0.4916 (8) | 0.3783 (7) | 0.2162 (11) | 0.0487 (18) | 0.461 (19) |
F4 | 0.3177 (7) | 0.2190 (9) | 0.2882 (5) | 0.0395 (15) | 0.461 (19) |
F1A | 0.4089 (12) | 0.1282 (10) | 0.1456 (10) | 0.045 (2) | 0.539 (19) |
F2A | 0.2240 (8) | 0.2191 (10) | 0.1397 (9) | 0.0575 (19) | 0.539 (19) |
F3A | 0.4837 (8) | 0.3671 (8) | 0.1725 (8) | 0.0457 (13) | 0.539 (19) |
F4A | 0.3783 (17) | 0.2765 (12) | 0.3073 (4) | 0.080 (2) | 0.539 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.03598 (8) | 0.02979 (7) | 0.02076 (7) | 0.01318 (6) | 0.00356 (5) | 0.01063 (5) |
N11 | 0.020 (4) | 0.016 (3) | 0.025 (4) | 0.013 (3) | 0.012 (3) | 0.008 (3) |
N12 | 0.021 (3) | 0.022 (2) | 0.020 (3) | 0.012 (2) | −0.003 (2) | 0.002 (2) |
N13 | 0.0202 (18) | 0.018 (2) | 0.045 (4) | 0.0087 (15) | 0.004 (3) | 0.012 (2) |
O11 | 0.040 (4) | 0.050 (5) | 0.0295 (18) | 0.023 (3) | 0.007 (3) | 0.004 (3) |
O12 | 0.040 (2) | 0.034 (2) | 0.055 (4) | 0.0256 (18) | 0.018 (2) | 0.010 (2) |
O13 | 0.0310 (19) | 0.0325 (17) | 0.051 (4) | 0.0180 (14) | −0.004 (2) | 0.015 (2) |
C11 | 0.026 (4) | 0.020 (3) | 0.024 (3) | 0.010 (3) | 0.008 (3) | 0.010 (3) |
C12 | 0.019 (2) | 0.015 (2) | 0.024 (4) | 0.0092 (18) | 0.004 (3) | 0.002 (3) |
C13 | 0.007 (3) | 0.009 (3) | 0.025 (2) | −0.002 (3) | 0.0010 (18) | 0.0077 (17) |
C14 | 0.054 (6) | 0.047 (7) | 0.028 (6) | 0.033 (5) | −0.004 (4) | 0.016 (5) |
C15 | 0.035 (4) | 0.025 (2) | 0.024 (3) | 0.018 (3) | −0.005 (2) | 0.0024 (18) |
C16 | 0.042 (5) | 0.047 (4) | 0.024 (3) | 0.028 (4) | 0.002 (3) | 0.011 (2) |
N11A | 0.033 (5) | 0.027 (6) | 0.027 (5) | 0.011 (4) | 0.007 (3) | 0.014 (4) |
N12A | 0.020 (2) | 0.0159 (18) | 0.019 (3) | 0.0107 (16) | 0.0043 (19) | 0.004 (2) |
N13A | 0.019 (2) | 0.020 (2) | 0.032 (3) | 0.0085 (16) | 0.006 (2) | 0.012 (2) |
O11A | 0.031 (3) | 0.036 (3) | 0.0304 (18) | 0.008 (2) | 0.010 (3) | 0.0074 (17) |
O12A | 0.041 (3) | 0.049 (3) | 0.050 (3) | 0.035 (3) | 0.030 (3) | 0.032 (3) |
O13A | 0.034 (2) | 0.0296 (15) | 0.033 (3) | 0.0163 (13) | −0.0055 (17) | 0.0111 (16) |
C11A | 0.025 (4) | 0.024 (3) | 0.021 (3) | 0.015 (3) | 0.009 (3) | 0.010 (3) |
C12A | 0.0166 (19) | 0.018 (3) | 0.016 (3) | 0.0060 (19) | 0.001 (2) | 0.007 (3) |
C13A | 0.006 (3) | 0.008 (3) | 0.022 (2) | −0.004 (3) | 0.0011 (17) | 0.0072 (17) |
C14A | 0.057 (6) | 0.042 (6) | 0.023 (5) | 0.045 (6) | 0.018 (4) | 0.009 (4) |
C15A | 0.024 (3) | 0.0262 (19) | 0.015 (2) | 0.012 (2) | 0.0007 (16) | 0.0060 (14) |
C16A | 0.037 (4) | 0.025 (2) | 0.022 (2) | 0.012 (3) | 0.009 (3) | 0.0104 (16) |
N21 | 0.0342 (8) | 0.0243 (7) | 0.0263 (7) | 0.0143 (6) | 0.0021 (6) | 0.0072 (6) |
N22 | 0.0333 (8) | 0.0331 (8) | 0.0280 (7) | 0.0192 (6) | 0.0108 (6) | 0.0207 (6) |
N23 | 0.0287 (8) | 0.0314 (9) | 0.0875 (16) | 0.0166 (7) | 0.0213 (9) | 0.0373 (10) |
O21 | 0.0335 (7) | 0.0498 (8) | 0.0312 (7) | 0.0258 (6) | 0.0119 (5) | 0.0185 (6) |
O22 | 0.0565 (11) | 0.0321 (9) | 0.1166 (19) | 0.0296 (9) | −0.0178 (12) | −0.0075 (10) |
O23 | 0.1030 (17) | 0.131 (2) | 0.0963 (16) | 0.1008 (17) | 0.0702 (14) | 0.0957 (17) |
C21 | 0.0299 (9) | 0.0222 (8) | 0.0454 (11) | 0.0116 (7) | 0.0000 (8) | 0.0007 (7) |
C22 | 0.0243 (8) | 0.0201 (7) | 0.0522 (11) | 0.0102 (6) | 0.0080 (7) | 0.0173 (8) |
C23 | 0.0348 (9) | 0.0254 (8) | 0.0225 (7) | 0.0163 (7) | 0.0063 (6) | 0.0135 (6) |
C24 | 0.0541 (12) | 0.0358 (10) | 0.0248 (8) | 0.0301 (9) | 0.0044 (8) | 0.0089 (7) |
C25 | 0.0317 (9) | 0.0647 (14) | 0.0302 (9) | 0.0243 (9) | 0.0083 (7) | 0.0295 (9) |
C26 | 0.0383 (11) | 0.0888 (18) | 0.0413 (11) | 0.0383 (12) | 0.0188 (9) | 0.0481 (13) |
C1 | 0.0312 (11) | 0.0628 (17) | 0.0691 (18) | 0.0079 (11) | 0.0019 (11) | 0.0160 (14) |
O1 | 0.0709 (13) | 0.0848 (15) | 0.0653 (13) | 0.0613 (13) | −0.0276 (11) | −0.0290 (11) |
B1 | 0.0270 (9) | 0.0233 (8) | 0.0235 (8) | 0.0066 (7) | 0.0073 (7) | 0.0053 (7) |
F1 | 0.037 (3) | 0.028 (2) | 0.031 (2) | 0.0183 (18) | 0.0130 (18) | 0.0090 (19) |
F2 | 0.037 (3) | 0.029 (2) | 0.0255 (16) | 0.015 (2) | 0.0004 (15) | 0.0061 (13) |
F3 | 0.0250 (17) | 0.0217 (15) | 0.083 (5) | 0.0004 (12) | 0.007 (3) | 0.007 (3) |
F4 | 0.039 (2) | 0.055 (3) | 0.0244 (17) | 0.0204 (19) | 0.0125 (14) | 0.0110 (17) |
F1A | 0.070 (4) | 0.031 (2) | 0.039 (3) | 0.025 (2) | 0.010 (2) | 0.0146 (19) |
F2A | 0.0192 (14) | 0.047 (3) | 0.074 (4) | 0.0064 (16) | −0.001 (2) | −0.015 (3) |
F3A | 0.0341 (16) | 0.0302 (19) | 0.068 (3) | 0.0038 (13) | 0.006 (2) | 0.023 (2) |
F4A | 0.125 (6) | 0.081 (4) | 0.0201 (16) | 0.033 (5) | 0.019 (2) | 0.008 (2) |
Ag—N11 | 2.082 (15) | C15A—C16A | 1.510 (9) |
Ag—N21 | 2.1193 (15) | C15A—H15C | 0.9900 |
Ag—N11A | 2.163 (16) | C15A—H15D | 0.9900 |
N11—C13 | 1.325 (9) | C16A—H16C | 0.9900 |
N11—C11 | 1.365 (9) | C16A—H16D | 0.9900 |
N12—C13 | 1.356 (9) | N21—C23 | 1.338 (2) |
N12—C12 | 1.389 (9) | N21—C21 | 1.365 (2) |
N12—C15 | 1.467 (8) | N22—C23 | 1.350 (2) |
N13—O12 | 1.224 (6) | N22—C22 | 1.380 (3) |
N13—O13 | 1.233 (6) | N22—C25 | 1.466 (3) |
N13—C12 | 1.436 (8) | N23—O23 | 1.212 (3) |
O11—C16 | 1.431 (9) | N23—O22 | 1.221 (3) |
O11—H11A | 0.8400 | N23—C22 | 1.429 (2) |
C11—C12 | 1.345 (9) | O21—C26 | 1.413 (2) |
C11—H11B | 0.9500 | O21—H21A | 0.8400 |
C13—C14 | 1.479 (9) | C21—C22 | 1.349 (3) |
C14—H14A | 0.9800 | C21—H21B | 0.9500 |
C14—H14B | 0.9800 | C23—C24 | 1.486 (2) |
C14—H14C | 0.9800 | C24—H24A | 0.9800 |
C15—C16 | 1.509 (9) | C24—H24B | 0.9800 |
C15—H15A | 0.9900 | C24—H24C | 0.9800 |
C15—H15B | 0.9900 | C25—C26 | 1.527 (3) |
C16—H16A | 0.9900 | C25—H25A | 0.9900 |
C16—H16B | 0.9900 | C25—H25B | 0.9900 |
N11A—C13A | 1.365 (8) | C26—H26A | 0.9900 |
N11A—C11A | 1.379 (9) | C26—H26B | 0.9900 |
N12A—C13A | 1.369 (9) | C1—O1 | 1.410 (4) |
N12A—C12A | 1.389 (9) | C1—H1A | 0.9800 |
N12A—C15A | 1.483 (8) | C1—H1B | 0.9800 |
N13A—O13A | 1.226 (5) | C1—H1C | 0.9800 |
N13A—O12A | 1.231 (6) | O1—H1 | 0.8400 |
N13A—C12A | 1.445 (8) | B1—F3 | 1.346 (6) |
O11A—C16A | 1.430 (9) | B1—F4A | 1.366 (4) |
O11A—H11C | 0.8400 | B1—F2A | 1.373 (6) |
C11A—C12A | 1.355 (9) | B1—F4 | 1.381 (4) |
C11A—H11D | 0.9500 | B1—F1A | 1.382 (7) |
C13A—C14A | 1.491 (9) | B1—F1 | 1.395 (6) |
C14A—H14D | 0.9800 | B1—F3A | 1.399 (5) |
C14A—H14E | 0.9800 | B1—F2 | 1.428 (6) |
C14A—H14F | 0.9800 | ||
N11—Ag—N21 | 175.7 (5) | N12A—C15A—H15D | 108.9 |
C13—N11—C11 | 111.5 (7) | C16A—C15A—H15D | 108.9 |
C13—N11—Ag | 128.4 (6) | H15C—C15A—H15D | 107.7 |
C11—N11—Ag | 121.4 (7) | O11A—C16A—C15A | 112.9 (7) |
C13—N12—C12 | 106.6 (7) | O11A—C16A—H16C | 109.0 |
C13—N12—C15 | 122.1 (7) | C15A—C16A—H16C | 109.0 |
C12—N12—C15 | 131.2 (7) | O11A—C16A—H16D | 109.0 |
O12—N13—O13 | 125.0 (6) | C15A—C16A—H16D | 109.0 |
O12—N13—C12 | 115.7 (5) | H16C—C16A—H16D | 107.8 |
O13—N13—C12 | 119.2 (5) | C23—N21—C21 | 106.99 (16) |
C16—O11—H11A | 109.5 | C23—N21—Ag | 126.88 (12) |
C12—C11—N11 | 105.1 (7) | C21—N21—Ag | 126.14 (13) |
C12—C11—H11B | 127.5 | C23—N22—C22 | 105.84 (15) |
N11—C11—H11B | 127.5 | C23—N22—C25 | 124.53 (16) |
C11—C12—N12 | 109.3 (7) | C22—N22—C25 | 129.62 (16) |
C11—C12—N13 | 127.3 (6) | O23—N23—O22 | 123.6 (2) |
N12—C12—N13 | 123.2 (6) | O23—N23—C22 | 119.0 (2) |
N11—C13—N12 | 107.3 (7) | O22—N23—C22 | 117.3 (2) |
N11—C13—C14 | 122.3 (8) | C26—O21—H21A | 109.5 |
N12—C13—C14 | 127.2 (10) | C22—C21—N21 | 108.23 (17) |
C13—C14—H14A | 109.5 | C22—C21—H21B | 125.9 |
C13—C14—H14B | 109.5 | N21—C21—H21B | 125.9 |
H14A—C14—H14B | 109.5 | C21—C22—N22 | 108.31 (15) |
C13—C14—H14C | 109.5 | C21—C22—N23 | 126.3 (2) |
H14A—C14—H14C | 109.5 | N22—C22—N23 | 125.40 (19) |
H14B—C14—H14C | 109.5 | N21—C23—N22 | 110.63 (15) |
N12—C15—C16 | 112.0 (8) | N21—C23—C24 | 124.38 (15) |
N12—C15—H15A | 109.2 | N22—C23—C24 | 124.97 (16) |
C16—C15—H15A | 109.2 | C23—C24—H24A | 109.5 |
N12—C15—H15B | 109.2 | C23—C24—H24B | 109.5 |
C16—C15—H15B | 109.2 | H24A—C24—H24B | 109.5 |
H15A—C15—H15B | 107.9 | C23—C24—H24C | 109.5 |
O11—C16—C15 | 112.1 (8) | H24A—C24—H24C | 109.5 |
O11—C16—H16A | 109.2 | H24B—C24—H24C | 109.5 |
C15—C16—H16A | 109.2 | N22—C25—C26 | 110.98 (19) |
O11—C16—H16B | 109.2 | N22—C25—H25A | 109.4 |
C15—C16—H16B | 109.2 | C26—C25—H25A | 109.4 |
H16A—C16—H16B | 107.9 | N22—C25—H25B | 109.4 |
C13A—N11A—C11A | 103.4 (6) | C26—C25—H25B | 109.4 |
C13A—N11A—Ag | 122.6 (6) | H25A—C25—H25B | 108.0 |
C11A—N11A—Ag | 132.1 (8) | O21—C26—C25 | 111.84 (15) |
C13A—N12A—C12A | 104.6 (7) | O21—C26—H26A | 109.2 |
C13A—N12A—C15A | 127.3 (7) | C25—C26—H26A | 109.2 |
C12A—N12A—C15A | 127.5 (7) | O21—C26—H26B | 109.2 |
O13A—N13A—O12A | 125.3 (5) | C25—C26—H26B | 109.2 |
O13A—N13A—C12A | 118.6 (5) | H26A—C26—H26B | 107.9 |
O12A—N13A—C12A | 116.1 (5) | O1—C1—H1A | 109.5 |
C16A—O11A—H11C | 109.5 | O1—C1—H1B | 109.5 |
C12A—C11A—N11A | 110.0 (10) | H1A—C1—H1B | 109.5 |
C12A—C11A—H11D | 124.5 | O1—C1—H1C | 109.5 |
N11A—C11A—H11D | 124.5 | H1A—C1—H1C | 109.5 |
C11A—C12A—N12A | 107.9 (7) | H1B—C1—H1C | 109.5 |
C11A—C12A—N13A | 125.8 (7) | C1—O1—H1 | 109.5 |
N12A—C12A—N13A | 126.2 (7) | F4A—B1—F2A | 110.2 (4) |
N11A—C13A—N12A | 112.9 (7) | F3—B1—F4 | 112.8 (4) |
N11A—C13A—C14A | 123.6 (8) | F4A—B1—F1A | 110.7 (5) |
N12A—C13A—C14A | 122.9 (9) | F2A—B1—F1A | 110.7 (5) |
C13A—C14A—H14D | 109.5 | F3—B1—F1 | 111.9 (5) |
C13A—C14A—H14E | 109.5 | F4—B1—F1 | 109.9 (6) |
H14D—C14A—H14E | 109.5 | F4A—B1—F3A | 108.5 (4) |
C13A—C14A—H14F | 109.5 | F2A—B1—F3A | 108.4 (5) |
H14D—C14A—H14F | 109.5 | F1A—B1—F3A | 108.4 (5) |
H14E—C14A—H14F | 109.5 | F3—B1—F2 | 107.7 (5) |
N12A—C15A—C16A | 113.4 (8) | F4—B1—F2 | 107.7 (3) |
N12A—C15A—H15C | 108.9 | F1—B1—F2 | 106.5 (5) |
C16A—C15A—H15C | 108.9 | ||
C13—N11—C11—C12 | 1.2 (14) | Ag—N11A—C13A—N12A | −178.7 (9) |
Ag—N11—C11—C12 | −179.8 (8) | C11A—N11A—C13A—C14A | 166.5 (12) |
N11—C11—C12—N12 | 1.2 (14) | Ag—N11A—C13A—C14A | −12 (2) |
N11—C11—C12—N13 | −173.5 (11) | C12A—N12A—C13A—N11A | −4.3 (15) |
C13—N12—C12—C11 | −3.1 (15) | C15A—N12A—C13A—N11A | −176.3 (12) |
C15—N12—C12—C11 | 175.3 (13) | C12A—N12A—C13A—C14A | −168.1 (12) |
C13—N12—C12—N13 | 171.8 (10) | C15A—N12A—C13A—C14A | 20 (2) |
C15—N12—C12—N13 | −10 (2) | C13A—N12A—C15A—C16A | 93.2 (15) |
O12—N13—C12—C11 | −10.3 (15) | C12A—N12A—C15A—C16A | −77.0 (15) |
O13—N13—C12—C11 | 168.2 (11) | N12A—C15A—C16A—O11A | −71.9 (10) |
O12—N13—C12—N12 | 175.6 (11) | C23—N21—C21—C22 | −0.5 (2) |
O13—N13—C12—N12 | −5.8 (16) | Ag—N21—C21—C22 | 179.02 (13) |
C11—N11—C13—N12 | −3.2 (14) | N21—C21—C22—N22 | 0.6 (2) |
Ag—N11—C13—N12 | 178.0 (9) | N21—C21—C22—N23 | −179.57 (17) |
C11—N11—C13—C14 | −168.5 (12) | C23—N22—C22—C21 | −0.4 (2) |
Ag—N11—C13—C14 | 10 (2) | C25—N22—C22—C21 | −179.75 (19) |
C12—N12—C13—N11 | 3.8 (14) | C23—N22—C22—N23 | 179.73 (17) |
C15—N12—C13—N11 | −174.8 (11) | C25—N22—C22—N23 | 0.4 (3) |
C12—N12—C13—C14 | 167.9 (13) | O23—N23—C22—C21 | 168.6 (2) |
C15—N12—C13—C14 | −11 (2) | O22—N23—C22—C21 | −10.3 (3) |
C13—N12—C15—C16 | 103.4 (13) | O23—N23—C22—N22 | −11.6 (3) |
C12—N12—C15—C16 | −74.8 (16) | O22—N23—C22—N22 | 169.5 (2) |
N12—C15—C16—O11 | −68.9 (10) | C21—N21—C23—N22 | 0.2 (2) |
C13A—N11A—C11A—C12A | 1.5 (18) | Ag—N21—C23—N22 | −179.28 (12) |
Ag—N11A—C11A—C12A | −179.9 (13) | C21—N21—C23—C24 | −178.24 (19) |
N11A—C11A—C12A—N12A | −2.1 (15) | Ag—N21—C23—C24 | 2.2 (3) |
N11A—C11A—C12A—N13A | −179.3 (10) | C22—N22—C23—N21 | 0.1 (2) |
C13A—N12A—C12A—C11A | 3.7 (15) | C25—N22—C23—N21 | 179.47 (17) |
C15A—N12A—C12A—C11A | 175.8 (12) | C22—N22—C23—C24 | 178.57 (18) |
C13A—N12A—C12A—N13A | −179.0 (10) | C25—N22—C23—C24 | −2.1 (3) |
C15A—N12A—C12A—N13A | −7 (2) | C23—N22—C25—C26 | −96.7 (2) |
O13A—N13A—C12A—C11A | 176.7 (10) | C22—N22—C25—C26 | 82.5 (2) |
O12A—N13A—C12A—C11A | −2.9 (15) | N22—C25—C26—O21 | 52.0 (3) |
O13A—N13A—C12A—N12A | −0.1 (16) | C13—N11—N21—C23 | −160.8 (9) |
O12A—N13A—C12A—N12A | −179.7 (11) | C13A—N11A—N21—C23 | −148.6 (11) |
C11A—N11A—C13A—N12A | 0.8 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···F2 | 0.84 | 1.84 | 2.673 (9) | 173 |
O11—H11A···O1 | 0.84 | 1.86 | 2.697 (10) | 175 |
O21—H21A···O11i | 0.84 | 1.91 | 2.726 (11) | 164 |
O21—H21A···O11Ai | 0.84 | 1.87 | 2.712 (11) | 176 |
Symmetry code: (i) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···F2 | 0.84 | 1.84 | 2.673 (9) | 172.5 |
O11—H11A···O1 | 0.84 | 1.86 | 2.697 (10) | 175.1 |
O21—H21A···O11i | 0.84 | 1.91 | 2.726 (11) | 163.5 |
O21—H21A···O11Ai | 0.84 | 1.87 | 2.712 (11) | 175.8 |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C6H9N3O3)2](BF4)·CH4O |
Mr | 569.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 130 |
a, b, c (Å) | 9.2592 (10), 10.5339 (10), 12.3995 (12) |
α, β, γ (°) | 106.940 (11), 92.788 (9), 112.439 (10) |
V (Å3) | 1051.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 1.00 × 0.51 × 0.31 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2013) |
Tmin, Tmax | 0.551, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17164, 6401, 6107 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.067, 1.12 |
No. of reflections | 6401 |
No. of parameters | 440 |
No. of restraints | 144 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −1.03 |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).
Acknowledgements
RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.
References
Athar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320–1330. CSD CrossRef PubMed CAS Google Scholar
Bales, J. R., Coulson, C. J., Gilmour, D. W., Mazid, M. A., Neidle, S., Kuroda, R., Peart, B. J., Ramsden, C. A. & Sadler, P. J. (1983). J. Chem. Soc. Chem. Commun. pp. 432–433. CrossRef Google Scholar
Barba-Behrens, N., María Mutio-Rico, A., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341. CAS Google Scholar
Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704–2712. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
De Bondt, H. L., Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1994). Acta Cryst. C50, 180–181. CSD CrossRef CAS IUCr Journals Google Scholar
Dyson, T. M., Morrison, E. C., Tocher, D. A., Dale, L. D. & Edwards, D. I. (1990). Inorg. Chim. Acta, 169, 127–131. CSD CrossRef CAS Google Scholar
Freeman, C. D., Klutman, N. E. & Lamp, K. C. (1997). Drugs, 54, 679–708. CrossRef CAS PubMed Google Scholar
Fun, H.-K., Jebas, S. R. & Balasubramanian, T. (2008). Acta Cryst. E64, m668–m669. Web of Science CSD CrossRef IUCr Journals Google Scholar
Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974–1982. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lofmark, S., Edlund, C. & Nord, C. E. (2010). Clin. Infect. Dis. 50(Suppl. 1), S16–S23. Google Scholar
Miljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, Lj., Kalicanin, B. & Savic, V. (2014). Pharmazie, 69, 571–577. CAS PubMed Google Scholar
Nothenberg, M. S., Zyngier, S. B., Giesbrecht, A. M., Gambardella, M. T. P., Santos, R. H. A., Kimura, E. & Najjar, R. (1994). J. Braz. Chem. Soc. 5, 23–29. CrossRef CAS Google Scholar
Ratajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326–331. CAS Google Scholar
Rochon, F. D., Melanson, R. & Farrell, N. (1993). Acta Cryst. C49, 1703–1706. CSD CrossRef CAS IUCr Journals Google Scholar
Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533–1541. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. & Feres, M. (2012). J. Appl. Oral Sci. 20, 295–309. CrossRef CAS PubMed Google Scholar
Wu, J., Huang, C., Li, G.-Q., Tian, H.-Y. & Jiang, R.-W. (2012). Acta Cryst. E68, m185–m186. CSD CrossRef IUCr Journals Google Scholar
Wu, A., Kennedy, D. C., Patrick, B. O. & James, B. R. (2003). Inorg. Chem. 42, 7579–7586. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.