research communications
α-hexamolybdoplatinate(IV)] heptahydrate
of heptaguanidinium nonahydrogen bis[aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bThe Research Institute of Natural Science, Gyeongsan National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
The title compound, (CH6N3)7H9[PtMo6O24]2·7H2O, containing the well-known Anderson-type heteropolyoxomolybdate, was obtained by recrystallization of its powdered guanidinium salt. The protonated O atoms in the polyanion were confirmed by electron-density maps, interpolyanion hydrogen bonds and bond-valance sums (BVS). The {[H4.5PtMo6O24]2}7− polyanion is the same as that already characterized in K7[H4.5PtMo6O24]2·11H2O [space group P-1; Lee & Joo (2010). Acta Cryst. E66, i8–i9]. The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}7−, held together by each of the four μ3-O—H⋯μ1-O, two μ2-O—H⋯μ2-O hydrogen bonds and one centrosymmetric μ3-O—H—μ3-O hydrogen bond. The H atom of the centrosymmetric hydrogen bond is located on an inversion centre. One guanidinium ion and one water molecule are equally disordered about a twofold rotation axis.
Keywords: crystal structure; platinum-containing heteropolyoxomolybdate; centrosymmetric hydrogen bond; strong hydrogen bond; Anderson-type heteropolyoxomolybdate.
CCDC reference: 1048266
1. Chemical context
The α (planar structure)-β (bent structure)-α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8− polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1994), [H4β-PtMo6O24]4− (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5− (Lee & Sasaki, 1994; Lee et al., 2010) is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937), as well as in the chemistry of polyoxometalates.
As a result of the insolubility of the guanidinium salt, replaceable counter-cations in POMs can be exchanged by guanidinium ions. It is thus possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. The guanidinium salts of platinum-containing POM species, viz. (CH6N3)8[PtW6O24] (Lee et al., 2003), (CH6N3)5[H2PtV9O28] (Joo et al., 2011) and (CH6N3)8[α-SiPt2W10O40]·6H2O (Lee et al., 2003) have been reported by our group. The positions of the protonated O atoms in the {[H4.5α-PtMo6O24]2}7− polyanion were reconfirmed in the present study.
Sometimes a short hydrogen bond, O⋯O distance < 2.60 Å, in which the H atom lies on a crystallographic center of symmetry, occurs in this class of structure. The H atom of the central hydrogen bond, O6C—H6—O6Ci in the title compound lies on a crystallographic center of symmetry (space group C2/c: , , ).
2. Structural commentary
The structure of the title compound POM anion has been discussed in detail (Lee et al., 2010). Fig. 1 shows the structure of the title compound, and selected geometrical parameters are given in Table 1. The complete polyanion has C1 (1) symmetry. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-O atom), and OC (centered μ3-O atom). The protonated O atoms in the polyanion were confirmed in electron density maps, interpolyanion hydrogen bonds (Table 2) and by bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Fig. 2 shows a symmetric electron-density map around the position of atom H6. The H atom of the centrosymmetric hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group C2/c: , , ). The O6C—H6 and O6C⋯O6Ci distances are 1.27 and 2.532 (6) Å, and the O6C—H6—O6Ci angle is 180° (Table 2 and Fig. 3). Atom H3 does not contribute to dimer formation because it is located on the other side of the polyanion.
|
Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVS for atoms O2C, O3C, O4C, O6C and O11B are 1.40, 1.36, 1.38, 1.41 and 1.30 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the μ2-O atom should be 2.0 v.u., the missing valences of O2C, O3C, O4C, O6C and O11B are 0.60, 0.64, 0.62, 0.59 and 0.70 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS value range for the unprotonated OC and OB atoms is 1.68–1.90 v.u. As a result, the protonated O atoms were O2C, O3C, O4C, O11B and O6C. The protonated features of both the {[H4.5PtMo6O24]2}7− polyanion in the title compound and in K7[H4.5PtMo6O24]2.11H2O (space group P) are exactly the same. The bond lengths and bond angles involving protonated and unprotonated O atoms in the {[H4.5PtMo6O24]2}7− polyanion are compared in Table 1. The Pt—OC bond lengths were not affected by protonation of the OC atoms.
The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis.
3. Supramolecular features
The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}7− held together by each of the four μ3-O—H⋯μ1-O (terminal O atom), two μ2-O—H⋯μ2-O and one centrosymmetric μ3-O—H—μ3-O hydrogen bonds (Table 2). Furthermore, the polyanions are linked in three dimensions via N—H⋯O hydrogen bonds. All water molecules form hydrogen bonds with O atoms of the polyanions except for the O2W water molecule (Table 2). Hydrogen-bonding interactions involving the disordered molecules have been omitted.
4. Database survey
A number of Anderson-structure platinum(IV)-containing heteropolyoxomolybdates have been reported: [H4.5PtMo6O24]3.5− and [H4PtMo6O24]4−, [H3.5PtMo6O24]4.5− (Lee & Sasaki, 1994); [H4β-PtM06024]4− (Joo et al., 1994); [H2PtMo6O24]6− (Lee & Joo, 2000, 2004); [H4.5PtMo6O24]3.5− (Lee et al., 2010); [H6PtMo6O24]2− (Lee & Joo, 2010); [H23(PtMo6O24)4]9−, [H16(PtMo6O24)3]8− and [H14(PtMo6O24)3]14− (Day et al., 2009).
5. Synthesis and crystallization
A pale-yellow powder of the title compound was obtained by addition of a small excess of the stoichiometric quantity of guanidinium chloride, CH6N3Cl, to a solution of the sodium salt of hexamolybdoplatinate hydrate. Single crystals were obtained by recrystallization from a hot aqueous solution of the crude sample in an insulating chamber.
6. Refinement
Crystal data, data collection and structure . All the H atoms in the polyanion and all water H atoms were positioned using difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O—H = 0.95 (2) Å using the DFIX command (Sheldrick, 2008). All H atoms of the guanidinium ions were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(N). The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis. of the site occupation factors (s.o.f) converged at values close to half occupancy. In the final the s.o.f.s were constrained to 0.5 and reasonable displacement parameters were obtained. The C—N and N—H bond lengths were restrained to 1.30 (2) and 0.90 (2) Å, respectively, and the HA—N—HB angles were restrained by restraining the HA⋯HB distance to 1.55 (2) Å in the disordered C4 guanidinium ion using the DFIX command. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (2) Å using the DFIX, and were included in the with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 0.98 Å from atom Pt1 and the largest hole is 0.36 Å from N3.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1048266
10.1107/S2056989015002601/pk2544sup1.cif
contains datablocks New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002601/pk2544Isup2.hkl
The α (planar structure)-β (bent structure)-α geometrical isomerization, according to the stepwise protonation in the [PtMo6O24]8- polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5- (Lee & Sasaki, 1994), [H4β-PtMo6O24]4- (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5- (Lee & Sasaki, 1994; Lee et al., 2010) is an unprecedented phenomenon in the Anderson-structure heteropolyanion (Anderson, 1937), as well as in the chemistry of polyoxometalates.
As a result of the insolubility of the guanidinium salt, replaceable counter-cations in POMs can be exchanged by guanidinium ions. It is thus possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. The guanidinium salts of platinum-containing POM species, viz. (CH6N3)8[PtW6O24] (Lee et al., 2003), (CH6N3)5[H2PtV9O28] (Joo et al., 2011) and (CH6N3)8[α-SiPt2W10O40]·6H2O (Lee et al., 2003) have been reported our group. The position of the protonated O atoms in the {[H4.5α-PtMo6O24]2}7- polyanion were reconfirmed in the present study.
Sometimes a relatively short hydrogen bond, O···O distance < 2.60 Å, in which the H atom lies on a crystallographic center of symmetry, occurs in this class of structure. The H atom of the central hydrogen bond, O6C—H6—O6Ci (Fig. 2) in the title compound lies on a crystallographic center of symmetry (space group C2/c : 3/4, 1/4, 1/2), and thus has half-occupancy in the asymmetric unit.
The structure of the title compound POM anion has been discussed in detail (Lee et al., 2010). Fig. 1 shows the structure of the title compound and selected geometrical parameters are given in Table 1. The complete polyanion has C1 (1) symmetry. The O atoms of the cluster have been designated as OT (terminal Mo═O atom), OB (bridged µ2-O atom), and OC (centered µ3-O atom). The protonated O atoms in the polyanion were confirmed in electron density maps, interpolyanion hydrogen bonds (Table 2) and by bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Fig. 2 shows a symmetric electron-density map around the position of atom H6. The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table 2). The H atom's occupancy, which is 0.5 in the polyanion, is due to the centrosymmetry of this latter hydrogen bond (Figs. 2 and 3). The H atom of the centrosymmetric hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group C2/c : 3/4, 1/4, 1/2). The O6C—H6 and O6C···O6Ci distances are 1.266 and 2.532 (6) Å, and the O6C—H6—O6Ci angle is 180° (Table 2 and Fig. 3). Atom H3 does not contribute to dimer formation because it is located on the other side of the polyanion.
Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVS for atoms O2C, O3C, O4C, O6C and O11B are 1.40, 1.36, 1.38, 1.41 and 1.30 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the µ2-O atom should be 2.0 v.u., the missing valences of O2C, O3C, O4C, O6C and O11B are 0.60, 0.64, 0.62, 0.59 and 0.70 v.u., respectively, which corresponds to the valence of the O–H bonds. The BVS value range for the unprotonated OC and OB atoms is 1.68–1.90 v.u. As a result, the protonated O atoms were O2C, O3C, O4C, O11B and O6C. The protonated features of both the {[H4.5PtMo6O24]2}7- polyanion in the title compound and in K7[H4.5PtMo6O24]2.11H2O (space group P1) are exactly the same. The bond lengths and bond angles of protonated and unprotonated O atoms in the {[H4.5PtMo6O24]2}7- polyanion are compared in Table 1. The Pt—OC bond lengths were not affected by protonation of the OC atoms.
The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis.
The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table2 and Fig. 3). Furthermore, the polyanions are linked in three dimensions via N—H···O hydrogen bonds (Table 2). All water molecules form hydrogen bonds with O atoms of the polyanions except for the O2W water molecule (Table 2).
A number of Anderson-structure platinum(IV)-containing heteropolyoxomolybdates have been reported: [H4.5PtMo6O24]3.5- and [H4PtMo6O24]4-, [H3.5PtMo6O24]4.5- (Lee & Sasaki, 1994); [H4β-PtM06024]4- (Joo et al., 1994); [H2PtMo6O24]6- (Lee & Joo, 2000, 2004); [H4.5PtMo6O24]3.5- (Lee et al., 2010); [H6PtMo6O24]2- (Lee & Joo, 2010); [(PtMo6O24)4H23]9-, [(PtMo6O24)3H16]8- and [(PtMo6O24)3H14]14- (Day et al., 2009).
A pale-yellow powder of the title compound was obtained by addition of a small excess of the stoichiometric quantity of guanidinium chloride, CH6N3Cl, to a solution of the sodium salt of hexamolybdoplatinate hydrate. Single crystals were obtained by recrystallization from a hot aqueous solution of the crude sample in an insulating chamber.
All the H atoms in the polyanion and all water H atoms were positioned using difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O–H = 0.95 (3) Å using the DFIX command (Sheldrick, 2008). All H atoms of the guanidinium ions were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(N). The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis.
of the site occupation factors (s.o.f) converged at values close to half occupancy. In the final the s.o.f.s were constrained to 0.5 and reasonable displacement parameters were obtained. The C—N and N—H bond lengths were restrained to 1.30 (2) and 0.90 (2) Å, respectively, and the H—N—H angles were restrained by restraining the H···H distance to 1.55 (2) Å in the disordered C4 guanidinium ion using the DFIX command. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX, and were included in the with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 0.98 Å from atom Pt1 and the largest hole is 0.36 Å from N3.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998); software used to prepare material for publication: SHELXL97.Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Disordered parts have been omitted for clarity. | |
Fig. 2. Difference-Fourier map around atom H6 (calculated with atom H6 absent from the model). | |
Fig. 3. Polyhedral view of the heteropolyanion in the title compound with O—H···O contacts of the interanion hydrogen bonds shown as red dashed lines. [Symmetry code: (i) -x + 3/2, -y + 1/2, -z + 1.] |
(CH6N3)7H9[PtMo6O24]2·7H2O | F(000) = 5416 |
Mr = 2865.26 | Dx = 2.917 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9569 reflections |
a = 31.413 (10) Å | θ = 2.2–28.2° |
b = 10.073 (3) Å | µ = 6.62 mm−1 |
c = 23.677 (7) Å | T = 173 K |
β = 119.451 (14)° | Block, yellow |
V = 6524 (3) Å3 | 0.30 × 0.12 × 0.05 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 7107 independent reflections |
Radiation source: Rotating Anode | 6050 reflections with I > 2σ(I) |
Graphite multilayer monochromator | Rint = 0.033 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.0°, θmin = 1.5° |
ϕ and ω scans | h = −40→36 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −12→12 |
Tmin = 0.241, Tmax = 0.729 | l = −30→30 |
56606 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P] where P = (Fo2 + 2Fc2)/3 |
7107 reflections | (Δ/σ)max = 0.002 |
505 parameters | Δρmax = 2.50 e Å−3 |
22 restraints | Δρmin = −1.30 e Å−3 |
(CH6N3)7H9[PtMo6O24]2·7H2O | V = 6524 (3) Å3 |
Mr = 2865.26 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.413 (10) Å | µ = 6.62 mm−1 |
b = 10.073 (3) Å | T = 173 K |
c = 23.677 (7) Å | 0.30 × 0.12 × 0.05 mm |
β = 119.451 (14)° |
Bruker SMART APEXII CCD diffractometer | 7107 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 6050 reflections with I > 2σ(I) |
Tmin = 0.241, Tmax = 0.729 | Rint = 0.033 |
56606 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 22 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P] where P = (Fo2 + 2Fc2)/3 |
7107 reflections | Δρmax = 2.50 e Å−3 |
505 parameters | Δρmin = −1.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.652431 (6) | 0.176198 (17) | 0.467608 (8) | 0.01525 (6) | |
Mo1 | 0.743430 (14) | −0.00319 (4) | 0.57409 (2) | 0.02093 (10) | |
Mo2 | 0.682566 (15) | 0.17866 (4) | 0.624195 (19) | 0.02035 (10) | |
Mo3 | 0.583929 (15) | 0.34871 (4) | 0.51759 (2) | 0.02171 (10) | |
Mo4 | 0.552026 (14) | 0.34729 (4) | 0.359683 (19) | 0.01849 (9) | |
Mo5 | 0.618484 (14) | 0.17217 (4) | 0.311229 (19) | 0.01901 (10) | |
Mo6 | 0.712270 (14) | −0.01255 (4) | 0.42001 (2) | 0.02259 (10) | |
O1C | 0.66821 (11) | 0.0483 (3) | 0.53959 (14) | 0.0194 (7) | |
O2C | 0.66214 (11) | 0.3107 (3) | 0.53597 (15) | 0.0187 (7) | |
H2 | 0.6862 (17) | 0.378 (5) | 0.544 (3) | 0.050 (18)* | |
O3C | 0.58105 (11) | 0.1962 (3) | 0.44249 (15) | 0.0178 (7) | |
H3 | 0.568 (2) | 0.109 (3) | 0.439 (3) | 0.07 (2)* | |
O4C | 0.63463 (11) | 0.3099 (3) | 0.39634 (15) | 0.0184 (7) | |
H4 | 0.656 (3) | 0.379 (6) | 0.398 (4) | 0.10 (3)* | |
O5C | 0.64084 (11) | 0.0488 (3) | 0.39683 (14) | 0.0191 (7) | |
O6C | 0.72274 (11) | 0.1511 (3) | 0.49205 (15) | 0.0190 (7) | |
H6 | 0.7500 | 0.2500 | 0.5000 | 0.06 (3)* | |
O7B | 0.74507 (12) | 0.1539 (3) | 0.62431 (16) | 0.0229 (7) | |
O8B | 0.61194 (12) | 0.2010 (3) | 0.57683 (16) | 0.0243 (7) | |
O9B | 0.57705 (11) | 0.4420 (3) | 0.44128 (15) | 0.0226 (7) | |
O10B | 0.55913 (11) | 0.1971 (3) | 0.31241 (15) | 0.0212 (7) | |
O11B | 0.69300 (12) | 0.1458 (3) | 0.35603 (16) | 0.0235 (7) | |
H11 | 0.713 (3) | 0.222 (7) | 0.362 (5) | 0.15 (4)* | |
O12B | 0.71759 (12) | −0.1040 (3) | 0.49309 (17) | 0.0262 (8) | |
O13T | 0.80360 (12) | 0.0093 (3) | 0.59080 (17) | 0.0285 (8) | |
O14T | 0.74286 (12) | −0.1258 (3) | 0.62346 (17) | 0.0305 (8) | |
O15T | 0.68520 (13) | 0.0508 (4) | 0.67282 (16) | 0.0299 (8) | |
O16T | 0.69977 (13) | 0.3193 (3) | 0.67096 (17) | 0.0312 (8) | |
O17T | 0.52417 (13) | 0.3226 (4) | 0.49587 (19) | 0.0371 (9) | |
O18T | 0.60285 (14) | 0.4814 (4) | 0.56903 (17) | 0.0370 (9) | |
O19T | 0.49288 (12) | 0.3228 (3) | 0.34110 (17) | 0.0275 (8) | |
O20T | 0.55233 (12) | 0.4783 (3) | 0.31420 (16) | 0.0283 (8) | |
O21T | 0.62270 (13) | 0.3112 (4) | 0.27214 (17) | 0.0292 (8) | |
O22T | 0.60336 (13) | 0.0433 (4) | 0.25787 (17) | 0.0315 (8) | |
O23T | 0.69102 (12) | −0.1349 (3) | 0.36251 (18) | 0.0304 (8) | |
O24T | 0.77302 (12) | 0.0093 (3) | 0.44119 (17) | 0.0290 (8) | |
C1 | 0.5886 (2) | −0.1669 (7) | 0.5871 (3) | 0.0536 (18) | |
N1 | 0.6167 (2) | −0.1725 (5) | 0.5534 (3) | 0.0611 (18) | |
H1A | 0.6273 | −0.2493 | 0.5476 | 0.073* | |
H1B | 0.6230 | −0.0991 | 0.5388 | 0.073* | |
N2 | 0.57817 (17) | −0.2673 (5) | 0.6092 (2) | 0.0446 (13) | |
H2A | 0.5879 | −0.3464 | 0.6046 | 0.053* | |
H2B | 0.5611 | −0.2586 | 0.6293 | 0.053* | |
N3 | 0.5678 (3) | −0.0394 (7) | 0.5888 (4) | 0.106 (3) | |
H3A | 0.5480 | −0.0333 | 0.6052 | 0.127* | |
H3B | 0.5748 | 0.0317 | 0.5735 | 0.127* | |
C2 | 0.69992 (17) | 0.6537 (5) | 0.7035 (2) | 0.0252 (11) | |
N4 | 0.7180 (2) | 0.6254 (5) | 0.6658 (3) | 0.0482 (14) | |
H4A | 0.7210 | 0.5420 | 0.6571 | 0.058* | |
H4B | 0.7273 | 0.6896 | 0.6490 | 0.058* | |
N5 | 0.68617 (16) | 0.5573 (4) | 0.7284 (2) | 0.0310 (10) | |
H5A | 0.6892 | 0.4741 | 0.7196 | 0.037* | |
H5B | 0.6739 | 0.5760 | 0.7538 | 0.037* | |
N6 | 0.69567 (17) | 0.7785 (5) | 0.7166 (2) | 0.0355 (11) | |
H6A | 0.7050 | 0.8426 | 0.6999 | 0.043* | |
H6B | 0.6835 | 0.7976 | 0.7420 | 0.043* | |
C3 | 0.4036 (2) | 0.6616 (5) | 0.2726 (3) | 0.0290 (11) | |
N7 | 0.43204 (15) | 0.5625 (4) | 0.3073 (2) | 0.0324 (10) | |
H7A | 0.4546 | 0.5757 | 0.3479 | 0.039* | |
H7B | 0.4284 | 0.4834 | 0.2898 | 0.039* | |
N8 | 0.36976 (18) | 0.6419 (5) | 0.2123 (2) | 0.0444 (13) | |
H8A | 0.3507 | 0.7078 | 0.1894 | 0.053* | |
H8B | 0.3661 | 0.5628 | 0.1947 | 0.053* | |
N9 | 0.4097 (3) | 0.7778 (5) | 0.2998 (3) | 0.075 (2) | |
H9A | 0.3910 | 0.8448 | 0.2775 | 0.090* | |
H9B | 0.4326 | 0.7894 | 0.3403 | 0.090* | |
C4 | 0.5228 (3) | 0.8412 (9) | 0.2828 (4) | 0.028 (2) | 0.50 |
N10 | 0.5000 | 0.7313 (6) | 0.2500 | 0.0368 (16) | |
H10A | 0.4775 (14) | 0.686 (4) | 0.2159 (13) | 0.044* | |
N11 | 0.5000 | 0.9567 (6) | 0.2500 | 0.0471 (19) | |
H11A | 0.5223 (16) | 1.002 (4) | 0.2844 (14) | 0.057* | |
N12 | 0.5653 (4) | 0.8331 (14) | 0.3368 (6) | 0.039 (3) | 0.50 |
H12A | 0.579 (3) | 0.753 (5) | 0.343 (6) | 0.046* | 0.50 |
H12B | 0.584 (3) | 0.905 (6) | 0.355 (6) | 0.046* | 0.50 |
O1W | 0.51593 (15) | 0.6741 (4) | 0.42228 (19) | 0.0400 (10) | |
H1AW | 0.5475 (12) | 0.638 (6) | 0.446 (3) | 0.060* | |
H1BW | 0.507 (2) | 0.678 (6) | 0.456 (2) | 0.060* | |
O2W | 0.52988 (18) | −0.0205 (5) | 0.4254 (3) | 0.0609 (13) | |
H2AW | 0.508 (3) | −0.006 (8) | 0.3811 (14) | 0.091* | |
H2BW | 0.553 (2) | −0.091 (6) | 0.435 (4) | 0.091* | |
O3W | 0.6421 (2) | −0.3187 (6) | 0.4650 (3) | 0.0764 (17) | |
H3AW | 0.6747 (13) | −0.346 (9) | 0.487 (4) | 0.115* | |
H3BW | 0.632 (4) | −0.398 (6) | 0.441 (4) | 0.115* | |
O4W | 0.5802 (4) | 0.8321 (11) | 0.3704 (5) | 0.036 (2) | 0.50 |
H4AW | 0.599 (4) | 0.911 (8) | 0.381 (6) | 0.055* | 0.50 |
H4BW | 0.602 (4) | 0.770 (10) | 0.402 (5) | 0.055* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01074 (9) | 0.01946 (10) | 0.01597 (9) | −0.00051 (6) | 0.00690 (7) | −0.00191 (7) |
Mo1 | 0.01368 (19) | 0.0186 (2) | 0.0308 (2) | 0.00080 (15) | 0.01116 (17) | 0.00340 (17) |
Mo2 | 0.0199 (2) | 0.0212 (2) | 0.0193 (2) | −0.00066 (16) | 0.00908 (17) | 0.00091 (16) |
Mo3 | 0.0190 (2) | 0.0282 (2) | 0.0213 (2) | 0.00438 (17) | 0.01255 (17) | −0.00020 (17) |
Mo4 | 0.01413 (19) | 0.0230 (2) | 0.01809 (19) | 0.00203 (15) | 0.00773 (16) | 0.00188 (16) |
Mo5 | 0.0170 (2) | 0.0242 (2) | 0.01814 (19) | −0.00386 (16) | 0.01039 (17) | −0.00427 (16) |
Mo6 | 0.01442 (19) | 0.0212 (2) | 0.0358 (2) | −0.00414 (16) | 0.01523 (18) | −0.01035 (18) |
O1C | 0.0188 (16) | 0.0194 (17) | 0.0189 (15) | 0.0004 (13) | 0.0083 (13) | −0.0001 (13) |
O2C | 0.0175 (16) | 0.0200 (17) | 0.0203 (16) | −0.0025 (13) | 0.0107 (14) | −0.0044 (13) |
O3C | 0.0110 (15) | 0.0224 (17) | 0.0212 (16) | 0.0003 (13) | 0.0089 (13) | −0.0007 (13) |
O4C | 0.0157 (16) | 0.0218 (17) | 0.0194 (16) | −0.0030 (13) | 0.0099 (13) | −0.0016 (13) |
O5C | 0.0160 (15) | 0.0227 (17) | 0.0195 (15) | −0.0018 (13) | 0.0093 (13) | −0.0053 (13) |
O6C | 0.0086 (14) | 0.0223 (17) | 0.0225 (16) | 0.0019 (12) | 0.0049 (13) | −0.0056 (13) |
O7B | 0.0182 (16) | 0.0249 (18) | 0.0228 (17) | −0.0009 (14) | 0.0077 (14) | 0.0004 (14) |
O8B | 0.0213 (17) | 0.0329 (19) | 0.0235 (17) | −0.0006 (15) | 0.0149 (15) | 0.0021 (15) |
O9B | 0.0224 (17) | 0.0214 (17) | 0.0241 (16) | 0.0033 (14) | 0.0116 (14) | 0.0006 (14) |
O10B | 0.0144 (15) | 0.0283 (18) | 0.0201 (16) | −0.0035 (13) | 0.0079 (13) | −0.0024 (14) |
O11B | 0.0180 (16) | 0.0287 (18) | 0.0271 (17) | −0.0031 (14) | 0.0135 (15) | −0.0036 (15) |
O12B | 0.0200 (17) | 0.0226 (18) | 0.041 (2) | −0.0029 (14) | 0.0185 (16) | −0.0060 (15) |
O13T | 0.0204 (17) | 0.0244 (18) | 0.038 (2) | −0.0017 (14) | 0.0124 (16) | 0.0006 (15) |
O14T | 0.0245 (18) | 0.0262 (19) | 0.038 (2) | 0.0018 (15) | 0.0131 (16) | 0.0075 (16) |
O15T | 0.0318 (19) | 0.032 (2) | 0.0264 (18) | 0.0031 (16) | 0.0144 (16) | 0.0078 (16) |
O16T | 0.030 (2) | 0.029 (2) | 0.0307 (19) | 0.0001 (15) | 0.0115 (17) | −0.0062 (15) |
O17T | 0.0255 (19) | 0.057 (3) | 0.037 (2) | 0.0066 (17) | 0.0210 (18) | 0.0066 (18) |
O18T | 0.048 (2) | 0.036 (2) | 0.0266 (19) | 0.0097 (18) | 0.0184 (18) | −0.0030 (17) |
O19T | 0.0159 (16) | 0.033 (2) | 0.0313 (19) | 0.0022 (14) | 0.0099 (15) | 0.0011 (15) |
O20T | 0.0261 (18) | 0.031 (2) | 0.0254 (17) | 0.0023 (15) | 0.0112 (15) | 0.0051 (15) |
O21T | 0.0292 (19) | 0.038 (2) | 0.0257 (18) | −0.0018 (16) | 0.0173 (16) | 0.0027 (15) |
O22T | 0.0311 (19) | 0.038 (2) | 0.0292 (18) | −0.0069 (17) | 0.0176 (16) | −0.0152 (16) |
O23T | 0.0255 (18) | 0.0244 (18) | 0.044 (2) | −0.0039 (15) | 0.0197 (17) | −0.0126 (17) |
O24T | 0.0257 (18) | 0.0280 (19) | 0.040 (2) | 0.0018 (15) | 0.0208 (17) | −0.0045 (16) |
C1 | 0.035 (3) | 0.063 (5) | 0.052 (4) | −0.005 (3) | 0.013 (3) | −0.013 (3) |
N1 | 0.035 (3) | 0.035 (3) | 0.100 (5) | −0.006 (2) | 0.024 (3) | 0.000 (3) |
N2 | 0.035 (3) | 0.049 (3) | 0.057 (3) | −0.003 (2) | 0.029 (3) | 0.012 (3) |
N3 | 0.134 (7) | 0.078 (5) | 0.185 (9) | −0.068 (5) | 0.140 (7) | −0.066 (5) |
C2 | 0.019 (2) | 0.030 (3) | 0.021 (2) | −0.002 (2) | 0.006 (2) | 0.000 (2) |
N4 | 0.075 (4) | 0.040 (3) | 0.063 (3) | −0.011 (3) | 0.059 (3) | −0.005 (3) |
N5 | 0.038 (3) | 0.029 (2) | 0.035 (2) | −0.002 (2) | 0.026 (2) | −0.003 (2) |
N6 | 0.038 (3) | 0.032 (3) | 0.038 (3) | 0.000 (2) | 0.021 (2) | 0.003 (2) |
C3 | 0.034 (3) | 0.030 (3) | 0.028 (3) | 0.004 (2) | 0.019 (2) | 0.005 (2) |
N7 | 0.031 (2) | 0.032 (2) | 0.026 (2) | 0.003 (2) | 0.0069 (19) | 0.0025 (19) |
N8 | 0.038 (3) | 0.044 (3) | 0.036 (3) | 0.005 (2) | 0.006 (2) | 0.010 (2) |
N9 | 0.154 (7) | 0.029 (3) | 0.045 (3) | 0.016 (4) | 0.050 (4) | 0.004 (3) |
C4 | 0.022 (5) | 0.039 (6) | 0.031 (6) | −0.007 (4) | 0.019 (5) | −0.002 (5) |
N10 | 0.033 (4) | 0.022 (3) | 0.045 (4) | 0.000 | 0.012 (3) | 0.000 |
N11 | 0.042 (4) | 0.019 (3) | 0.083 (6) | 0.000 | 0.033 (4) | 0.000 |
N12 | 0.035 (8) | 0.030 (6) | 0.043 (7) | 0.007 (5) | 0.013 (6) | 0.011 (7) |
O1W | 0.039 (2) | 0.055 (3) | 0.031 (2) | 0.0063 (19) | 0.0207 (19) | 0.0038 (18) |
O2W | 0.051 (3) | 0.037 (3) | 0.091 (4) | 0.000 (2) | 0.032 (3) | 0.006 (3) |
O3W | 0.069 (4) | 0.072 (4) | 0.097 (5) | 0.027 (3) | 0.048 (4) | 0.009 (3) |
O4W | 0.025 (6) | 0.034 (6) | 0.050 (7) | −0.010 (4) | 0.018 (5) | 0.001 (6) |
Pt1—O1C | 1.995 (3) | O6C—O6Ci | 2.532 (6) |
Pt1—O2C | 2.015 (3) | O6C—H6 | 1.266 (3) |
Pt1—O3C | 2.027 (3) | O11B—H11 | 0.95 (2) |
Pt1—O4C | 2.011 (3) | C1—N2 | 1.254 (8) |
Pt1—O5C | 1.997 (3) | C1—N1 | 1.451 (10) |
Pt1—O6C | 2.005 (3) | C1—N3 | 1.451 (10) |
Mo1—O1C | 2.150 (3) | N1—H1A | 0.8800 |
Mo1—O6C | 2.317 (3) | N1—H1B | 0.8800 |
Mo2—O1C | 2.248 (3) | N2—H2A | 0.8800 |
Mo2—O2C | 2.286 (3) | N2—H2B | 0.8800 |
Mo3—O2C | 2.307 (3) | N3—H3A | 0.8800 |
Mo3—O3C | 2.318 (3) | N3—H3B | 0.8800 |
Mo4—O3C | 2.287 (3) | C2—N4 | 1.304 (7) |
Mo4—O4C | 2.327 (3) | C2—N5 | 1.314 (6) |
Mo5—O4C | 2.289 (3) | C2—N6 | 1.317 (7) |
Mo5—O5C | 2.178 (3) | N4—H4A | 0.8800 |
Mo6—O5C | 2.123 (3) | N4—H4B | 0.8800 |
Mo6—O6C | 2.277 (3) | N5—H5A | 0.8800 |
Mo1—O7B | 1.965 (3) | N5—H5B | 0.8800 |
Mo1—O12B | 1.959 (3) | N6—H6A | 0.8800 |
Mo2—O7B | 1.978 (3) | N6—H6B | 0.8800 |
Mo2—O8B | 1.945 (3) | C3—N9 | 1.303 (7) |
Mo3—O8B | 1.934 (3) | C3—N8 | 1.310 (7) |
Mo3—O9B | 1.952 (3) | C3—N7 | 1.322 (6) |
Mo4—O9B | 1.941 (3) | N7—H7A | 0.8800 |
Mo4—O10B | 1.959 (3) | N7—H7B | 0.8800 |
Mo5—O10B | 1.895 (3) | N8—H8A | 0.8800 |
Mo5—O11B | 2.058 (3) | N8—H8B | 0.8800 |
Mo6—O11B | 2.075 (4) | N9—H9A | 0.8800 |
Mo6—O12B | 1.894 (4) | N9—H9B | 0.8800 |
Mo1—O14T | 1.706 (3) | C4—N12 | 1.320 (12) |
Mo1—O13T | 1.735 (3) | C4—N10 | 1.340 (10) |
Mo2—O15T | 1.702 (3) | C4—N11 | 1.387 (10) |
Mo2—O16T | 1.713 (3) | N10—H10A | 0.893 (17) |
Mo3—O17T | 1.705 (4) | N11—H11A | 0.898 (18) |
Mo3—O18T | 1.706 (4) | N12—H12A | 0.90 (2) |
Mo4—O19T | 1.704 (3) | N12—H12B | 0.90 (2) |
Mo4—O20T | 1.706 (3) | O1W—H1AW | 0.94 (2) |
Mo5—O22T | 1.708 (3) | O1W—H1BW | 0.95 (2) |
Mo5—O21T | 1.719 (3) | O2W—H2AW | 0.94 (2) |
Mo6—O23T | 1.710 (3) | O2W—H2BW | 0.95 (2) |
Mo6—O24T | 1.732 (3) | O3W—H3AW | 0.93 (2) |
O2C—H2 | 0.96 (2) | O3W—H3BW | 0.94 (2) |
O3C—H3 | 0.96 (2) | O4W—H4AW | 0.95 (2) |
O4C—H4 | 0.95 (2) | O4W—H4BW | 0.95 (2) |
Mo1—O1C—Mo2 | 95.79 (12) | O21T—Mo5—O4C | 86.44 (14) |
Mo2—O2C—Mo3 | 93.64 (11) | O10B—Mo5—O4C | 72.56 (12) |
Mo4—O3C—Mo3 | 93.75 (12) | O11B—Mo5—O4C | 85.46 (12) |
Mo5—O4C—Mo4 | 92.64 (11) | O5C—Mo5—O4C | 72.30 (12) |
Mo6—O5C—Mo5 | 102.87 (13) | O23T—Mo6—O24T | 105.40 (16) |
Mo6—O6C—Mo1 | 91.14 (12) | O23T—Mo6—O12B | 101.61 (17) |
Mo1—O7B—Mo2 | 111.71 (15) | O24T—Mo6—O12B | 101.99 (16) |
Mo3—O8B—Mo2 | 119.36 (16) | O23T—Mo6—O11B | 96.50 (16) |
Mo4—O9B—Mo3 | 119.39 (17) | O24T—Mo6—O11B | 89.87 (15) |
Mo5—O10B—Mo4 | 120.02 (16) | O12B—Mo6—O11B | 154.72 (14) |
Mo5—O11B—Mo6 | 108.97 (15) | O23T—Mo6—O5C | 93.14 (14) |
Mo6—O12B—Mo1 | 116.75 (17) | O24T—Mo6—O5C | 155.73 (14) |
O1C—Pt1—O5C | 99.68 (14) | O12B—Mo6—O5C | 89.14 (13) |
O1C—Pt1—O6C | 84.05 (13) | O11B—Mo6—O5C | 72.28 (12) |
O5C—Pt1—O6C | 83.21 (12) | O23T—Mo6—O6C | 166.99 (14) |
O1C—Pt1—O4C | 177.35 (12) | O24T—Mo6—O6C | 87.60 (14) |
O5C—Pt1—O4C | 82.27 (13) | O12B—Mo6—O6C | 75.67 (13) |
O6C—Pt1—O4C | 97.99 (13) | O11B—Mo6—O6C | 82.71 (13) |
O1C—Pt1—O2C | 82.64 (13) | O5C—Mo6—O6C | 74.21 (11) |
O5C—Pt1—O2C | 177.41 (13) | Pt1—O1C—Mo1 | 104.21 (13) |
O6C—Pt1—O2C | 98.20 (13) | Pt1—O1C—Mo2 | 103.95 (14) |
O4C—Pt1—O2C | 95.37 (13) | Pt1—O2C—Mo2 | 101.92 (13) |
O1C—Pt1—O3C | 95.12 (13) | Pt1—O2C—Mo3 | 103.51 (13) |
O5C—Pt1—O3C | 95.66 (12) | Pt1—O2C—H2 | 116 (4) |
O6C—Pt1—O3C | 178.46 (12) | Mo2—O2C—H2 | 113 (4) |
O4C—Pt1—O3C | 82.87 (13) | Mo3—O2C—H2 | 125 (4) |
O2C—Pt1—O3C | 82.96 (13) | Pt1—O3C—Mo4 | 103.59 (13) |
O14T—Mo1—O13T | 105.87 (16) | Pt1—O3C—Mo3 | 102.74 (13) |
O14T—Mo1—O12B | 99.01 (16) | Pt1—O3C—H3 | 108 (4) |
O13T—Mo1—O12B | 98.14 (15) | Mo4—O3C—H3 | 124 (4) |
O14T—Mo1—O7B | 100.03 (16) | Mo3—O3C—H3 | 122 (4) |
O13T—Mo1—O7B | 95.86 (15) | Pt1—O4C—Mo5 | 100.53 (13) |
O12B—Mo1—O7B | 152.25 (14) | Pt1—O4C—Mo4 | 102.74 (13) |
O14T—Mo1—O1C | 93.17 (14) | Pt1—O4C—H4 | 124 (5) |
O13T—Mo1—O1C | 160.02 (14) | Mo5—O4C—H4 | 109 (5) |
O12B—Mo1—O1C | 84.50 (12) | Mo4—O4C—H4 | 122 (5) |
O7B—Mo1—O1C | 74.48 (12) | Pt1—O5C—Mo6 | 103.69 (13) |
O14T—Mo1—O6C | 165.12 (14) | Pt1—O5C—Mo5 | 104.87 (14) |
O13T—Mo1—O6C | 88.14 (14) | Pt1—O6C—Mo6 | 98.17 (12) |
O12B—Mo1—O6C | 73.55 (13) | Pt1—O6C—Mo1 | 98.14 (13) |
O7B—Mo1—O6C | 83.11 (12) | Pt1—O6C—O6Ci | 120.8 (2) |
O1C—Mo1—O6C | 73.54 (11) | Mo6—O6C—O6Ci | 121.27 (19) |
O15T—Mo2—O16T | 107.06 (18) | Mo1—O6C—O6Ci | 120.85 (19) |
O15T—Mo2—O8B | 98.04 (15) | Pt1—O6C—H6 | 120.8 (2) |
O16T—Mo2—O8B | 100.65 (16) | Mo6—O6C—H6 | 121.27 (19) |
O15T—Mo2—O7B | 100.70 (15) | Mo1—O6C—H6 | 120.85 (19) |
O16T—Mo2—O7B | 96.07 (16) | O6Ci—O6C—H6 | 0.00 (18) |
O8B—Mo2—O7B | 149.93 (14) | Mo5—O11B—H11 | 118 (7) |
O15T—Mo2—O1C | 94.74 (15) | Mo6—O11B—H11 | 125 (7) |
O16T—Mo2—O1C | 156.95 (15) | N2—C1—N1 | 123.5 (6) |
O8B—Mo2—O1C | 83.19 (13) | N2—C1—N3 | 119.2 (7) |
O7B—Mo2—O1C | 72.05 (12) | N1—C1—N3 | 117.0 (6) |
O15T—Mo2—O2C | 163.07 (14) | C1—N1—H1A | 120.0 |
O16T—Mo2—O2C | 88.12 (15) | C1—N1—H1B | 120.0 |
O8B—Mo2—O2C | 71.19 (12) | H1A—N1—H1B | 120.0 |
O7B—Mo2—O2C | 84.67 (12) | C1—N2—H2A | 120.0 |
O1C—Mo2—O2C | 71.47 (12) | C1—N2—H2B | 120.0 |
O17T—Mo3—O18T | 106.36 (19) | H2A—N2—H2B | 120.0 |
O17T—Mo3—O8B | 98.10 (16) | C1—N3—H3A | 120.0 |
O18T—Mo3—O8B | 102.14 (16) | C1—N3—H3B | 120.0 |
O17T—Mo3—O9B | 100.99 (16) | H3A—N3—H3B | 120.0 |
O18T—Mo3—O9B | 97.16 (16) | N4—C2—N5 | 119.7 (5) |
O8B—Mo3—O9B | 147.71 (13) | N4—C2—N6 | 120.0 (5) |
O17T—Mo3—O2C | 160.66 (16) | N5—C2—N6 | 120.3 (5) |
O18T—Mo3—O2C | 91.76 (16) | C2—N4—H4A | 120.0 |
O8B—Mo3—O2C | 70.90 (12) | C2—N4—H4B | 120.0 |
O9B—Mo3—O2C | 82.96 (12) | H4A—N4—H4B | 120.0 |
O17T—Mo3—O3C | 92.54 (15) | C2—N5—H5A | 120.0 |
O18T—Mo3—O3C | 159.28 (16) | C2—N5—H5B | 120.0 |
O8B—Mo3—O3C | 83.03 (13) | H5A—N5—H5B | 120.0 |
O9B—Mo3—O3C | 70.38 (13) | C2—N6—H6A | 120.0 |
O2C—Mo3—O3C | 70.78 (11) | C2—N6—H6B | 120.0 |
O19T—Mo4—O20T | 107.04 (16) | H6A—N6—H6B | 120.0 |
O19T—Mo4—O9B | 100.65 (15) | N9—C3—N8 | 121.1 (5) |
O20T—Mo4—O9B | 97.05 (15) | N9—C3—N7 | 118.8 (5) |
O19T—Mo4—O10B | 99.01 (15) | N8—C3—N7 | 120.1 (5) |
O20T—Mo4—O10B | 101.47 (15) | C3—N7—H7A | 120.0 |
O9B—Mo4—O10B | 147.60 (13) | C3—N7—H7B | 120.0 |
O19T—Mo4—O3C | 92.83 (14) | H7A—N7—H7B | 120.0 |
O20T—Mo4—O3C | 158.72 (14) | C3—N8—H8A | 120.0 |
O9B—Mo4—O3C | 71.24 (13) | C3—N8—H8B | 120.0 |
O10B—Mo4—O3C | 82.34 (13) | H8A—N8—H8B | 120.0 |
O19T—Mo4—O4C | 161.33 (14) | C3—N9—H9A | 120.0 |
O20T—Mo4—O4C | 90.53 (14) | C3—N9—H9B | 120.0 |
O9B—Mo4—O4C | 82.92 (12) | H9A—N9—H9B | 120.0 |
O10B—Mo4—O4C | 70.65 (12) | N12—C4—N10 | 120.6 (9) |
O3C—Mo4—O4C | 70.80 (11) | N12—C4—N11 | 126.3 (9) |
O22T—Mo5—O21T | 106.73 (18) | N10—C4—N11 | 112.7 (7) |
O22T—Mo5—O10B | 101.18 (15) | C4—N10—H10A | 155 (2) |
O21T—Mo5—O10B | 103.69 (15) | C4—N12—H12A | 113 (7) |
O22T—Mo5—O11B | 96.63 (15) | C4—N12—H12B | 122 (8) |
O21T—Mo5—O11B | 90.77 (15) | H12A—N12—H4AW | 106 (10) |
O10B—Mo5—O11B | 152.59 (14) | H12B—N12—H4AW | 20 (10) |
O22T—Mo5—O5C | 95.73 (15) | H1AW—O1W—H1BW | 100 (6) |
O21T—Mo5—O5C | 152.95 (14) | H2AW—O2W—H2BW | 116 (8) |
O10B—Mo5—O5C | 86.07 (13) | H3AW—O3W—H3BW | 92 (8) |
O11B—Mo5—O5C | 71.47 (12) | H4AW—O4W—H4BW | 103 (10) |
O22T—Mo5—O4C | 166.58 (15) |
Symmetry code: (i) −x+3/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2C—H2···O24Ti | 0.96 (2) | 1.61 (2) | 2.578 (5) | 179 (6) |
O3C—H3···O2W | 0.96 (2) | 1.69 (3) | 2.622 (6) | 164 (7) |
O4C—H4···O13Ti | 0.95 (2) | 1.63 (2) | 2.568 (5) | 173 (9) |
O6C—H6···O6Ci | 1.27 | 1.27 | 2.532 (6) | 180 |
O11B—H11···O7Bi | 0.95 (2) | 1.74 (2) | 2.679 (5) | 173 (10) |
N1—H1B···O1C | 0.88 | 2.05 | 2.864 (6) | 154 |
N1—H1A···O3W | 0.88 | 2.33 | 2.973 (9) | 130 |
N2—H2A···O18Tii | 0.88 | 2.08 | 2.940 (7) | 165 |
N2—H2B···O19Tiii | 0.88 | 2.22 | 3.043 (6) | 155 |
N3—H3B···O8B | 0.88 | 2.04 | 2.874 (7) | 157 |
N3—H3A···O2Wiii | 0.88 | 2.25 | 2.979 (9) | 140 |
N4—H4B···O14Tiv | 0.88 | 2.09 | 2.944 (6) | 164 |
N4—H4A···O24Ti | 0.88 | 2.48 | 3.006 (6) | 119 |
N5—H5A···O16T | 0.88 | 2.06 | 2.890 (6) | 157 |
N5—H5B···O21Tv | 0.88 | 2.18 | 2.973 (5) | 149 |
N6—H6A···O15Tiv | 0.88 | 2.19 | 2.894 (6) | 136 |
N6—H6B···O21Tv | 0.88 | 2.59 | 3.281 (6) | 136 |
N7—H7B···O19T | 0.88 | 2.40 | 2.936 (5) | 119 |
N7—H7A···O1W | 0.88 | 2.11 | 2.927 (6) | 154 |
N8—H8B···O13Tvi | 0.88 | 2.39 | 3.006 (6) | 128 |
N8—H8A···O23Tvii | 0.88 | 2.04 | 2.918 (6) | 178 |
N9—H9A···O22Tvii | 0.88 | 2.21 | 2.938 (7) | 140 |
O1W—H1AW···O9B | 0.94 (2) | 2.20 (5) | 2.916 (5) | 132 (5) |
O1W—H1BW···O17Tviii | 0.95 (2) | 1.85 (3) | 2.783 (5) | 166 (6) |
O2W—H2BW···O4Wii | 0.95 (2) | 2.24 (7) | 2.902 (12) | 126 (6) |
O3W—H3BW···O9Bii | 0.94 (2) | 2.35 (8) | 3.029 (7) | 128 (8) |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) x, −y+1, z+1/2; (vi) x−1/2, −y+1/2, z−1/2; (vii) −x+1, y+1, −z+1/2; (viii) −x+1, −y+1, −z+1. |
Pt1—O1C | 1.995 (3) | Mo5—O5C | 2.178 (3) |
Pt1—O2C | 2.015 (3) | Mo6—O5C | 2.123 (3) |
Pt1—O3C | 2.027 (3) | Mo6—O6C | 2.277 (3) |
Pt1—O4C | 2.011 (3) | Mo1—O7B | 1.965 (3) |
Pt1—O5C | 1.997 (3) | Mo1—O12B | 1.959 (3) |
Pt1—O6C | 2.005 (3) | Mo2—O7B | 1.978 (3) |
Mo1—O1C | 2.150 (3) | Mo2—O8B | 1.945 (3) |
Mo1—O6C | 2.317 (3) | Mo3—O8B | 1.934 (3) |
Mo2—O1C | 2.248 (3) | Mo3—O9B | 1.952 (3) |
Mo2—O2C | 2.286 (3) | Mo4—O9B | 1.941 (3) |
Mo3—O2C | 2.307 (3) | Mo4—O10B | 1.959 (3) |
Mo3—O3C | 2.318 (3) | Mo5—O10B | 1.895 (3) |
Mo4—O3C | 2.287 (3) | Mo5—O11B | 2.058 (3) |
Mo4—O4C | 2.327 (3) | Mo6—O11B | 2.075 (4) |
Mo5—O4C | 2.289 (3) | Mo6—O12B | 1.894 (4) |
Mo1—O1C—Mo2 | 95.79 (12) | Mo1—O7B—Mo2 | 111.71 (15) |
Mo2—O2C—Mo3 | 93.64 (11) | Mo3—O8B—Mo2 | 119.36 (16) |
Mo4—O3C—Mo3 | 93.75 (12) | Mo4—O9B—Mo3 | 119.39 (17) |
Mo5—O4C—Mo4 | 92.64 (11) | Mo5—O10B—Mo4 | 120.02 (16) |
Mo6—O5C—Mo5 | 102.87 (13) | Mo5—O11B—Mo6 | 108.97 (15) |
Mo6—O6C—Mo1 | 91.14 (12) | Mo6—O12B—Mo1 | 116.75 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2C—H2···O24Ti | 0.96 (2) | 1.61 (2) | 2.578 (5) | 179 (6) |
O3C—H3···O2W | 0.96 (2) | 1.69 (3) | 2.622 (6) | 164 (7) |
O4C—H4···O13Ti | 0.95 (2) | 1.63 (2) | 2.568 (5) | 173 (9) |
O6C—H6···O6Ci | 1.266 | 1.266 | 2.532 (6) | 180.0 |
O11B—H11···O7Bi | 0.95 (2) | 1.74 (2) | 2.679 (5) | 173 (10) |
N1—H1B···O1C | 0.88 | 2.05 | 2.864 (6) | 153.7 |
N1—H1A···O3W | 0.88 | 2.33 | 2.973 (9) | 130.1 |
N2—H2A···O18Tii | 0.88 | 2.08 | 2.940 (7) | 165.3 |
N2—H2B···O19Tiii | 0.88 | 2.22 | 3.043 (6) | 154.7 |
N3—H3B···O8B | 0.88 | 2.04 | 2.874 (7) | 156.6 |
N3—H3A···O2Wiii | 0.88 | 2.25 | 2.979 (9) | 140.0 |
N4—H4B···O14Tiv | 0.88 | 2.09 | 2.944 (6) | 164.3 |
N4—H4A···O24Ti | 0.88 | 2.48 | 3.006 (6) | 118.9 |
N5—H5A···O16T | 0.88 | 2.06 | 2.890 (6) | 156.8 |
N5—H5B···O21Tv | 0.88 | 2.18 | 2.973 (5) | 149.4 |
N6—H6A···O15Tiv | 0.88 | 2.19 | 2.894 (6) | 136.4 |
N6—H6B···O21Tv | 0.88 | 2.59 | 3.281 (6) | 136.4 |
N7—H7B···O19T | 0.88 | 2.40 | 2.936 (5) | 119.3 |
N7—H7A···O1W | 0.88 | 2.11 | 2.927 (6) | 153.7 |
N8—H8B···O13Tvi | 0.88 | 2.39 | 3.006 (6) | 127.8 |
N8—H8A···O23Tvii | 0.88 | 2.04 | 2.918 (6) | 177.7 |
N9—H9A···O22Tvii | 0.88 | 2.21 | 2.938 (7) | 140.0 |
O1W—H1AW···O9B | 0.94 (2) | 2.20 (5) | 2.916 (5) | 132 (5) |
O1W—H1BW···O17Tviii | 0.95 (2) | 1.85 (3) | 2.783 (5) | 166 (6) |
O2W—H2BW···O4Wii | 0.95 (2) | 2.24 (7) | 2.902 (12) | 126 (6) |
O3W—H3BW···O9Bii | 0.94 (2) | 2.35 (8) | 3.029 (7) | 128 (8) |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) x, −y+1, z+1/2; (vi) x−1/2, −y+1/2, z−1/2; (vii) −x+1, y+1, −z+1/2; (viii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (CH6N3)7H9[PtMo6O24]2·7H2O |
Mr | 2865.26 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 31.413 (10), 10.073 (3), 23.677 (7) |
β (°) | 119.451 (14) |
V (Å3) | 6524 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.62 |
Crystal size (mm) | 0.30 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.241, 0.729 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 56606, 7107, 6050 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.073, 1.03 |
No. of reflections | 7107 |
No. of parameters | 505 |
No. of restraints | 22 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.50, −1.30 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998), SHELXL97.
Acknowledgements
The X-ray centre of Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.
References
Anderson, J. S. (1937). Nature (London), 140, 850. CrossRef Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Day, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079–5087. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661. CrossRef CAS Web of Science IUCr Journals Google Scholar
Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lee, U., Jang, S.-J., Joo, H.-C. & Park, K.-M. (2003). Acta Cryst. E59, m116–m118. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311–e312. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i61–i63. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8–i9. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152–m155. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37–45. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.