research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 281-283

Crystal structure of disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel, and bChemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
*Correspondence e-mail: dvir.gur@weizmann.ac.il

Edited by S. Parkin, University of Kentucky, USA (Received 2 December 2014; accepted 13 February 2015; online 18 February 2015)

In the title compound, disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate, 2Na+·C5H3N5O2−·7H2O, the structure is composed of alternating (100) layers of guanine mol­ecules and hydrated Na+ ions. Within the guanine layer, the mol­ecules are arranged in centrosymmetric pairs, with a partial overlap between the guanine rings. In this compound, guanine exists as the amino–keto tautomer from which deprotonation from N1 and N7 has occurred (purine numbering). There are no direct inter­actions between the Na+ cations and the guanine anions. Guanine mol­ecules are linked to neighboring water mol­ecules by O—H⋯N and O—H⋯O hydrogen bonds into a network structure.

1. Chemical context

Guanine is one of the five nucleic acids present in both DNA and RNA (Blackburn et al., 2006[Blackburn, G. M., Gait, M. J., Loakes, D. & Williams, D. M. (2006). Editors. Nucleic acids in Chemistry and Biology, 3rd ed. Cambridge: RSC Publishing.]), and is also found in its crystalline form in the integument of many animals as a light reflector (Land, 1972[Land, M. (1972). Prog. Biophys. Mol. Biol. 24, 75-106.]; Parker, 2000[Parker, A. R. (2000). J. Opt. A Pure Appl. Opt. 2, R15-R28.]; Gur et al., 2013[Gur, D., Politi, Y., Sivan, B., Fratzl, P., Weiner, S. & Addadi, L. (2013). Angew. Chem. Int. Ed. 52, 388-391.], 2014[Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. (2014). J. Am. Chem. Soc. 136, 17236-17242.]). There are two known crystal structures of guanine; guanine monohydrate (Thewalt et al., 1971[Thewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358-2363.]) and anhydrous guanine (Guille & Clegg, 2006[Guille, K. & Clegg, W. (2006). Acta Cryst. C62, o515-o517.]). In addition there are also a few known guanine salts (Broomhead, 1951[Broomhead, J. M. (1951). Acta Cryst. 4, 92-100.]; Wei, 1977[Wei, C. (1977). Cryst. Struct. Commun. 6, 525-529.]; Iball & Wilson, 1965[Iball, J. & Wilson, H. R. (1965). Proc. R. Soc. London A, 288, 418-439.]). The crystal structure of the title compound was obtained as a part of a study into controlling the crystal phase of guanine using recrystallization.

[Scheme 1]

Cation, anion and radical formation among nucleic acids are thought to be important steps in DNA damage (Cooke et al., 2003[Cooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. (2003). FASEB J. 17, 1195-1214.]; Kasai, 1997[Kasai, H. (1997). Mutat. Res. Rev. Mutat. Res. 387, 147-163.]). For that reason, protonation and deprotonation of nucleic acids and their role in processes like mutation has been widely studied both theoretically and experimentally. It is thought that the most prominent site for this kind of damage will be guanine because it has the lowest oxidation potential among the four DNA bases (Burrows & Muller, 1998[Burrows, C. J. & Muller, J. G. (1998). Chem. Rev. 98, 1109-1152.]; Steenken & Jovanovic, 1997[Steenken, S. & Jovanovic, S. V. (1997). J. Am. Chem. Soc. 119, 617-618.]). As a result, even initially different oxidized species may eventually migrate to guanine. Therefore, DNA damage is predicted to be produced at this site (Melvin et al., 1995[Melvin, T., Botchway, S., Parker, A. W. & Oneill, P. (1995). J. Chem. Soc. Chem. Commun. pp. 653-654.]). The crystal structure of the deprotonated guanine presented in this report may provide information about the deprotonated oxidized guanine state and its inter­actions with the neighboring water mol­ecules.

2. Structural commentary

In the structure of the title compound, the asymmetric unit is composed of a guanine anion, two sodium counter-ions and seven water mol­ecules (Fig. 1[link]). In this compound, guanine exists as the amino–keto tautomer, the guanine mol­ecules are doubly negatively charged, as a result of the deprotonation from N1 and N7 (purine numbering) that occurred due to the alkaline conditions of the solution from which recrystallization took place. There are no direct inter­actions between the Na+ cations and the guanine anions.

[Figure 1]
Figure 1
A displacement ellipsoid plot of the asymmetric unit drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

The structure is composed of alternating (100) layers of guanine mol­ecules and hydrated Na+ Ions (Fig. 2[link]). Within the guanine layer, the mol­ecules are arranged in centrosymmetric pairs, in which a partial overlap between the guanine rings is present. The distances between the overlapping atoms C2–N3i and C4–N10i are 3.415 (2) and 3.460 (2) Å, respectively [symmetry code: (i) = 1 − x, 1 − y, 1 − z]. The two mol­ecules are offset presumably to separate the charged N ions of the two mol­ecules and at the same time provide van der Waals contacts between the two rings. In most known guanine crystal structures, neighboring guanine mol­ecules form hydrogen bonds that result in flat layers of guanine mol­ecules, between which stacking inter­actions are present. Such layers are not present in the structure of the title compound. Instead, the guanine mol­ecules form O—H⋯N and O—H⋯O hydrogen bonds with the neighboring water mol­ecules (Table 1[link]), satisfying all guanine donors and acceptors with the exception of the NH2 amine group, which surprisingly does not seem to participate in any hydrogen bonding, and is not within hydrogen-bonding distance of any hydrogen acceptors. In addition, the guanine mol­ecules form dimers that have an edge-to-face type orientation, resulting in the observed herringbone crystal packing motif with a dihedral angle of 123.917 (17)° (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N9i 0.84 (3) 1.97 (3) 2.7875 (19) 168 (3)
O2—H2B⋯N3 0.89 (3) 2.08 (3) 2.9582 (19) 167 (2)
O3—H3A⋯O5ii 0.87 (3) 2.08 (3) 2.9200 (18) 163 (3)
O3—H3B⋯N3 0.87 (3) 1.95 (3) 2.8038 (18) 166 (3)
O4—H4A⋯N1iii 0.85 (3) 1.96 (3) 2.8093 (19) 177 (3)
O4—H4B⋯N9 0.85 (3) 2.14 (3) 2.9866 (19) 176 (2)
O5—H5C⋯O1iii 0.81 (3) 1.96 (3) 2.7581 (18) 168 (3)
O6—H6A⋯O2iv 0.79 (3) 2.02 (3) 2.7938 (19) 167 (3)
O6—H6B⋯N7v 0.90 (3) 2.01 (3) 2.909 (2) 173 (2)
O7—H7A⋯O1v 0.88 (3) 1.95 (3) 2.7867 (17) 160 (3)
O7—H7B⋯O3 0.85 (3) 1.92 (3) 2.7608 (18) 168 (3)
O8—H8A⋯O1iii 0.84 (3) 1.99 (3) 2.8303 (17) 171 (3)
O8—H8B⋯N7vi 0.82 (3) 1.98 (3) 2.7938 (19) 171 (3)
O5—H5D⋯O1vii 0.78 (3) 2.02 (3) 2.7835 (17) 164 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) -x+1, -y, -z+1; (vii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure viewed down the c axis, showing the alternating layers of guanine mol­ecules and hydrated sodium ions.
[Figure 3]
Figure 3
A view down the a axis showing the herringbone crystal packing motif, including edge-to-face inter­actions between the guanine dimers.

4. Synthesis and crystallization

Disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate was prepared by dissolving 0.1 g guanine (powder Sigma–Aldrich) in 5 ml NaOH 1 N (pH 14). The solution was then filtered using a PVDF filter (0.22 µm), and 0.1 ml of NaOH 1 N was added to the solution to ensure that all of the guanine was dissolved. The solution was then kept for 10 days under an IR lamp using 15 min. cycles (on/off) while open to the atmosphere. Large 3mm crystals were extracted from the suspension, broken to a suitable size and subjected to single crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were refined freely with the exception of C8-bound H atom that was placed in a calculated position and refined in riding mode.

Table 2
Experimental details

Crystal data
Chemical formula 2Na+·C5H3N5O2−·7H2O
Mr 321.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 10.5520 (2), 11.6936 (3), 11.1938 (2)
β (°) 101.5758 (13)
V3) 1353.12 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.30 × 0.10 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (DENZO-SMN; Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226-235. Chester: International Union of Crystallography.])
Tmin, Tmax 0.977, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 6648, 3931, 2981
Rint 0.019
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.07
No. of reflections 3931
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.39
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226-235. Chester: International Union of Crystallography.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), CrystalMaker (CrystalMaker, 2010[CrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Guanine is one of the five nucleic acids present in both DNA and RNA (Blackburn et al., 2006), and is also found in its crystalline form in the integument of many animals as a light reflector (Land, 1972; Parker, 2000; Gur et al., 2013, 2014). There are two known crystal structures of guanine; guanine monohydrate (Thewalt et al., 1971) and anhydrous guanine (Guille & Clegg, 2006). In addition there are also a few known guanine salts (Broomhead, 1951; Wei, 1977; Iball & Wilson, 1965). The crystal structure of the title compound was obtained as a part of a study into controlling the crystal phase of guanine using recrystallization. Cation, anion and radical formation among nucleic acids are thought to be important steps in DNA damage (Cooke et al., 2003; Kasai, 1997). For that reason, protonation and deprotonation of nucleic acids and their role in processes like mutation has been widely studied both theoretically and experimentally. It is thought that the most prominent site for this kind of damage will be guanine because it has the lowest oxidation potential among the four DNA bases (Burrows & Muller, 1998; Steenken & Jovanovic, 1997). As a result, even initially different oxidized species may eventually migrate to guanine. Therefore, DNA damage is predicted to be produced at this site (Melvin et al., 1995). The crystal structure of the deprotonated guanine presented in this report may provide information about the deprotonated oxidized guanine state and its inter­actions with the neighboring water molecules.

Structural commentary top

In the structure of the title compound, the asymmetric unit is composed of a guanine anion, two sodium counter-ions and seven water molecules (Fig. 1). In this compound, guanine exists as the amino–keto tautomer, the guanine molecules are doubly negatively charged, as a result of the deprotonation from N1 and N7 (purine numbering) that occurred due to the alkaline conditions of the solution from which recrystallization took place. There are no direct inter­actions between the Na+ cations and the guanine anions.

Supra­molecular features top

The structure is composed of alternating layers of guanine molecules and hydrated Na+ Ions (Fig. 2). Within the guanine layer, the molecules are arranged in centrosymmetric pairs, in which a partial overlap between the guanine rings is present. The distances between the overlapping atoms C2–N3i and C4–N10i are 3.415 (2) and 3.460 (2) Å respectively [symmetry code: (i) = 1 - x, 1 - y, 1 - z]. The two molecules are offset presumably to separate the charged N- ions of the two molecules and at the same time provide van der Waals contacts between the two rings. In most known guanine crystal structures, neighboring guanine molecules form hydrogen bonds that result in flat layers of guanine molecules, between which stacking inter­actions are present. Such layers are not present in the structure of the title compound. Instead, the guanine molecules form N···H—O and O···H—O hydrogen bonds with the neighboring water molecules (Table 1), satisfying all guanine donors and acceptors with the exception of the NH2 amine group, which surprisingly seems not to participate in any hydrogen bonding, and is not within hydrogen-bonding distance of any hydrogen acceptors. In addition, the guanine molecules form dimers that have an edge-to-face type orientation, resulting in the observed herringbone crystal packing motif with a dihedral angle of 123.917 (17)° (Fig. 3).

Synthesis and crystallization top

Disodium 2-amino-6-oxo-7,7-di­hydro-1H-purine-1,7 diide-heptahydrate was prepared by dissolving 0.1 g guanine (powder Sigma–Aldrich ) in 5 ml NaOH 1 N. The solution was then filtered using a PVDF filter (0.22 µm), and 0.1 ml of NaOH 1 N was added to the solution to ensure that all of the guanine was dissolved. The solution was then kept for 10 days under an IR lamp using 15 min. cycles (on/off) while open to the atmosphere. Large ~ 3mm crystals were extracted from the suspension, broken to a suitable size and subjected to single crystal X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were refined freely with the exception of C8-bound H atom that was placed in a calculated position and refined in riding mode.

Related literature top

For related literature, see: Blackburn et al. (2006); Broomhead (1951); Burrows & Muller (1998); Cooke et al. (2003); Guille & Clegg (2006); Gur et al. (2013, 2014); Iball & Wilson (1965); Kasai (1997); Land (1972); Melvin et al. (1995); Parker (2000); Steenken & Jovanovic (1997); Thewalt et al. (1971); Wei (1977).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot of the asymmetric unit drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure viewed down the c axis, showing the alternating layers of guanine molecules and hydrated sodium ions.
[Figure 3] Fig. 3. A view down the a axis showing the herringbone crystal packing motif, including edge-to-face interactions between the guanine dimers.
Disodium 2-amino-6-oxo-6,7-dihydro-1H-purine-1,7-diide heptahydrate top
Crystal data top
2Na+·C5H3N5O2·7H2OF(000) = 672
Mr = 321.21Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5520 (2) ÅCell parameters from 3810 reflections
b = 11.6936 (3) Åθ = 2.6–30.0°
c = 11.1938 (2) ŵ = 0.20 mm1
β = 101.5758 (13)°T = 120 K
V = 1353.12 (5) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2981 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
ϕ and ω scansθmax = 30.0°, θmin = 3.7°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 2006)
h = 1414
Tmin = 0.977, Tmax = 0.990k = 1216
6648 measured reflectionsl = 1515
3931 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.5094P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3931 reflectionsΔρmax = 0.57 e Å3
248 parametersΔρmin = 0.39 e Å3
Crystal data top
2Na+·C5H3N5O2·7H2OV = 1353.12 (5) Å3
Mr = 321.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5520 (2) ŵ = 0.20 mm1
b = 11.6936 (3) ÅT = 120 K
c = 11.1938 (2) Å0.30 × 0.10 × 0.05 mm
β = 101.5758 (13)°
Data collection top
Nonius KappaCCD
diffractometer
3931 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 2006)
2981 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.990Rint = 0.019
6648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.57 e Å3
3931 reflectionsΔρmin = 0.39 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65524 (13)0.48287 (13)0.34832 (13)0.0172 (3)
C20.52557 (16)0.48307 (15)0.33930 (15)0.0175 (3)
N30.45252 (13)0.40241 (13)0.37665 (13)0.0170 (3)
C40.52344 (15)0.31289 (15)0.43267 (14)0.0158 (3)
C50.65775 (15)0.30526 (15)0.44968 (14)0.0161 (3)
C60.72597 (15)0.39376 (14)0.40446 (14)0.0156 (3)
N70.69798 (13)0.20349 (13)0.50957 (13)0.0186 (3)
C80.58601 (16)0.15733 (16)0.52393 (16)0.0193 (3)
H80.585 (2)0.087 (2)0.563 (2)0.023*
N90.47610 (13)0.21804 (13)0.47962 (13)0.0178 (3)
N100.46123 (16)0.57498 (15)0.27867 (15)0.0235 (3)
H10A0.378 (3)0.585 (3)0.290 (3)0.057 (9)*
H10B0.513 (3)0.636 (3)0.271 (3)0.048 (8)*
O10.85043 (11)0.39326 (11)0.41331 (10)0.0171 (3)
Na10.11549 (6)0.25431 (6)0.18356 (6)0.01689 (17)
Na20.04858 (6)0.04502 (6)0.37257 (6)0.01704 (17)
O20.30698 (12)0.32592 (11)0.13607 (12)0.0194 (3)
H2A0.355 (3)0.303 (3)0.090 (3)0.043 (8)*
H2B0.362 (3)0.346 (2)0.204 (2)0.031 (6)*
O30.18432 (12)0.38036 (11)0.35525 (11)0.0186 (3)
H3A0.143 (3)0.445 (3)0.352 (3)0.048 (8)*
H3B0.267 (3)0.391 (3)0.374 (3)0.042 (7)*
O40.24329 (12)0.11485 (11)0.32009 (11)0.0177 (3)
H4A0.276 (3)0.075 (2)0.271 (3)0.035 (7)*
H4B0.307 (3)0.146 (2)0.367 (2)0.032 (7)*
O50.00208 (13)0.06838 (11)0.14535 (11)0.0174 (3)
H5C0.050 (3)0.024 (3)0.128 (3)0.042 (8)*
H5D0.051 (3)0.089 (3)0.087 (3)0.040 (7)*
O60.15505 (12)0.02121 (12)0.42404 (11)0.0200 (3)
H6A0.207 (3)0.027 (3)0.401 (3)0.037 (7)*
H6B0.203 (3)0.079 (2)0.444 (2)0.037 (7)*
O70.04292 (13)0.22690 (11)0.46296 (11)0.0180 (3)
H7A0.030 (3)0.265 (3)0.447 (3)0.041 (7)*
H7B0.094 (3)0.274 (2)0.440 (3)0.034 (7)*
O80.08223 (12)0.14985 (11)0.31485 (11)0.0175 (3)
H8A0.108 (2)0.143 (2)0.249 (3)0.033 (7)*
H8B0.145 (3)0.173 (2)0.365 (3)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0152 (6)0.0196 (7)0.0171 (6)0.0014 (5)0.0042 (5)0.0002 (5)
C20.0158 (7)0.0205 (8)0.0162 (7)0.0002 (6)0.0034 (6)0.0002 (6)
N30.0139 (6)0.0197 (7)0.0172 (6)0.0007 (5)0.0030 (5)0.0006 (5)
C40.0130 (7)0.0214 (8)0.0127 (7)0.0011 (6)0.0023 (5)0.0006 (6)
C50.0141 (7)0.0201 (8)0.0140 (7)0.0015 (6)0.0024 (5)0.0016 (6)
C60.0131 (7)0.0207 (8)0.0128 (7)0.0008 (6)0.0021 (5)0.0024 (6)
N70.0154 (6)0.0205 (7)0.0194 (7)0.0015 (5)0.0022 (5)0.0026 (5)
C80.0163 (8)0.0220 (9)0.0196 (8)0.0012 (6)0.0033 (6)0.0020 (6)
N90.0154 (6)0.0209 (7)0.0169 (6)0.0000 (5)0.0030 (5)0.0016 (5)
N100.0180 (7)0.0243 (8)0.0282 (8)0.0031 (6)0.0045 (6)0.0072 (6)
O10.0106 (5)0.0232 (6)0.0177 (5)0.0012 (4)0.0034 (4)0.0005 (4)
Na10.0157 (3)0.0191 (4)0.0157 (3)0.0004 (2)0.0028 (2)0.0002 (2)
Na20.0166 (3)0.0193 (3)0.0158 (3)0.0003 (2)0.0045 (2)0.0001 (2)
O20.0159 (6)0.0261 (7)0.0167 (6)0.0009 (5)0.0045 (5)0.0018 (5)
O30.0135 (6)0.0207 (6)0.0223 (6)0.0008 (5)0.0047 (4)0.0024 (5)
O40.0134 (5)0.0220 (6)0.0176 (6)0.0002 (5)0.0030 (4)0.0028 (5)
O50.0166 (6)0.0202 (6)0.0146 (5)0.0028 (5)0.0013 (4)0.0013 (5)
O60.0159 (6)0.0230 (7)0.0213 (6)0.0008 (5)0.0043 (5)0.0027 (5)
O70.0171 (6)0.0198 (6)0.0177 (6)0.0017 (5)0.0049 (4)0.0003 (4)
O80.0147 (6)0.0229 (6)0.0147 (5)0.0016 (5)0.0022 (4)0.0012 (4)
Geometric parameters (Å, º) top
N1—C21.352 (2)Na2—O72.3612 (14)
N1—C61.360 (2)Na2—O42.3912 (14)
C2—N31.337 (2)Na2—O82.4142 (15)
C2—N101.375 (2)Na2—O6iii2.4534 (14)
N3—C41.364 (2)Na2—O52.5067 (14)
C4—N91.364 (2)Na2—Na2iii3.3871 (13)
C4—C51.394 (2)Na2—Na1iv3.8095 (9)
C5—N71.390 (2)Na2—Na1v4.1397 (9)
C5—C61.411 (2)O2—H2A0.84 (3)
C6—O11.2970 (19)O2—H2B0.89 (3)
N7—C81.338 (2)O3—H3A0.87 (3)
C8—N91.365 (2)O3—H3B0.87 (3)
C8—H80.94 (2)O4—H4A0.85 (3)
N10—H10A0.91 (3)O4—H4B0.85 (3)
N10—H10B0.91 (3)O5—H5C0.81 (3)
Na1—O22.3447 (14)O5—H5D0.78 (3)
Na1—O8i2.3715 (14)O6—Na2iii2.4534 (14)
Na1—O32.4153 (14)O6—H6A0.79 (3)
Na1—O7ii2.4440 (14)O6—H6B0.90 (3)
Na1—O42.4467 (14)O7—Na1v2.4440 (14)
Na1—O52.4972 (14)O7—H7A0.88 (3)
Na1—Na23.4006 (9)O7—H7B0.85 (3)
Na1—Na2i3.8095 (9)O8—Na1iv2.3716 (14)
Na1—Na2ii4.1397 (9)O8—H8A0.84 (3)
Na2—O62.3502 (14)O8—H8B0.82 (3)
C2—N1—C6119.30 (14)O4—Na2—O574.47 (4)
N3—C2—N1127.87 (15)O8—Na2—O581.04 (5)
N3—C2—N10116.55 (15)O6iii—Na2—O5160.17 (5)
N1—C2—N10115.49 (15)O6—Na2—Na2iii46.41 (3)
C2—N3—C4112.80 (14)O7—Na2—Na2iii83.17 (4)
N3—C4—N9126.26 (14)O4—Na2—Na2iii137.16 (5)
N3—C4—C5124.10 (15)O8—Na2—Na2iii91.01 (4)
N9—C4—C5109.64 (14)O6iii—Na2—Na2iii43.93 (3)
N7—C5—C4108.93 (14)O5—Na2—Na2iii148.16 (5)
N7—C5—C6132.26 (14)O6—Na2—Na1123.50 (4)
C4—C5—C6118.80 (15)O7—Na2—Na169.18 (4)
O1—C6—N1119.48 (15)O4—Na2—Na146.01 (3)
O1—C6—C5123.43 (15)O8—Na2—Na1116.92 (4)
N1—C6—C5117.09 (14)O6iii—Na2—Na1133.71 (4)
C8—N7—C5102.23 (14)O5—Na2—Na147.07 (3)
N7—C8—N9116.93 (16)Na2iii—Na2—Na1152.07 (3)
N7—C8—H8120.6 (14)O6—Na2—Na1iv61.78 (4)
N9—C8—H8122.5 (14)O7—Na2—Na1iv145.56 (4)
C4—N9—C8102.28 (13)O4—Na2—Na1iv130.44 (4)
C2—N10—H10A115 (2)O8—Na2—Na1iv36.86 (3)
C2—N10—H10B114.3 (19)O6iii—Na2—Na1iv88.83 (4)
H10A—N10—H10B121 (3)O5—Na2—Na1iv86.14 (4)
O2—Na1—O8i129.23 (5)Na2iii—Na2—Na1iv69.95 (2)
O2—Na1—O380.05 (5)Na1—Na2—Na1iv133.15 (2)
O8i—Na1—O380.22 (5)O6—Na2—Na1v82.59 (4)
O2—Na1—O7ii81.28 (5)O7—Na2—Na1v31.10 (3)
O8i—Na1—O7ii82.37 (5)O4—Na2—Na1v90.17 (4)
O3—Na1—O7ii137.08 (5)O8—Na2—Na1v138.65 (4)
O2—Na1—O489.29 (5)O6iii—Na2—Na1v55.22 (4)
O8i—Na1—O4133.29 (5)O5—Na2—Na1v139.21 (4)
O3—Na1—O482.51 (5)Na2iii—Na2—Na1v59.82 (2)
O7ii—Na1—O4135.46 (5)Na1—Na2—Na1v95.369 (16)
O2—Na1—O5133.89 (5)Na1iv—Na2—Na1v129.771 (19)
O8i—Na1—O590.29 (5)Na1—O2—H2A133 (2)
O3—Na1—O5136.66 (5)Na1—O2—H2B110.3 (16)
O7ii—Na1—O582.01 (5)H2A—O2—H2B104 (2)
O4—Na1—O573.70 (5)Na1—O3—H3A115 (2)
O2—Na1—Na2133.95 (4)Na1—O3—H3B114.2 (19)
O8i—Na1—Na292.44 (4)H3A—O3—H3B110 (3)
O3—Na1—Na290.63 (4)Na2—O4—Na189.31 (5)
O7ii—Na1—Na2129.14 (4)Na2—O4—H4A117.3 (18)
O4—Na1—Na244.68 (3)Na1—O4—H4A101.7 (18)
O5—Na1—Na247.31 (3)Na2—O4—H4B127.2 (17)
O2—Na1—Na2i91.59 (4)Na1—O4—H4B112.0 (18)
O8i—Na1—Na2i37.64 (3)H4A—O4—H4B105 (2)
O3—Na1—Na2i68.95 (4)Na1—O5—Na285.62 (4)
O7ii—Na1—Na2i73.34 (4)Na1—O5—H5C105 (2)
O4—Na1—Na2i150.82 (4)Na2—O5—H5C99 (2)
O5—Na1—Na2i123.71 (4)Na1—O5—H5D96 (2)
Na2—Na1—Na2i126.913 (19)Na2—O5—H5D148 (2)
O2—Na1—Na2ii67.43 (4)H5C—O5—H5D111 (3)
O8i—Na1—Na2ii74.73 (4)Na2—O6—Na2iii89.65 (5)
O3—Na1—Na2ii107.25 (4)Na2—O6—H6A128 (2)
O7ii—Na1—Na2ii29.94 (3)Na2iii—O6—H6A104 (2)
O4—Na1—Na2ii151.97 (4)Na2—O6—H6B124.0 (17)
O5—Na1—Na2ii110.76 (4)Na2iii—O6—H6B100.6 (17)
Na2—Na1—Na2ii155.43 (3)H6A—O6—H6B103 (3)
Na2i—Na1—Na2ii50.230 (19)Na2—O7—Na1v118.96 (6)
O6—Na2—O784.18 (5)Na2—O7—H7A117.7 (19)
O6—Na2—O4166.81 (6)Na1v—O7—H7A104.2 (19)
O7—Na2—O483.95 (5)Na2—O7—H7B112.8 (18)
O6—Na2—O898.31 (5)Na1v—O7—H7B99.0 (18)
O7—Na2—O8169.31 (5)H7A—O7—H7B101 (3)
O4—Na2—O894.41 (5)Na1iv—O8—Na2105.50 (5)
O6—Na2—O6iii90.35 (5)Na1iv—O8—H8A119.6 (18)
O7—Na2—O6iii86.16 (5)Na2—O8—H8A103.7 (19)
O4—Na2—O6iii94.57 (5)Na1iv—O8—H8B115.2 (18)
O8—Na2—O6iii83.44 (5)Na2—O8—H8B105.6 (19)
O6—Na2—O5104.03 (5)H8A—O8—H8B106 (3)
O7—Na2—O5108.55 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N9ii0.84 (3)1.97 (3)2.7875 (19)168 (3)
O2—H2B···N30.89 (3)2.08 (3)2.9582 (19)167 (2)
O3—H3A···O5i0.87 (3)2.08 (3)2.9200 (18)163 (3)
O3—H3B···N30.87 (3)1.95 (3)2.8038 (18)166 (3)
O4—H4A···N1vi0.85 (3)1.96 (3)2.8093 (19)177 (3)
O4—H4B···N90.85 (3)2.14 (3)2.9866 (19)176 (2)
O5—H5C···O1vi0.81 (3)1.96 (3)2.7581 (18)168 (3)
O6—H6A···O2iv0.79 (3)2.02 (3)2.7938 (19)167 (3)
O6—H6B···N7vii0.90 (3)2.01 (3)2.909 (2)173 (2)
O7—H7A···O1vii0.88 (3)1.95 (3)2.7867 (17)160 (3)
O7—H7B···O30.85 (3)1.92 (3)2.7608 (18)168 (3)
O8—H8A···O1vi0.84 (3)1.99 (3)2.8303 (17)171 (3)
O8—H8B···N7viii0.82 (3)1.98 (3)2.7938 (19)171 (3)
O5—H5D···O1ix0.78 (3)2.02 (3)2.7835 (17)164 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x1, y, z; (viii) x+1, y, z+1; (ix) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N9i0.84 (3)1.97 (3)2.7875 (19)168 (3)
O2—H2B···N30.89 (3)2.08 (3)2.9582 (19)167 (2)
O3—H3A···O5ii0.87 (3)2.08 (3)2.9200 (18)163 (3)
O3—H3B···N30.87 (3)1.95 (3)2.8038 (18)166 (3)
O4—H4A···N1iii0.85 (3)1.96 (3)2.8093 (19)177 (3)
O4—H4B···N90.85 (3)2.14 (3)2.9866 (19)176 (2)
O5—H5C···O1iii0.81 (3)1.96 (3)2.7581 (18)168 (3)
O6—H6A···O2iv0.79 (3)2.02 (3)2.7938 (19)167 (3)
O6—H6B···N7v0.90 (3)2.01 (3)2.909 (2)173 (2)
O7—H7A···O1v0.88 (3)1.95 (3)2.7867 (17)160 (3)
O7—H7B···O30.85 (3)1.92 (3)2.7608 (18)168 (3)
O8—H8A···O1iii0.84 (3)1.99 (3)2.8303 (17)171 (3)
O8—H8B···N7vi0.82 (3)1.98 (3)2.7938 (19)171 (3)
O5—H5D···O1vii0.78 (3)2.02 (3)2.7835 (17)164 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula2Na+·C5H3N5O2·7H2O
Mr321.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.5520 (2), 11.6936 (3), 11.1938 (2)
β (°) 101.5758 (13)
V3)1353.12 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 2006)
Tmin, Tmax0.977, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6648, 3931, 2981
Rint0.019
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.07
No. of reflections3931
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.39

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 2006), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and CrystalMaker (CrystalMaker, 2010), SHELXL2013 (Sheldrick, 2015) and publCIF (Westrip, 2010).

 

Acknowledgements

We would like to thank Professor Lia Addadi, Professor Steve Weiner and Professor Leslie Schwartz for their helpful guidance and advice. This research was supported by a grant from the Israel Science foundation (grant No. 2012\224330*).

References

First citationBlackburn, G. M., Gait, M. J., Loakes, D. & Williams, D. M. (2006). Editors. Nucleic acids in Chemistry and Biology, 3rd ed. Cambridge: RSC Publishing.  Google Scholar
First citationBroomhead, J. M. (1951). Acta Cryst. 4, 92–100.  CSD CrossRef IUCr Journals Google Scholar
First citationBurrows, C. J. & Muller, J. G. (1998). Chem. Rev. 98, 1109–1152.  CrossRef PubMed CAS Google Scholar
First citationCooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. (2003). FASEB J. 17, 1195–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationGuille, K. & Clegg, W. (2006). Acta Cryst. C62, o515–o517.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. (2014). J. Am. Chem. Soc. 136, 17236–17242.  CrossRef CAS PubMed Google Scholar
First citationGur, D., Politi, Y., Sivan, B., Fratzl, P., Weiner, S. & Addadi, L. (2013). Angew. Chem. Int. Ed. 52, 388–391.  CrossRef CAS Google Scholar
First citationIball, J. & Wilson, H. R. (1965). Proc. R. Soc. London A, 288, 418–439.  CrossRef CAS Google Scholar
First citationKasai, H. (1997). Mutat. Res. Rev. Mutat. Res. 387, 147–163.  CrossRef CAS Google Scholar
First citationLand, M. (1972). Prog. Biophys. Mol. Biol. 24, 75–106.  CrossRef CAS PubMed Google Scholar
First citationMelvin, T., Botchway, S., Parker, A. W. & Oneill, P. (1995). J. Chem. Soc. Chem. Commun. pp. 653–654.  CrossRef Google Scholar
First citationNonius (1998). COLLECT Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Chester: International Union of Crystallography.  Google Scholar
First citationParker, A. R. (2000). J. Opt. A Pure Appl. Opt. 2, R15–R28.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteenken, S. & Jovanovic, S. V. (1997). J. Am. Chem. Soc. 119, 617–618.  CrossRef CAS Google Scholar
First citationThewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358–2363.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWei, C. (1977). Cryst. Struct. Commun. 6, 525–529.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 281-283
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds