metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [1-(2,6-diiso­propyl­phen­yl)-2,4-bis­­(di­methyl­amino)-5-tri­methyl­silyl-1,3,5-tri­aza­penta­dienyl-κ2N1,N5](tri­phenyl­phosphane-κP)copper(I)

CROSSMARK_Color_square_no_text.svg

aInstitute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: mszhou@sxu.edu.cn

Edited by U. Lee, Pukyong National University, South Korea (Received 5 January 2015; accepted 2 February 2015; online 7 February 2015)

The title complex, [Cu(C21H38N5Si)(C18H15P)], was obtained from the one-pot reaction between (Dipp)N(Li)SiMe3 (Dipp = 2,6-diiso­propyl­phen­yl), Me2NCN, CuCl and PPh3. The CuI atom has a distorted trigonal–planar coordination sphere. The tri­aza­penta­dienyl ligand acts as a κ2-donor. The N—Cu—N bond angle is 95.88 (14)°. In the tri­aza­penta­dienyl fragment, the C—N bond lengths are in the range 1.328 (5)–1.349 (5) Å, which indicates delocalization of the π-electrons in the NCNCN system.

1. Related literature

For reviews of related ligands and metals, see: Dias & Singh (2004[Dias, H. V. R. & Singh, S. (2004). Inorg. Chem. 43, 5786-5788.]); Flores et al. (2009[Flores, J. A., Badarinarayana, V., Singh, S., Lovely, C. J. & Dias, H. V. R. (2009). Dalton Trans. pp. 7648-7652.]); Xie et al. (2014[Xie, Q. W., Tong, H. B. & Zhou, M. S. (2014). Inorg. Chem. Commun. 44, 37-40.]); Zhou et al. (2008[Zhou, M. S., Song, Y. P., Gong, T., Tong, H. B., Guo, J. P., Weng, L. H. & Liu, D. S. (2008). Inorg. Chem. 47, 6692-6700.], 2011[Zhou, M. S., Gong, T., Qiao, X. L., Tong, H. B., Guo, J. P. & Liu, D. S. (2011). Inorg. Chem. 50, 1926-1930.]); Liu et al. (2013[Liu, F., Qiao, X. L., Wang, M., Zhou, M., Tong, H., Guo, D. & Liu, D. (2013). Polyhedron, 52, 639-644.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C21H38N5Si)(C18H15P)]

  • Mr = 714.46

  • Triclinic, [P \overline 1]

  • a = 9.7935 (16) Å

  • b = 11.2141 (18) Å

  • c = 19.570 (3) Å

  • α = 103.601 (4)°

  • β = 90.867 (3)°

  • γ = 108.240 (4)°

  • V = 1974.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 195 K

  • 0.32 × 0.31 × 0.28 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.838

  • 11084 measured reflections

  • 6988 independent reflections

  • 3246 reflections with I > 2σ(I)

  • Rint = 0.077

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.089

  • S = 0.75

  • 6988 reflections

  • 435 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

Me2NCN (0.41 mL, 5.06 mmol) was added to a solution of (Dipp)N(Li)SiMe3 (0.65 g, 2.53 mmol) in Et2O (30 cm3) at -78°C. The resulting mixture was warmed to ca. 25°C and stirred overnight. CuCl (0.25 g, 2.53 mmol) and PPh3 (0.66 g, 2.53 mmol) were added at -78°C. The resulting mixture was allowed to warm to ca. 25°C and stirred overnight. Filtered and the filtrate was concentrated in vacuo and stored at 25°C for 4 d, yielding colorless crystals of the title compound (0.62 g, 34 %).

Anal. calcd. for C39H53N5PSiCu (%): C, 65.56; H, 7.48; N, 9.80. Found: C, 65.59; H, 7.50; N, 9.76. All manipulations were performed under argon using standard Schlenk and vacuum line techniques. Et2O was dried and distilled over Na under argon prior to use. Elemental analysis is completely in agreement with the structure of the compound.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Results and discussion top

1,3,5–Tri­aza­penta­dienyl ligands are one of the most useful nitro­gen-based ligands in coordination chemistry and organometallic chemistry due to their structural features and stronger coordination properties(Dias & Singh, 2004; Flores et al., 2009). Our group has developed a series of 2,4–N,N'–substituted–1,3,5–tri­aza­penta­dienyl ligands and obtained their Fe,Co,Mg,Cu(I) complexes (Xie et al. , 2014; Zhou et al., 2011; Liu et al., 2013).The title compound is polymorph of C39H53N5PSiCu which was reported in 2008(Zhou et al., 2008).This article will provide a new set of unit cell data on the 1,3,5– tri­aza­penta­dienyl (tri­phenyl­phosphane) copper(I) compound C39H53N5PSiCu.

Its molecular structure is shown in Fig. 1. In the monomeric molecular structure of title compound, the dihedral angle between N1C13C16N3 and C13N2C16 is 14.16(0.65)°, and the dihedral angle between N1C13C16N3 and N1CuN3 is 3.30(0.33)°. The bond angles of N5—C16—N3, C16—N3—C13, and N3—C13—N1 are 127.8 (4), 125.8 (4), and 124.6 (4)°, respectively. The N1C13C16N3 plane is twisted by about 26.47(0.28)° from the N1N5CuP plane. The tri­aza­penta­dienyl ligand acts as a κ2-donor. The bond angle of N1—Cu—N5 is 95.88 (14)°. In the tri­aza­penta­dienyl fragment, the C—N bond distances are in the range of 1.328 (5)–1.349 (5) Å, which indicates the delocalization of the π-electrons as a η5 anion in the NCNCN system.Cu located above 0.172 (2) Å from P1–N1–N5 triangular plane.

Related literature top

For reviews of related ligands and metal, see: Dias & Singh (2004); Flores et al. (2009); Xie et al. (2014); Zhou et al. (2008, 2011); Liu et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[1-(2,6-Diisopropylphenyl)-2,4-bis(dimethylamino)-5-trimethylsilyl-1,3,5-triazapentadienyl-κ2N1,N5](triphenylphosphane-κP)copper(I) top
Crystal data top
[Cu(C21H38N5Si)(C18H15P)]Z = 2
Mr = 714.46F(000) = 760
Triclinic, P1Dx = 1.202 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7935 (16) ÅCell parameters from 1276 reflections
b = 11.2141 (18) Åθ = 2.5–18.7°
c = 19.570 (3) ŵ = 0.66 mm1
α = 103.601 (4)°T = 195 K
β = 90.867 (3)°Block, colorless
γ = 108.240 (4)°0.32 × 0.31 × 0.28 mm
V = 1974.8 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6988 independent reflections
Radiation source: fine-focus sealed tube3246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 119
Tmin = 0.818, Tmax = 0.838k = 1113
11084 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.75 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
6988 reflections(Δ/σ)max < 0.001
435 parametersΔρmax = 0.35 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cu(C21H38N5Si)(C18H15P)]γ = 108.240 (4)°
Mr = 714.46V = 1974.8 (6) Å3
Triclinic, P1Z = 2
a = 9.7935 (16) ÅMo Kα radiation
b = 11.2141 (18) ŵ = 0.66 mm1
c = 19.570 (3) ÅT = 195 K
α = 103.601 (4)°0.32 × 0.31 × 0.28 mm
β = 90.867 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3246 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.838Rint = 0.077
11084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.75Δρmax = 0.35 e Å3
6988 reflectionsΔρmin = 0.24 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21585 (5)0.98646 (5)0.27053 (3)0.04164 (17)
P10.09334 (12)0.97196 (11)0.17417 (6)0.0438 (3)
N10.3161 (3)0.8786 (3)0.30319 (17)0.0404 (9)
N20.4998 (4)0.8723 (4)0.3817 (2)0.0611 (11)
N30.5058 (3)1.0667 (3)0.36417 (17)0.0472 (9)
N40.5552 (4)1.2786 (4)0.3743 (2)0.0625 (11)
N50.3128 (4)1.1463 (3)0.34393 (16)0.0425 (9)
Si10.21254 (13)1.22563 (12)0.39437 (6)0.0481 (3)
C10.2675 (4)0.7442 (4)0.2716 (2)0.0368 (10)
C20.3404 (5)0.6878 (4)0.2203 (2)0.0436 (11)
C30.2818 (5)0.5576 (4)0.1869 (2)0.0602 (13)
H30.33260.51850.15240.072*
C40.1516 (6)0.4838 (5)0.2026 (3)0.0649 (14)
H40.11180.39470.17830.078*
C50.0795 (5)0.5377 (4)0.2528 (3)0.0602 (14)
H50.00980.48550.26410.072*
C60.1343 (5)0.6682 (4)0.2878 (2)0.0496 (12)
C70.0520 (5)0.7255 (5)0.3453 (3)0.0779 (17)
H70.10960.81880.36570.093*
C80.0293 (7)0.6572 (7)0.4055 (3)0.148 (3)
H8A0.01640.70200.44270.222*
H8B0.12280.65890.42500.222*
H8C0.03310.56690.38730.222*
C90.0938 (6)0.7191 (6)0.3153 (3)0.128 (2)
H9A0.14890.62900.29130.192*
H9B0.08060.77280.28140.192*
H9C0.14640.75130.35360.192*
C100.4816 (5)0.7661 (4)0.1990 (3)0.0612 (13)
H100.52330.84740.23750.073*
C110.5904 (6)0.6964 (5)0.1891 (4)0.153 (3)
H11A0.60460.66900.23190.230*
H11B0.68230.75450.17990.230*
H11C0.55550.61990.14890.230*
C120.4540 (6)0.8046 (6)0.1327 (3)0.137 (3)
H12A0.54630.84680.11610.205*
H12B0.39870.86500.14270.205*
H12C0.39890.72710.09610.205*
C130.4329 (5)0.9383 (4)0.3489 (2)0.0437 (11)
C140.6398 (5)0.9422 (5)0.4222 (3)0.106 (2)
H14A0.69971.00210.39680.159*
H14B0.68760.88010.42830.159*
H14C0.62600.99120.46850.159*
C150.4316 (6)0.7524 (5)0.3966 (3)0.110 (2)
H15A0.32710.72720.38510.164*
H15B0.45210.75990.44690.164*
H15C0.46810.68640.36830.164*
C160.4503 (5)1.1592 (4)0.3590 (2)0.0458 (11)
C170.7011 (5)1.3023 (4)0.4024 (3)0.0821 (17)
H17A0.70251.23520.42640.123*
H17B0.73631.38770.43620.123*
H17C0.76351.30020.36380.123*
C180.5366 (5)1.3833 (4)0.3462 (3)0.0809 (17)
H18A0.61481.41080.31690.121*
H18B0.53921.45690.38540.121*
H18C0.44361.35210.31760.121*
C190.3128 (5)1.3379 (4)0.4780 (2)0.0682 (14)
H19A0.38661.30530.49360.102*
H19B0.24551.34340.51430.102*
H19C0.35921.42420.47030.102*
C200.0592 (4)1.1020 (4)0.4188 (2)0.0745 (15)
H20A0.00471.03900.37590.112*
H20B0.00431.14450.44530.112*
H20C0.09621.05710.44830.112*
C210.1368 (5)1.3199 (4)0.3466 (2)0.0824 (17)
H21A0.21571.39130.33710.124*
H21B0.07101.35510.37570.124*
H21C0.08391.26280.30180.124*
C220.0030 (4)0.8179 (4)0.1131 (2)0.0485 (12)
C230.0152 (5)0.7052 (5)0.1226 (3)0.0733 (16)
H230.08210.70990.15960.088*
C240.0622 (6)0.5870 (5)0.0792 (3)0.103 (2)
H240.05200.51040.08810.124*
C250.1539 (6)0.5771 (5)0.0233 (3)0.098 (2)
H250.20460.49490.00740.117*
C260.1713 (6)0.6880 (5)0.0125 (3)0.0842 (17)
H260.23590.68260.02560.101*
C270.0970 (5)0.8055 (5)0.0559 (2)0.0651 (14)
H270.10960.88130.04700.078*
C280.0413 (4)1.0544 (4)0.1788 (2)0.0423 (11)
C290.1412 (5)1.0359 (4)0.2284 (2)0.0566 (13)
H290.13510.98350.25930.068*
C300.2476 (5)1.0912 (5)0.2337 (3)0.0728 (15)
H300.31431.07770.26810.087*
C310.2577 (5)1.1664 (5)0.1893 (3)0.0782 (17)
H310.33171.20510.19270.094*
C320.1605 (6)1.1860 (4)0.1393 (3)0.0721 (16)
H320.16711.23880.10870.087*
C330.0545 (5)1.1292 (4)0.1340 (2)0.0505 (12)
H330.01071.14150.09880.061*
C340.2300 (4)1.0584 (5)0.1248 (2)0.0475 (12)
C350.3147 (5)1.1830 (5)0.1584 (2)0.0566 (13)
H350.29731.22180.20460.068*
C360.4241 (5)1.2518 (5)0.1258 (3)0.0685 (15)
H360.48251.33700.15000.082*
C370.4500 (6)1.1987 (6)0.0585 (3)0.0771 (18)
H370.52571.24640.03600.093*
C380.3649 (6)1.0763 (6)0.0250 (3)0.0772 (17)
H380.38191.03860.02150.093*
C390.2543 (5)1.0056 (5)0.0570 (3)0.0612 (14)
H390.19530.92090.03230.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0472 (3)0.0362 (3)0.0419 (3)0.0148 (3)0.0030 (3)0.0093 (3)
P10.0514 (8)0.0412 (7)0.0408 (7)0.0192 (6)0.0039 (6)0.0088 (6)
N10.045 (2)0.026 (2)0.050 (2)0.0119 (18)0.0095 (18)0.0103 (19)
N20.058 (3)0.049 (3)0.078 (3)0.020 (2)0.021 (2)0.018 (2)
N30.039 (2)0.041 (2)0.055 (3)0.011 (2)0.0054 (18)0.004 (2)
N40.053 (3)0.040 (3)0.081 (3)0.003 (2)0.006 (2)0.009 (2)
N50.039 (2)0.038 (2)0.044 (2)0.0099 (18)0.0058 (18)0.0034 (19)
Si10.0529 (8)0.0398 (8)0.0497 (9)0.0188 (7)0.0053 (7)0.0034 (7)
C10.035 (3)0.033 (3)0.048 (3)0.013 (2)0.004 (2)0.016 (2)
C20.045 (3)0.042 (3)0.048 (3)0.019 (2)0.001 (2)0.013 (3)
C30.071 (4)0.045 (3)0.066 (4)0.026 (3)0.005 (3)0.008 (3)
C40.081 (4)0.036 (3)0.076 (4)0.022 (3)0.001 (3)0.009 (3)
C50.057 (3)0.041 (3)0.083 (4)0.009 (3)0.006 (3)0.025 (3)
C60.047 (3)0.043 (3)0.064 (3)0.019 (3)0.001 (3)0.017 (3)
C70.064 (4)0.049 (3)0.126 (5)0.019 (3)0.036 (4)0.031 (4)
C80.187 (7)0.198 (8)0.106 (6)0.102 (6)0.073 (5)0.069 (6)
C90.093 (5)0.145 (6)0.187 (7)0.072 (5)0.050 (5)0.072 (6)
C100.058 (3)0.058 (3)0.071 (4)0.021 (3)0.014 (3)0.018 (3)
C110.076 (5)0.116 (6)0.289 (10)0.050 (4)0.067 (5)0.066 (6)
C120.118 (5)0.187 (7)0.098 (5)0.003 (5)0.015 (4)0.085 (5)
C130.042 (3)0.046 (3)0.046 (3)0.019 (3)0.009 (2)0.011 (3)
C140.082 (4)0.087 (5)0.149 (6)0.030 (4)0.054 (4)0.029 (4)
C150.120 (5)0.078 (4)0.122 (5)0.006 (4)0.054 (4)0.046 (4)
C160.052 (3)0.038 (3)0.037 (3)0.005 (3)0.007 (2)0.003 (2)
C170.053 (3)0.062 (4)0.101 (4)0.008 (3)0.012 (3)0.001 (3)
C180.093 (4)0.045 (3)0.085 (4)0.005 (3)0.003 (3)0.017 (3)
C190.078 (4)0.064 (3)0.058 (3)0.028 (3)0.000 (3)0.002 (3)
C200.060 (3)0.075 (4)0.078 (4)0.017 (3)0.011 (3)0.006 (3)
C210.099 (4)0.064 (4)0.093 (4)0.047 (3)0.019 (3)0.011 (3)
C220.058 (3)0.048 (3)0.041 (3)0.024 (3)0.010 (2)0.006 (2)
C230.096 (4)0.051 (3)0.073 (4)0.030 (3)0.031 (3)0.009 (3)
C240.151 (6)0.046 (4)0.100 (5)0.035 (4)0.059 (4)0.004 (3)
C250.122 (5)0.052 (4)0.097 (5)0.025 (4)0.055 (4)0.014 (4)
C260.100 (4)0.069 (4)0.076 (4)0.039 (4)0.042 (3)0.008 (3)
C270.082 (4)0.052 (3)0.057 (3)0.030 (3)0.023 (3)0.001 (3)
C280.043 (3)0.036 (3)0.047 (3)0.014 (2)0.004 (2)0.006 (2)
C290.054 (3)0.057 (3)0.061 (3)0.022 (3)0.004 (3)0.014 (3)
C300.058 (4)0.074 (4)0.086 (4)0.028 (3)0.018 (3)0.010 (4)
C310.057 (4)0.064 (4)0.114 (5)0.035 (3)0.008 (4)0.004 (4)
C320.070 (4)0.062 (4)0.095 (4)0.033 (3)0.010 (3)0.024 (3)
C330.057 (3)0.046 (3)0.053 (3)0.025 (3)0.000 (2)0.012 (3)
C340.046 (3)0.062 (3)0.047 (3)0.033 (3)0.002 (2)0.018 (3)
C350.050 (3)0.062 (4)0.053 (3)0.015 (3)0.003 (3)0.010 (3)
C360.052 (3)0.070 (4)0.085 (4)0.013 (3)0.000 (3)0.033 (4)
C370.067 (4)0.101 (5)0.084 (5)0.034 (4)0.020 (4)0.053 (4)
C380.083 (4)0.114 (5)0.055 (4)0.051 (4)0.024 (3)0.032 (4)
C390.073 (4)0.068 (4)0.054 (3)0.036 (3)0.008 (3)0.017 (3)
Geometric parameters (Å, º) top
Cu1—N51.964 (3)C14—H14C0.9800
Cu1—N11.980 (3)C15—H15A0.9800
Cu1—P12.1651 (12)C15—H15B0.9800
P1—C221.811 (4)C15—H15C0.9800
P1—C281.824 (4)C17—H17A0.9800
P1—C341.824 (4)C17—H17B0.9800
N1—C131.328 (5)C17—H17C0.9800
N1—C11.409 (4)C18—H18A0.9800
N2—C131.379 (5)C18—H18B0.9800
N2—C151.403 (5)C18—H18C0.9800
N2—C141.457 (5)C19—H19A0.9800
N3—C161.335 (5)C19—H19B0.9800
N3—C131.349 (5)C19—H19C0.9800
N4—C161.371 (5)C20—H20A0.9800
N4—C171.444 (5)C20—H20B0.9800
N4—C181.464 (5)C20—H20C0.9800
N5—C161.329 (5)C21—H21A0.9800
N5—Si11.702 (3)C21—H21B0.9800
Si1—C191.853 (4)C21—H21C0.9800
Si1—C201.854 (4)C22—C231.384 (5)
Si1—C211.865 (4)C22—C271.390 (5)
C1—C21.387 (5)C23—C241.369 (6)
C1—C61.404 (5)C23—H230.9500
C2—C31.379 (5)C24—C251.365 (6)
C2—C101.512 (5)C24—H240.9500
C3—C41.370 (6)C25—C261.369 (6)
C3—H30.9500C25—H250.9500
C4—C51.356 (6)C26—C271.357 (6)
C4—H40.9500C26—H260.9500
C5—C61.386 (5)C27—H270.9500
C5—H50.9500C28—C331.380 (5)
C6—C71.531 (6)C28—C291.392 (5)
C7—C91.510 (6)C29—C301.363 (5)
C7—C81.533 (6)C29—H290.9500
C7—H71.0000C30—C311.368 (6)
C8—H8A0.9800C30—H300.9500
C8—H8B0.9800C31—C321.382 (6)
C8—H8C0.9800C31—H310.9500
C9—H9A0.9800C32—C331.371 (5)
C9—H9B0.9800C32—H320.9500
C9—H9C0.9800C33—H330.9500
C10—C111.497 (6)C34—C351.378 (5)
C10—C121.506 (6)C34—C391.378 (5)
C10—H101.0000C35—C361.372 (5)
C11—H11A0.9800C35—H350.9500
C11—H11B0.9800C36—C371.374 (6)
C11—H11C0.9800C36—H360.9500
C12—H12A0.9800C37—C381.362 (6)
C12—H12B0.9800C37—H370.9500
C12—H12C0.9800C38—C391.382 (6)
C14—H14A0.9800C38—H380.9500
C14—H14B0.9800C39—H390.9500
N5—Cu1—N195.88 (14)N2—C15—H15B109.5
N5—Cu1—P1126.26 (10)H15A—C15—H15B109.5
N1—Cu1—P1135.59 (11)N2—C15—H15C109.5
C22—P1—C28100.94 (18)H15A—C15—H15C109.5
C22—P1—C34105.5 (2)H15B—C15—H15C109.5
C28—P1—C34103.48 (19)N5—C16—N3127.8 (4)
C22—P1—Cu1122.58 (14)N5—C16—N4121.1 (4)
C28—P1—Cu1119.03 (14)N3—C16—N4111.1 (4)
C34—P1—Cu1103.22 (14)N4—C17—H17A109.5
C13—N1—C1123.6 (3)N4—C17—H17B109.5
C13—N1—Cu1118.2 (3)H17A—C17—H17B109.5
C1—N1—Cu1118.0 (2)N4—C17—H17C109.5
C13—N2—C15125.5 (4)H17A—C17—H17C109.5
C13—N2—C14119.3 (4)H17B—C17—H17C109.5
C15—N2—C14112.9 (4)N4—C18—H18A109.5
C16—N3—C13125.8 (4)N4—C18—H18B109.5
C16—N4—C17123.6 (4)H18A—C18—H18B109.5
C16—N4—C18120.5 (4)N4—C18—H18C109.5
C17—N4—C18114.1 (4)H18A—C18—H18C109.5
C16—N5—Si1126.4 (3)H18B—C18—H18C109.5
C16—N5—Cu1111.5 (3)Si1—C19—H19A109.5
Si1—N5—Cu1119.71 (19)Si1—C19—H19B109.5
N5—Si1—C19113.54 (19)H19A—C19—H19B109.5
N5—Si1—C20107.65 (19)Si1—C19—H19C109.5
C19—Si1—C20106.9 (2)H19A—C19—H19C109.5
N5—Si1—C21112.7 (2)H19B—C19—H19C109.5
C19—Si1—C21107.8 (2)Si1—C20—H20A109.5
C20—Si1—C21107.9 (2)Si1—C20—H20B109.5
C2—C1—C6119.4 (4)H20A—C20—H20B109.5
C2—C1—N1121.7 (4)Si1—C20—H20C109.5
C6—C1—N1118.6 (4)H20A—C20—H20C109.5
C3—C2—C1119.4 (4)H20B—C20—H20C109.5
C3—C2—C10119.0 (4)Si1—C21—H21A109.5
C1—C2—C10121.6 (4)Si1—C21—H21B109.5
C4—C3—C2121.1 (5)H21A—C21—H21B109.5
C4—C3—H3119.4Si1—C21—H21C109.5
C2—C3—H3119.4H21A—C21—H21C109.5
C5—C4—C3120.0 (5)H21B—C21—H21C109.5
C5—C4—H4120.0C23—C22—C27117.0 (4)
C3—C4—H4120.0C23—C22—P1119.7 (3)
C4—C5—C6120.8 (5)C27—C22—P1123.3 (4)
C4—C5—H5119.6C24—C23—C22120.6 (4)
C6—C5—H5119.6C24—C23—H23119.7
C5—C6—C1119.3 (4)C22—C23—H23119.7
C5—C6—C7119.6 (4)C25—C24—C23121.3 (5)
C1—C6—C7121.1 (4)C25—C24—H24119.4
C9—C7—C6111.2 (5)C23—C24—H24119.4
C9—C7—C8108.4 (5)C24—C25—C26118.7 (5)
C6—C7—C8112.8 (4)C24—C25—H25120.6
C9—C7—H7108.1C26—C25—H25120.6
C6—C7—H7108.1C27—C26—C25120.5 (5)
C8—C7—H7108.1C27—C26—H26119.7
C7—C8—H8A109.5C25—C26—H26119.7
C7—C8—H8B109.5C26—C27—C22121.8 (4)
H8A—C8—H8B109.5C26—C27—H27119.1
C7—C8—H8C109.5C22—C27—H27119.1
H8A—C8—H8C109.5C33—C28—C29117.8 (4)
H8B—C8—H8C109.5C33—C28—P1123.9 (4)
C7—C9—H9A109.5C29—C28—P1118.2 (3)
C7—C9—H9B109.5C30—C29—C28121.6 (4)
H9A—C9—H9B109.5C30—C29—H29119.2
C7—C9—H9C109.5C28—C29—H29119.2
H9A—C9—H9C109.5C29—C30—C31119.7 (5)
H9B—C9—H9C109.5C29—C30—H30120.2
C11—C10—C12110.3 (5)C31—C30—H30120.2
C11—C10—C2113.1 (4)C30—C31—C32120.1 (5)
C12—C10—C2109.7 (4)C30—C31—H31120.0
C11—C10—H10107.9C32—C31—H31120.0
C12—C10—H10107.9C33—C32—C31119.9 (5)
C2—C10—H10107.9C33—C32—H32120.1
C10—C11—H11A109.5C31—C32—H32120.1
C10—C11—H11B109.5C32—C33—C28121.0 (4)
H11A—C11—H11B109.5C32—C33—H33119.5
C10—C11—H11C109.5C28—C33—H33119.5
H11A—C11—H11C109.5C35—C34—C39118.6 (4)
H11B—C11—H11C109.5C35—C34—P1117.5 (4)
C10—C12—H12A109.5C39—C34—P1123.9 (4)
C10—C12—H12B109.5C36—C35—C34120.8 (5)
H12A—C12—H12B109.5C36—C35—H35119.6
C10—C12—H12C109.5C34—C35—H35119.6
H12A—C12—H12C109.5C35—C36—C37120.8 (5)
H12B—C12—H12C109.5C35—C36—H36119.6
N1—C13—N3124.6 (4)C37—C36—H36119.6
N1—C13—N2122.7 (4)C38—C37—C36118.5 (5)
N3—C13—N2112.5 (4)C38—C37—H37120.8
N2—C14—H14A109.5C36—C37—H37120.8
N2—C14—H14B109.5C37—C38—C39121.6 (5)
H14A—C14—H14B109.5C37—C38—H38119.2
N2—C14—H14C109.5C39—C38—H38119.2
H14A—C14—H14C109.5C34—C39—C38119.8 (5)
H14B—C14—H14C109.5C34—C39—H39120.1
N2—C15—H15A109.5C38—C39—H39120.1

Experimental details

Crystal data
Chemical formula[Cu(C21H38N5Si)(C18H15P)]
Mr714.46
Crystal system, space groupTriclinic, P1
Temperature (K)195
a, b, c (Å)9.7935 (16), 11.2141 (18), 19.570 (3)
α, β, γ (°)103.601 (4), 90.867 (3), 108.240 (4)
V3)1974.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.32 × 0.31 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.818, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
11084, 6988, 3246
Rint0.077
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.089, 0.75
No. of reflections6988
No. of parameters435
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of China (grant No. 21371111), the Shanxi Functional Organometallic Compound Information Net Project (grant No. 2013091022) and the Shanxi Scholarship Council of China (grant No. 2013–025).

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, H. V. R. & Singh, S. (2004). Inorg. Chem. 43, 5786–5788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlores, J. A., Badarinarayana, V., Singh, S., Lovely, C. J. & Dias, H. V. R. (2009). Dalton Trans. pp. 7648–7652.  Web of Science CSD CrossRef Google Scholar
First citationLiu, F., Qiao, X. L., Wang, M., Zhou, M., Tong, H., Guo, D. & Liu, D. (2013). Polyhedron, 52, 639–644.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Q. W., Tong, H. B. & Zhou, M. S. (2014). Inorg. Chem. Commun. 44, 37–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, M. S., Gong, T., Qiao, X. L., Tong, H. B., Guo, J. P. & Liu, D. S. (2011). Inorg. Chem. 50, 1926–1930.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, M. S., Song, Y. P., Gong, T., Tong, H. B., Guo, J. P., Weng, L. H. & Liu, D. S. (2008). Inorg. Chem. 47, 6692–6700.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds