organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o214-o215

Crystal structure of 2-benzamido-N-(2,2-di­eth­­oxy­eth­yl)benzamide

CROSSMARK_Color_square_no_text.svg

aLaboratory of Bioorganic and Macromolecular Chemistry, Department of Chemistry, Faculty of Sciences and Technology Guéliz (FSTG), BP 549, Marrakech, Morocco, bLaboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech, Morocco, cInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and dInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by A. J. Lough, University of Toronto, Canada (Received 30 January 2015; accepted 17 February 2015; online 28 February 2015)

In the title compound, C20H24N2O4, both peptide bonds adopt a trans configuration with respect to the —N—H and —C=O groups. The dihedral angle between the aromatic rings is 53.58 (4)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. The crystal packing is characterized by zigzag chains of N—H⋯O hydrogen-bonded mol­ecules running along the b-axis direction.

1. Related literature

For the synthesis of the title compound, see: Xingwen et al. (2007[Xingwen, G., Xuejian, C., Kai, Y., Baoan, S., Lili, G. & Zhuo, C. (2007). Molecules, 12, 2621-2642.]); Chandrika et al. (2008[Chandrika, P. M., Yakaiah, T., Raghu Ram Rao, A., Narsaiah, B., Chakra Reddy, N., Sridhar, V. & Venkateshwara Rao, J. (2008). Eur. J. Med. Chem. 43, 846-852.]). Compounds with quinazoline scaffolds are of biological importance due to their pharmacological activities such as anti­microbial (Jantova et al., 2004[Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biol. Bratislava, 59, 741-752.]; Shi et al., 2013[Shi, L. P., Jiang, K. M., Jiang, J. J., Jin, Y., Tao, Y. H., Li, K., Wang, X. H. & Lin, J. (2013). Bioorg. Med. Chem. Lett. 23, 5958-5960.]), anti­tumorigenic (Kubo et al., 2005[Kubo, K., Shimizu, T., Ohyama, S. I., Murooka, H., Iwai, A., Nakamura, K., Hasegawa, K., Kobayashi, Y., Takahashi, N., Takahashi, K., Kato, S., Izawa, T. & Isoe, T. (2005). J. Med. Chem. 48, 1359-1366.]), anti­fungal (Dandia et al., 2005[Dandia, A., Singh, R. & Sarawgi, P. (2005). J. Fluorine Chem. 126, 307-312.]), anti­hyperglycemic (Ram et al., 2003[Ram, V. J., Farhanullah Tripathi, B. K. & Srivastava, A. K. (2003). Bioorg. Med. Chem. 11, 2439-2444.]), anti-inflammatory (Gineinah et al., 2002[Gineinah, M. M., El-Sherbeny, M. A., Nasr, M. N. & Maarou, A. R. (2002). Arch. Pharm. Pharm. Med. Chem. 11, 556-562.]; Baba et al., 1996[Baba, A., Kawamura, N., Makino, H., Ohta, Y., Taketomi, S. & Sohda, T. J. (1996). Med. Chem. 39, 5176-5182.]), anti­tumor (Forsch et al., 2002[Forsch, R. A., Wright, J. E. & Rosowsky, A. (2002). Bioorg. Med. Chem. 10, 2067-2076.]) and protein kinase inhibitor (Levitzky, 2003[Levitzky, A. (2003). Acc. Chem. Res. 36, 462-469.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H24N2O4

  • Mr = 356.41

  • Monoclinic, P 21 /n

  • a = 8.4901 (4) Å

  • b = 14.2281 (7) Å

  • c = 15.3864 (7) Å

  • β = 98.659 (4)°

  • V = 1837.46 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.36 × 0.35 × 0.32 mm

2.2. Data collection

  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.874, Tmax = 0.892

  • 56243 measured reflections

  • 5148 independent reflections

  • 4676 reflections with I > 2σ(I)

  • Rint = 0.065

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.08

  • 5148 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.886 (16) 1.914 (15) 2.6434 (11) 138.6 (14)
N2—H2⋯O1i 0.848 (15) 2.132 (15) 2.9338 (12) 157.6 (13)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The compound 2-(phenyl­carbonyl­amino)-N-(2,2-di­eth­oxy­ethyl)­benzamide was synthesized by reaction of anthranilic acid with benzoyl chloride in dry pyridine at 273-278 K for 4 hours to obtain 2-(3-chloro­phenyl)-benzo[d][1,3]oxazin-4-one in high yields (Xingwen et al., 2007, Chandrika et al., 2008). The obtained inter­mediate was treated with 1.5 equivalent of 2,2-di­eth­oxy­ethanamine under microwave irradiation for 2 min. The resulting residue was purified by column chromatography using ethyl acetate/hexane (80/20) as eluent. The crystal suitable for X-ray analysis was obtained by slow evaporation of a solution of the title compound in ethyl acetate/hexane 4:1 v/v (Melting point: 362-363 K).

Refinement top

Hydrogen atoms were initially located in difference Fourier maps. Subsequently, H atoms bonded to C atoms were refined using a riding model, with tertiary C—H = 1.0 Å, methyl C—H = 0.98 Å, secondary C—H = 0.99 Å and aromatic C—H = 0.95 Å and with Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H. H atoms bonded to N atoms were refined isotropically.

Results and discussion top

The anthranilic acid and 2-amino­benzamide are presented as key precursors for many families of organic compounds like the alkaloids which contain the quinazoline scaffolds. The latter continues to attract an expanded inter­est for therapeutic research due to their various pharmacological activities such as anti­microbial (Jantova et al., 2004; Shi et al., 2013), anti­tumorigenic (Kubo et al., 2005), anti­fungal (Dandia et al., 2005), anti­hyperglycemic (Ram et al., 2003), anti­inflammatory (Gineinah et al., 2002; Baba et al., 1996), anti­tumor (Forsch et al., 2002) and protein kinase inhibitor (Levitzky, 2003). Among the several synthetic ways to yield the quinazoline ring system the use of anthranilic acid derivatives as starting materials is attractive.

The title compound (Fig. 1) crystallizes with one molecule in the asymmetric unit. Both peptide bonds adopt a trans configuration. The dihedral angle between the two aromatic rings [C11–C16 and C21–C26] is 53.58 (4)°. The molecular conformation is stabilized by an intra­molecular N—H···O hydrogen bond (see Table 1). The crystal packing is characterized by zigzag chains of N—H···O hydrogen-bonded molecules running along the crystallographic b axis (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Xingwen et al. (2007); Chandrika et al. (2008). Compounds with quinazoline scaffolds are of biological importance due to their pharmacological activities such as antimicrobial (Jantova et al., 2004; Shi et al., 2013), antitumorigenic (Kubo et al., 2005), antifungal (Dandia et al., 2005), antihyperglycemic (Ram et al., 2003), anti-inflammatory (Gineinah et al., 2002; Baba et al., 1996), antitumor (Forsch et al., 2002) and protein kinase inhibitor (Levitzky, 2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen atoms bonded to C are omitted for clarity. Hydrogen bonds are shown as dashed lines.
2-Benzamido-N-(2,2-diethoxyethyl)benzamide top
Crystal data top
C20H24N2O4F(000) = 760
Mr = 356.41Dx = 1.288 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4901 (4) ÅCell parameters from 59538 reflections
b = 14.2281 (7) Åθ = 3.6–29.9°
c = 15.3864 (7) ŵ = 0.09 mm1
β = 98.659 (4)°T = 173 K
V = 1837.46 (15) Å3Block, colourless
Z = 40.36 × 0.35 × 0.32 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4676 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.065
ω scansθmax = 29.7°, θmin = 3.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1110
Tmin = 0.874, Tmax = 0.892k = 1919
56243 measured reflectionsl = 2121
5148 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.4445P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.35 e Å3
5148 reflectionsΔρmin = 0.18 e Å3
244 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.020 (2)
Crystal data top
C20H24N2O4V = 1837.46 (15) Å3
Mr = 356.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4901 (4) ŵ = 0.09 mm1
b = 14.2281 (7) ÅT = 173 K
c = 15.3864 (7) Å0.36 × 0.35 × 0.32 mm
β = 98.659 (4)°
Data collection top
Stoe IPDS II two-circle
diffractometer
5148 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
4676 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.892Rint = 0.065
56243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
5148 reflectionsΔρmin = 0.18 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62897 (11)0.11518 (6)0.37268 (6)0.02663 (18)
H10.6531 (19)0.1522 (11)0.4190 (10)0.039 (4)*
N20.73335 (10)0.39881 (6)0.34983 (5)0.02395 (17)
H20.7336 (17)0.4150 (10)0.2968 (10)0.031 (3)*
O10.67588 (12)0.02751 (6)0.31368 (5)0.0385 (2)
O20.69514 (10)0.28243 (5)0.44371 (5)0.02974 (17)
O30.80069 (8)0.55548 (5)0.53889 (5)0.02611 (16)
O40.59596 (8)0.56951 (5)0.41902 (5)0.02602 (16)
C10.67865 (13)0.02429 (7)0.37787 (7)0.0271 (2)
C20.67557 (11)0.31442 (7)0.36759 (6)0.02229 (18)
C30.81688 (11)0.45736 (7)0.41942 (6)0.02321 (18)
H3A0.88220.50430.39340.028*
H3B0.88980.41760.46020.028*
C40.70242 (11)0.50823 (7)0.47073 (6)0.02223 (18)
H40.63870.46010.49760.027*
C50.71605 (13)0.59880 (9)0.60186 (8)0.0347 (2)
H5A0.66150.55040.63270.042*
H5B0.63470.64260.57210.042*
C60.83490 (14)0.65147 (8)0.66656 (7)0.0330 (2)
H6A0.77970.68190.71050.049*
H6B0.91460.60750.69580.049*
H6C0.88780.69930.63540.049*
C70.66672 (14)0.64600 (9)0.37833 (9)0.0375 (3)
H7A0.69540.62570.32120.045*
H7B0.76490.66710.41640.045*
C80.54856 (18)0.72486 (10)0.36468 (11)0.0473 (3)
H8A0.59500.77790.33680.071*
H8B0.45210.70350.32670.071*
H8C0.52130.74470.42160.071*
C110.74040 (13)0.00903 (7)0.46888 (7)0.0277 (2)
C120.84330 (16)0.08571 (8)0.47741 (9)0.0391 (3)
H120.86850.11640.42640.047*
C130.90937 (19)0.11757 (10)0.56026 (10)0.0493 (3)
H130.98230.16860.56580.059*
C140.86936 (19)0.07526 (11)0.63444 (9)0.0509 (4)
H140.91390.09750.69100.061*
C150.76431 (18)0.00032 (10)0.62657 (8)0.0425 (3)
H150.73610.02830.67790.051*
C160.69998 (14)0.03331 (8)0.54417 (7)0.0319 (2)
H160.62850.08510.53910.038*
C210.56160 (11)0.16374 (7)0.29641 (6)0.02321 (18)
C220.58342 (11)0.26171 (7)0.29212 (6)0.02224 (18)
C230.51100 (13)0.30950 (7)0.21728 (7)0.0273 (2)
H230.52450.37560.21360.033*
C240.41991 (13)0.26268 (8)0.14820 (7)0.0301 (2)
H240.37240.29630.09760.036*
C250.39886 (12)0.16645 (8)0.15357 (7)0.0291 (2)
H250.33590.13410.10670.035*
C260.46886 (13)0.11722 (7)0.22676 (7)0.0274 (2)
H260.45380.05120.22970.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0370 (5)0.0208 (4)0.0209 (4)0.0003 (3)0.0005 (3)0.0013 (3)
N20.0285 (4)0.0242 (4)0.0187 (4)0.0022 (3)0.0021 (3)0.0009 (3)
O10.0569 (5)0.0297 (4)0.0287 (4)0.0088 (4)0.0053 (4)0.0057 (3)
O20.0428 (4)0.0251 (3)0.0196 (3)0.0033 (3)0.0007 (3)0.0001 (3)
O30.0214 (3)0.0309 (4)0.0254 (3)0.0009 (3)0.0015 (3)0.0082 (3)
O40.0204 (3)0.0267 (3)0.0302 (4)0.0001 (3)0.0013 (3)0.0035 (3)
C10.0332 (5)0.0230 (4)0.0253 (4)0.0003 (4)0.0053 (4)0.0003 (3)
C20.0241 (4)0.0217 (4)0.0204 (4)0.0022 (3)0.0013 (3)0.0020 (3)
C30.0213 (4)0.0237 (4)0.0241 (4)0.0017 (3)0.0018 (3)0.0034 (3)
C40.0206 (4)0.0228 (4)0.0227 (4)0.0014 (3)0.0015 (3)0.0015 (3)
C50.0279 (5)0.0443 (6)0.0321 (5)0.0004 (4)0.0054 (4)0.0143 (5)
C60.0389 (6)0.0293 (5)0.0308 (5)0.0042 (4)0.0051 (4)0.0078 (4)
C70.0303 (5)0.0354 (6)0.0472 (7)0.0008 (4)0.0070 (5)0.0155 (5)
C80.0459 (7)0.0348 (6)0.0597 (8)0.0072 (5)0.0027 (6)0.0140 (6)
C110.0333 (5)0.0225 (4)0.0268 (5)0.0040 (4)0.0035 (4)0.0026 (3)
C120.0471 (7)0.0298 (5)0.0412 (6)0.0055 (5)0.0093 (5)0.0092 (5)
C130.0513 (8)0.0415 (7)0.0539 (8)0.0059 (6)0.0043 (6)0.0229 (6)
C140.0593 (8)0.0510 (8)0.0384 (7)0.0101 (6)0.0055 (6)0.0217 (6)
C150.0573 (8)0.0435 (6)0.0262 (5)0.0135 (6)0.0042 (5)0.0042 (5)
C160.0392 (6)0.0288 (5)0.0277 (5)0.0065 (4)0.0048 (4)0.0001 (4)
C210.0257 (4)0.0237 (4)0.0204 (4)0.0009 (3)0.0039 (3)0.0019 (3)
C220.0238 (4)0.0228 (4)0.0197 (4)0.0009 (3)0.0021 (3)0.0021 (3)
C230.0311 (5)0.0251 (4)0.0240 (4)0.0007 (4)0.0014 (4)0.0003 (3)
C240.0307 (5)0.0343 (5)0.0231 (4)0.0019 (4)0.0032 (4)0.0002 (4)
C250.0271 (5)0.0353 (5)0.0238 (4)0.0023 (4)0.0003 (4)0.0070 (4)
C260.0310 (5)0.0254 (4)0.0256 (4)0.0037 (4)0.0034 (4)0.0051 (4)
Geometric parameters (Å, º) top
N1—C11.3589 (13)C7—H7B0.9900
N1—C211.4069 (12)C8—H8A0.9800
N1—H10.886 (16)C8—H8B0.9800
N2—C21.3406 (12)C8—H8C0.9800
N2—C31.4542 (12)C11—C121.3915 (16)
N2—H20.848 (15)C11—C161.3937 (15)
O1—C11.2296 (13)C12—C131.3892 (18)
O2—C21.2441 (11)C12—H120.9500
O3—C41.4088 (11)C13—C141.377 (2)
O3—C51.4299 (13)C13—H130.9500
O4—C41.4120 (11)C14—C151.384 (2)
O4—C71.4319 (13)C14—H140.9500
C1—C111.4965 (14)C15—C161.3878 (16)
C2—C221.4998 (12)C15—H150.9500
C3—C41.5240 (13)C16—H160.9500
C3—H3A0.9900C21—C261.3973 (13)
C3—H3B0.9900C21—C221.4091 (13)
C4—H41.0000C22—C231.3976 (13)
C5—C61.5061 (15)C23—C241.3871 (14)
C5—H5A0.9900C23—H230.9500
C5—H5B0.9900C24—C251.3850 (16)
C6—H6A0.9800C24—H240.9500
C6—H6B0.9800C25—C261.3821 (15)
C6—H6C0.9800C25—H250.9500
C7—C81.4987 (17)C26—H260.9500
C7—H7A0.9900
C1—N1—C21126.87 (8)H7A—C7—H7B108.4
C1—N1—H1119.1 (10)C7—C8—H8A109.5
C21—N1—H1113.3 (10)C7—C8—H8B109.5
C2—N2—C3121.06 (8)H8A—C8—H8B109.5
C2—N2—H2119.5 (10)C7—C8—H8C109.5
C3—N2—H2118.8 (10)H8A—C8—H8C109.5
C4—O3—C5114.11 (7)H8B—C8—H8C109.5
C4—O4—C7116.14 (8)C12—C11—C16119.35 (10)
O1—C1—N1123.70 (10)C12—C11—C1117.59 (10)
O1—C1—C11121.56 (9)C16—C11—C1123.06 (10)
N1—C1—C11114.73 (9)C13—C12—C11120.23 (13)
O2—C2—N2121.22 (9)C13—C12—H12119.9
O2—C2—C22121.74 (9)C11—C12—H12119.9
N2—C2—C22117.02 (8)C14—C13—C12120.12 (13)
N2—C3—C4112.03 (8)C14—C13—H13119.9
N2—C3—H3A109.2C12—C13—H13119.9
C4—C3—H3A109.2C13—C14—C15120.03 (12)
N2—C3—H3B109.2C13—C14—H14120.0
C4—C3—H3B109.2C15—C14—H14120.0
H3A—C3—H3B107.9C14—C15—C16120.36 (13)
O3—C4—O4112.45 (8)C14—C15—H15119.8
O3—C4—C3105.07 (7)C16—C15—H15119.8
O4—C4—C3113.91 (8)C15—C16—C11119.87 (12)
O3—C4—H4108.4C15—C16—H16120.1
O4—C4—H4108.4C11—C16—H16120.1
C3—C4—H4108.4C26—C21—N1121.23 (9)
O3—C5—C6107.89 (9)C26—C21—C22119.70 (9)
O3—C5—H5A110.1N1—C21—C22119.02 (8)
C6—C5—H5A110.1C23—C22—C21118.38 (9)
O3—C5—H5B110.1C23—C22—C2120.54 (8)
C6—C5—H5B110.1C21—C22—C2121.02 (8)
H5A—C5—H5B108.4C24—C23—C22121.54 (9)
C5—C6—H6A109.5C24—C23—H23119.2
C5—C6—H6B109.5C22—C23—H23119.2
H6A—C6—H6B109.5C25—C24—C23119.41 (9)
C5—C6—H6C109.5C25—C24—H24120.3
H6A—C6—H6C109.5C23—C24—H24120.3
H6B—C6—H6C109.5C26—C25—C24120.41 (9)
O4—C7—C8108.32 (10)C26—C25—H25119.8
O4—C7—H7A110.0C24—C25—H25119.8
C8—C7—H7A110.0C25—C26—C21120.56 (9)
O4—C7—H7B110.0C25—C26—H26119.7
C8—C7—H7B110.0C21—C26—H26119.7
C21—N1—C1—O12.80 (18)C13—C14—C15—C160.7 (2)
C21—N1—C1—C11177.98 (9)C14—C15—C16—C110.47 (19)
C3—N2—C2—O21.91 (14)C12—C11—C16—C150.99 (17)
C3—N2—C2—C22176.69 (8)C1—C11—C16—C15178.76 (11)
C2—N2—C3—C478.73 (11)C1—N1—C21—C2631.59 (16)
C5—O3—C4—O462.87 (11)C1—N1—C21—C22150.91 (10)
C5—O3—C4—C3172.70 (9)C26—C21—C22—C230.19 (14)
C7—O4—C4—O357.49 (11)N1—C21—C22—C23177.73 (9)
C7—O4—C4—C361.91 (11)C26—C21—C22—C2176.98 (9)
N2—C3—C4—O3175.66 (8)N1—C21—C22—C20.56 (14)
N2—C3—C4—O460.83 (10)O2—C2—C22—C23155.43 (10)
C4—O3—C5—C6176.28 (9)N2—C2—C22—C2323.16 (13)
C4—O4—C7—C8153.25 (10)O2—C2—C22—C2121.68 (14)
O1—C1—C11—C1221.90 (16)N2—C2—C22—C21159.73 (9)
N1—C1—C11—C12157.34 (10)C21—C22—C23—C240.21 (15)
O1—C1—C11—C16158.35 (11)C2—C22—C23—C24177.39 (10)
N1—C1—C11—C1622.41 (15)C22—C23—C24—C250.54 (16)
C16—C11—C12—C132.25 (18)C23—C24—C25—C260.49 (17)
C1—C11—C12—C13177.51 (12)C24—C25—C26—C210.10 (16)
C11—C12—C13—C142.1 (2)N1—C21—C26—C25177.72 (10)
C12—C13—C14—C150.6 (2)C22—C21—C26—C250.24 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.886 (16)1.914 (15)2.6434 (11)138.6 (14)
N2—H2···O1i0.848 (15)2.132 (15)2.9338 (12)157.6 (13)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.886 (16)1.914 (15)2.6434 (11)138.6 (14)
N2—H2···O1i0.848 (15)2.132 (15)2.9338 (12)157.6 (13)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

References

First citationBaba, A., Kawamura, N., Makino, H., Ohta, Y., Taketomi, S. & Sohda, T. J. (1996). Med. Chem. 39, 5176–5182.  CrossRef CAS Google Scholar
First citationChandrika, P. M., Yakaiah, T., Raghu Ram Rao, A., Narsaiah, B., Chakra Reddy, N., Sridhar, V. & Venkateshwara Rao, J. (2008). Eur. J. Med. Chem. 43, 846–852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDandia, A., Singh, R. & Sarawgi, P. (2005). J. Fluorine Chem. 126, 307–312.  CrossRef CAS Google Scholar
First citationForsch, R. A., Wright, J. E. & Rosowsky, A. (2002). Bioorg. Med. Chem. 10, 2067–2076.  CrossRef PubMed CAS Google Scholar
First citationGineinah, M. M., El-Sherbeny, M. A., Nasr, M. N. & Maarou, A. R. (2002). Arch. Pharm. Pharm. Med. Chem. 11, 556–562.  CrossRef Google Scholar
First citationJantova, S., Stankovsky, S. & Spirkova, K. (2004). Biol. Bratislava, 59, 741–752.  CAS Google Scholar
First citationKubo, K., Shimizu, T., Ohyama, S. I., Murooka, H., Iwai, A., Nakamura, K., Hasegawa, K., Kobayashi, Y., Takahashi, N., Takahashi, K., Kato, S., Izawa, T. & Isoe, T. (2005). J. Med. Chem. 48, 1359–1366.  CrossRef PubMed CAS Google Scholar
First citationLevitzky, A. (2003). Acc. Chem. Res. 36, 462–469.  PubMed Google Scholar
First citationRam, V. J., Farhanullah Tripathi, B. K. & Srivastava, A. K. (2003). Bioorg. Med. Chem. 11, 2439–2444.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L. P., Jiang, K. M., Jiang, J. J., Jin, Y., Tao, Y. H., Li, K., Wang, X. H. & Lin, J. (2013). Bioorg. Med. Chem. Lett. 23, 5958–5960.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXingwen, G., Xuejian, C., Kai, Y., Baoan, S., Lili, G. & Zhuo, C. (2007). Molecules, 12, 2621–2642.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o214-o215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds