research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 268-271

Crystal structure of hepta­guanidinium nona­hydrogen bis­­[α-hexa­molybdoplatinate(IV)] hepta­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bThe Research Institute of Natural Science, Gyeongsan National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by S. Parkin, University of Kentucky, USA (Received 23 January 2015; accepted 7 February 2015; online 13 February 2015)

The title compound, (CH6N3)7H9[PtMo6O24]2·7H2O, containing the well-known Anderson-type heteropolyoxomolybdate, was obtained by recrystallization of its powdered guanidinium salt. The protonated O atoms in the polyanion were confirmed by electron-density maps, inter­polyanion hydrogen bonds and bond-valance sums (BVS). The {[H4.5PtMo6O24]2}7− polyanion is the same as that already characterized in K7[H4.5PtMo6O24]2·11H2O [space group P-1; Lee & Joo (2010[Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8-i9.]). Acta Cryst. E66, i8–i9]. The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}7−, held together by each of the four μ3-O—H⋯μ1-O, two μ2-O—H⋯μ2-O hydrogen bonds and one centrosymmetric μ3-O—H—μ3-O hydrogen bond. The H atom of the centrosymmetric hydrogen bond is located on an inversion centre. One guanidinium ion and one water mol­ecule are equally disordered about a twofold rotation axis.

1. Chemical context

The α (planar structure)-β (bent structure)-α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8− polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]), [H4β-PtMo6O24]4− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]) and [H4.5α-PtMo6O24]3.5− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]) is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937[Anderson, J. S. (1937). Nature (London), 140, 850.]), as well as in the chemistry of polyoxo­metalates.

[Scheme 1]

As a result of the insolubility of the guanidinium salt, replaceable counter-cations in POMs can be exchanged by guanidinium ions. It is thus possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. The guanidinium salts of platinum-containing POM species, viz. (CH6N3)8[PtW6O24] (Lee et al., 2003[Lee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152-m155.][Lee, U., Jang, S.-J., Joo, H.-C. & Park, K.-M. (2003). Acta Cryst. E59, m116-m118.]), (CH6N3)5[H2PtV9O28] (Joo et al., 2011[Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801-m1802.]) and (CH6N3)8[α-SiPt2W10O40]·6H2O (Lee et al., 2003[Lee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152-m155.][Lee, U., Jang, S.-J., Joo, H.-C. & Park, K.-M. (2003). Acta Cryst. E59, m116-m118.]) have been reported by our group. The positions of the protonated O atoms in the {[H4.5α-PtMo6O24]2}7− polyanion were reconfirmed in the present study.

Sometimes a short hydrogen bond, O⋯O distance < 2.60 Å, in which the H atom lies on a crystallographic center of symmetry, occurs in this class of structure. The H atom of the central hydrogen bond, O6C—H6—O6Ci in the title compound lies on a crystallographic center of symmetry (space group C2/c: [3\over4], [1\over4], [1\over2]).

2. Structural commentary

The structure of the title compound POM anion has been discussed in detail (Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]). Fig. 1[link] shows the structure of the title compound, and selected geometrical parameters are given in Table 1[link]. The complete polyanion has C1 (1) symmetry. The O atoms of the heteropolyanion have been designated as OT (terminal Mo=O atom), OB (bridging μ2-O atom), and OC (centered μ3-O atom). The protonated O atoms in the polyanion were confirmed in electron density maps, inter­polyanion hydrogen bonds (Table 2[link]) and by bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). Fig. 2[link] shows a symmetric electron-density map around the position of atom H6. The H atom of the centrosymmetric hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group C2/c: [3\over4], [1\over4], [1\over2]). The O6C—H6 and O6C⋯O6Ci distances are 1.27 and 2.532 (6) Å, and the O6C—H6—O6Ci angle is 180° (Table 2[link] and Fig. 3[link]). Atom H3 does not contribute to dimer formation because it is located on the other side of the polyanion.

Table 1
Selected geometric parameters (Å, °)

Pt1—O1C 1.995 (3) Mo5—O5C 2.178 (3)
Pt1—O2C 2.015 (3) Mo6—O5C 2.123 (3)
Pt1—O3C 2.027 (3) Mo6—O6C 2.277 (3)
Pt1—O4C 2.011 (3) Mo1—O7B 1.965 (3)
Pt1—O5C 1.997 (3) Mo1—O12B 1.959 (3)
Pt1—O6C 2.005 (3) Mo2—O7B 1.978 (3)
Mo1—O1C 2.150 (3) Mo2—O8B 1.945 (3)
Mo1—O6C 2.317 (3) Mo3—O8B 1.934 (3)
Mo2—O1C 2.248 (3) Mo3—O9B 1.952 (3)
Mo2—O2C 2.286 (3) Mo4—O9B 1.941 (3)
Mo3—O2C 2.307 (3) Mo4—O10B 1.959 (3)
Mo3—O3C 2.318 (3) Mo5—O10B 1.895 (3)
Mo4—O3C 2.287 (3) Mo5—O11B 2.058 (3)
Mo4—O4C 2.327 (3) Mo6—O11B 2.075 (4)
Mo5—O4C 2.289 (3) Mo6—O12B 1.894 (4)
       
Mo1—O1C—Mo2 95.79 (12) Mo1—O7B—Mo2 111.71 (15)
Mo2—O2C—Mo3 93.64 (11) Mo3—O8B—Mo2 119.36 (16)
Mo4—O3C—Mo3 93.75 (12) Mo4—O9B—Mo3 119.39 (17)
Mo5—O4C—Mo4 92.64 (11) Mo5—O10B—Mo4 120.02 (16)
Mo6—O5C—Mo5 102.87 (13) Mo5—O11B—Mo6 108.97 (15)
Mo6—O6C—Mo1 91.14 (12) Mo6—O12B—Mo1 116.75 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2C—H2⋯O24Ti 0.96 (2) 1.61 (2) 2.578 (5) 179 (6)
O3C—H3⋯O2W 0.96 (2) 1.69 (3) 2.622 (6) 164 (7)
O4C—H4⋯O13Ti 0.95 (2) 1.63 (2) 2.568 (5) 173 (9)
O6C—H6⋯O6Ci 1.27 1.27 2.532 (6) 180
O11B—H11⋯O7Bi 0.95 (2) 1.74 (2) 2.679 (5) 173 (10)
N1—H1B⋯O1C 0.88 2.05 2.864 (6) 154
N1—H1A⋯O3W 0.88 2.33 2.973 (9) 130
N2—H2A⋯O18Tii 0.88 2.08 2.940 (7) 165
N2—H2B⋯O19Tiii 0.88 2.22 3.043 (6) 155
N3—H3B⋯O8B 0.88 2.04 2.874 (7) 157
N3—H3A⋯O2Wiii 0.88 2.25 2.979 (9) 140
N4—H4B⋯O14Tiv 0.88 2.09 2.944 (6) 164
N4—H4A⋯O24Ti 0.88 2.48 3.006 (6) 119
N5—H5A⋯O16T 0.88 2.06 2.890 (6) 157
N5—H5B⋯O21Tv 0.88 2.18 2.973 (5) 149
N6—H6A⋯O15Tiv 0.88 2.19 2.894 (6) 136
N6—H6B⋯O21Tv 0.88 2.59 3.281 (6) 136
N7—H7B⋯O19T 0.88 2.40 2.936 (5) 119
N7—H7A⋯O1W 0.88 2.11 2.927 (6) 154
N8—H8B⋯O13Tvi 0.88 2.39 3.006 (6) 128
N8—H8A⋯O23Tvii 0.88 2.04 2.918 (6) 178
N9—H9A⋯O22Tvii 0.88 2.21 2.938 (7) 140
O1W—H1AW⋯O9B 0.94 (2) 2.20 (5) 2.916 (5) 132 (5)
O1W—H1BW⋯O17Tviii 0.95 (2) 1.85 (3) 2.783 (5) 166 (6)
O2W—H2BW⋯O4Wii 0.95 (2) 2.24 (7) 2.902 (12) 126 (6)
O3W—H3BW⋯O9Bii 0.94 (2) 2.35 (8) 3.029 (7) 128 (8)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) x, y+1, z; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+1, y+1, -z+{\script{1\over 2}}]; (viii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Disordered parts have been omitted for clarity.
[Figure 2]
Figure 2
Difference-Fourier map around atom H6 (calculated with atom H6 absent from the model).
[Figure 3]
Figure 3
Polyhedral view of the heteropolyanion in the title compound with O—H⋯O contacts of the inter­anion hydrogen bonds shown as red dashed lines. [Symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.]

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVS for atoms O2C, O3C, O4C, O6C and O11B are 1.40, 1.36, 1.38, 1.41 and 1.30 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the μ2-O atom should be 2.0 v.u., the missing valences of O2C, O3C, O4C, O6C and O11B are 0.60, 0.64, 0.62, 0.59 and 0.70 v.u., respectively, which corresponds to the valence of the O—H bonds. The BVS value range for the unprotonated OC and OB atoms is 1.68–1.90 v.u. As a result, the protonated O atoms were O2C, O3C, O4C, O11B and O6C. The protonated features of both the {[H4.5PtMo6O24]2}7− polyanion in the title compound and in K7[H4.5PtMo6O24]2.11H2O (space group P[\overline{1}]) are exactly the same. The bond lengths and bond angles involving protonated and unprotonated O atoms in the {[H4.5PtMo6O24]2}7− polyanion are compared in Table 1[link]. The Pt—OC bond lengths were not affected by protonation of the OC atoms.

The C4 guanidinium ion and O4W water mol­ecule are equally disordered about a twofold rotation axis.

3. Supra­molecular features

The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}7− held together by each of the four μ3-O—H⋯μ1-O (terminal O atom), two μ2-O—H⋯μ2-O and one centrosymmetric μ3-O—H—μ3-O hydrogen bonds (Table 2[link]). Furthermore, the polyanions are linked in three dimensions via N—H⋯O hydrogen bonds. All water mol­ecules form hydrogen bonds with O atoms of the polyanions except for the O2W water mol­ecule (Table 2[link]). Hydrogen-bonding interactions involving the disordered molecules have been omitted.

4. Database survey

A number of Anderson-structure platinum(IV)-containing heteropolyoxomolybdates have been reported: [H4.5PtMo6O24]3.5− and [H4PtMo6O24]4−, [H3.5PtMo6O24]4.5− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]); [H4β-PtM06024]4− (Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]); [H2PtMo6O24]6− (Lee & Joo, 2000[Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311-e312.], 2004[Lee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i61-i63.]); [H4.5PtMo6O24]3.5− (Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]); [H6PtMo6O24]2− (Lee & Joo, 2010[Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8-i9.]); [H23(PtMo6O24)4]9−, [H16(PtMo6O24)3]8− and [H14(PtMo6O24)3]14− (Day et al., 2009[Day, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079-5087.]).

5. Synthesis and crystallization

A pale-yellow powder of the title compound was obtained by addition of a small excess of the stoichiometric qu­antity of guanidinium chloride, CH6N3Cl, to a solution of the sodium salt of hexa­molybdoplatinate hydrate. Single crystals were obtained by recrystallization from a hot aqueous solution of the crude sample in an insulating chamber.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the H atoms in the polyanion and all water H atoms were positioned using difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O—H = 0.95 (2) Å using the DFIX command (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). All H atoms of the guanidinium ions were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(N). The C4 guanidinium ion and O4W water mol­ecule are equally disordered about a twofold rotation axis. Refinement of the site occupation factors (s.o.f) converged at values close to half occupancy. In the final refinement, the s.o.f.s were constrained to 0.5 and reasonable displacement parameters were obtained. The C—N and N—H bond lengths were restrained to 1.30 (2) and 0.90 (2) Å, respectively, and the HA—N—HB angles were restrained by restraining the HA⋯HB distance to 1.55 (2) Å in the disordered C4 guanidinium ion using the DFIX command. The H atoms of all water mol­ecules (OW) were refined with a distance restraint of O—H = 0.95 (2) Å using the DFIX, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 0.98 Å from atom Pt1 and the largest hole is 0.36 Å from N3.

Table 3
Experimental details

Crystal data
Chemical formula (CH6N3)7H9[PtMo6O24]2·7H2O
Mr 2865.26
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 31.413 (10), 10.073 (3), 23.677 (7)
β (°) 119.451 (14)
V3) 6524 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.62
Crystal size (mm) 0.30 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.241, 0.729
No. of measured, independent and observed [I > 2σ(I)] reflections 56606, 7107, 6050
Rint 0.033
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.03
No. of reflections 7107
No. of parameters 505
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.50, −1.30
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Chemical context top

The α (planar structure)-β (bent structure)-α geometrical isomerization, according to the stepwise protonation in the [PtMo6O24]8- polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5- (Lee & Sasaki, 1994), [H4β-PtMo6O24]4- (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5- (Lee & Sasaki, 1994; Lee et al., 2010) is an unprecedented phenomenon in the Anderson-structure heteropolyanion (Anderson, 1937), as well as in the chemistry of polyoxometalates.

As a result of the insolubility of the guanidinium salt, replaceable counter-cations in POMs can be exchanged by guanidinium ions. It is thus possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. The guanidinium salts of platinum-containing POM species, viz. (CH6N3)8[PtW6O24] (Lee et al., 2003), (CH6N3)5[H2PtV9O28] (Joo et al., 2011) and (CH6N3)8[α-SiPt2W10O40]·6H2O (Lee et al., 2003) have been reported our group. The position of the protonated O atoms in the {[H4.5α-PtMo6O24]2}7- polyanion were reconfirmed in the present study.

Sometimes a relatively short hydrogen bond, O···O distance < 2.60 Å, in which the H atom lies on a crystallographic center of symmetry, occurs in this class of structure. The H atom of the central hydrogen bond, O6C—H6—O6Ci (Fig. 2) in the title compound lies on a crystallographic center of symmetry (space group C2/c : 3/4, 1/4, 1/2), and thus has half-occupancy in the asymmetric unit.

Structural commentary top

The structure of the title compound POM anion has been discussed in detail (Lee et al., 2010). Fig. 1 shows the structure of the title compound and selected geometrical parameters are given in Table 1. The complete polyanion has C1 (1) symmetry. The O atoms of the cluster have been designated as OT (terminal MoO atom), OB (bridged µ2-O atom), and OC (centered µ3-O atom). The protonated O atoms in the polyanion were confirmed in electron density maps, inter­polyanion hydrogen bonds (Table 2) and by bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Fig. 2 shows a symmetric electron-density map around the position of atom H6. The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table 2). The H atom's occupancy, which is 0.5 in the polyanion, is due to the centrosymmetry of this latter hydrogen bond (Figs. 2 and 3). The H atom of the centrosymmetric hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group C2/c : 3/4, 1/4, 1/2). The O6C—H6 and O6C···O6Ci distances are 1.266 and 2.532 (6) Å, and the O6C—H6—O6Ci angle is 180° (Table 2 and Fig. 3). Atom H3 does not contribute to dimer formation because it is located on the other side of the polyanion.

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The calculated BVS for atoms O2C, O3C, O4C, O6C and O11B are 1.40, 1.36, 1.38, 1.41 and 1.30 valence units (v.u.), respectively, if the valence of the O—H bond is not included. Since the BVS value around the µ2-O atom should be 2.0 v.u., the missing valences of O2C, O3C, O4C, O6C and O11B are 0.60, 0.64, 0.62, 0.59 and 0.70 v.u., respectively, which corresponds to the valence of the O–H bonds. The BVS value range for the unprotonated OC and OB atoms is 1.68–1.90 v.u. As a result, the protonated O atoms were O2C, O3C, O4C, O11B and O6C. The protonated features of both the {[H4.5PtMo6O24]2}7- polyanion in the title compound and in K7[H4.5PtMo6O24]2.11H2O (space group P1) are exactly the same. The bond lengths and bond angles of protonated and unprotonated O atoms in the {[H4.5PtMo6O24]2}7- polyanion are compared in Table 1. The Pt—OC bond lengths were not affected by protonation of the OC atoms.

The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis.

Supra­molecular features top

The heteropolyanions form inversion-generated dimers, {[H4.5PtMo6O24]2}-7 held together by each of the four µ3-O–H···µ1-O (terminal O atom), two µ2-O–H···µ2-O and one centrosymmetric µ3-O–H–µ3-O hydrogen bonds (Table2 and Fig. 3). Furthermore, the polyanions are linked in three dimensions via N—H···O hydrogen bonds (Table 2). All water molecules form hydrogen bonds with O atoms of the polyanions except for the O2W water molecule (Table 2).

Database survey top

A number of Anderson-structure platinum(IV)-containing heteropolyoxomolybdates have been reported: [H4.5PtMo6O24]3.5- and [H4PtMo6O24]4-, [H3.5PtMo6O24]4.5- (Lee & Sasaki, 1994); [H4β-PtM06024]4- (Joo et al., 1994); [H2PtMo6O24]6- (Lee & Joo, 2000, 2004); [H4.5PtMo6O24]3.5- (Lee et al., 2010); [H6PtMo6O24]2- (Lee & Joo, 2010); [(PtMo6O24)4H23]9-, [(PtMo6O24)3H16]8- and [(PtMo6O24)3H14]14- (Day et al., 2009).

Synthesis and crystallization top

A pale-yellow powder of the title compound was obtained by addition of a small excess of the stoichiometric qu­antity of guanidinium chloride, CH6N3Cl, to a solution of the sodium salt of hexamolybdoplatinate hydrate. Single crystals were obtained by recrystallization from a hot aqueous solution of the crude sample in an insulating chamber.

Refinement top

All the H atoms in the polyanion and all water H atoms were positioned using difference Fourier maps. All H atoms of the polyanion were refined with a distance restraint of O–H = 0.95 (3) Å using the DFIX command (Sheldrick, 2008). All H atoms of the guanidinium ions were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(N). The C4 guanidinium ion and O4W water molecule are equally disordered about a twofold rotation axis. Refinement of the site occupation factors (s.o.f) converged at values close to half occupancy. In the final refinement, the s.o.f.s were constrained to 0.5 and reasonable displacement parameters were obtained. The C—N and N—H bond lengths were restrained to 1.30 (2) and 0.90 (2) Å, respectively, and the H—N—H angles were restrained by restraining the H···H distance to 1.55 (2) Å in the disordered C4 guanidinium ion using the DFIX command. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 0.98 Å from atom Pt1 and the largest hole is 0.36 Å from N3.

Related literature top

For related literature, see: Anderson (1937); Brese & O'Keeffe (1991); Brown & Altermatt (1985); Day et al. (2009); Joo et al. (1994, 2011); Lee & Joo (2000, 2004, 2010); Lee & Sasaki (1994); Lee, Jang, Joo & Park (2003); Lee, Joo & Park (2010); Lee, Joo, Park & Ozeki (2003); Sheldrick (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Disordered parts have been omitted for clarity.
[Figure 2] Fig. 2. Difference-Fourier map around atom H6 (calculated with atom H6 absent from the model).
[Figure 3] Fig. 3. Polyhedral view of the heteropolyanion in the title compound with O—H···O contacts of the interanion hydrogen bonds shown as red dashed lines. [Symmetry code: (i) -x + 3/2, -y + 1/2, -z + 1.]
Heptaguanidinium nonahydrogen bis[α-hexamolybdoplatinate(IV)] heptahydrate top
Crystal data top
(CH6N3)7H9[PtMo6O24]2·7H2OF(000) = 5416
Mr = 2865.26Dx = 2.917 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9569 reflections
a = 31.413 (10) Åθ = 2.2–28.2°
b = 10.073 (3) ŵ = 6.62 mm1
c = 23.677 (7) ÅT = 173 K
β = 119.451 (14)°Block, yellow
V = 6524 (3) Å30.30 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7107 independent reflections
Radiation source: Rotating Anode6050 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.5°
ϕ and ω scansh = 4036
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1212
Tmin = 0.241, Tmax = 0.729l = 3030
56606 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
7107 reflections(Δ/σ)max = 0.002
505 parametersΔρmax = 2.50 e Å3
22 restraintsΔρmin = 1.30 e Å3
Crystal data top
(CH6N3)7H9[PtMo6O24]2·7H2OV = 6524 (3) Å3
Mr = 2865.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.413 (10) ŵ = 6.62 mm1
b = 10.073 (3) ÅT = 173 K
c = 23.677 (7) Å0.30 × 0.12 × 0.05 mm
β = 119.451 (14)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
6050 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.729Rint = 0.033
56606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02822 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
7107 reflectionsΔρmax = 2.50 e Å3
505 parametersΔρmin = 1.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.652431 (6)0.176198 (17)0.467608 (8)0.01525 (6)
Mo10.743430 (14)0.00319 (4)0.57409 (2)0.02093 (10)
Mo20.682566 (15)0.17866 (4)0.624195 (19)0.02035 (10)
Mo30.583929 (15)0.34871 (4)0.51759 (2)0.02171 (10)
Mo40.552026 (14)0.34729 (4)0.359683 (19)0.01849 (9)
Mo50.618484 (14)0.17217 (4)0.311229 (19)0.01901 (10)
Mo60.712270 (14)0.01255 (4)0.42001 (2)0.02259 (10)
O1C0.66821 (11)0.0483 (3)0.53959 (14)0.0194 (7)
O2C0.66214 (11)0.3107 (3)0.53597 (15)0.0187 (7)
H20.6862 (17)0.378 (5)0.544 (3)0.050 (18)*
O3C0.58105 (11)0.1962 (3)0.44249 (15)0.0178 (7)
H30.568 (2)0.109 (3)0.439 (3)0.07 (2)*
O4C0.63463 (11)0.3099 (3)0.39634 (15)0.0184 (7)
H40.656 (3)0.379 (6)0.398 (4)0.10 (3)*
O5C0.64084 (11)0.0488 (3)0.39683 (14)0.0191 (7)
O6C0.72274 (11)0.1511 (3)0.49205 (15)0.0190 (7)
H60.75000.25000.50000.06 (3)*
O7B0.74507 (12)0.1539 (3)0.62431 (16)0.0229 (7)
O8B0.61194 (12)0.2010 (3)0.57683 (16)0.0243 (7)
O9B0.57705 (11)0.4420 (3)0.44128 (15)0.0226 (7)
O10B0.55913 (11)0.1971 (3)0.31241 (15)0.0212 (7)
O11B0.69300 (12)0.1458 (3)0.35603 (16)0.0235 (7)
H110.713 (3)0.222 (7)0.362 (5)0.15 (4)*
O12B0.71759 (12)0.1040 (3)0.49309 (17)0.0262 (8)
O13T0.80360 (12)0.0093 (3)0.59080 (17)0.0285 (8)
O14T0.74286 (12)0.1258 (3)0.62346 (17)0.0305 (8)
O15T0.68520 (13)0.0508 (4)0.67282 (16)0.0299 (8)
O16T0.69977 (13)0.3193 (3)0.67096 (17)0.0312 (8)
O17T0.52417 (13)0.3226 (4)0.49587 (19)0.0371 (9)
O18T0.60285 (14)0.4814 (4)0.56903 (17)0.0370 (9)
O19T0.49288 (12)0.3228 (3)0.34110 (17)0.0275 (8)
O20T0.55233 (12)0.4783 (3)0.31420 (16)0.0283 (8)
O21T0.62270 (13)0.3112 (4)0.27214 (17)0.0292 (8)
O22T0.60336 (13)0.0433 (4)0.25787 (17)0.0315 (8)
O23T0.69102 (12)0.1349 (3)0.36251 (18)0.0304 (8)
O24T0.77302 (12)0.0093 (3)0.44119 (17)0.0290 (8)
C10.5886 (2)0.1669 (7)0.5871 (3)0.0536 (18)
N10.6167 (2)0.1725 (5)0.5534 (3)0.0611 (18)
H1A0.62730.24930.54760.073*
H1B0.62300.09910.53880.073*
N20.57817 (17)0.2673 (5)0.6092 (2)0.0446 (13)
H2A0.58790.34640.60460.053*
H2B0.56110.25860.62930.053*
N30.5678 (3)0.0394 (7)0.5888 (4)0.106 (3)
H3A0.54800.03330.60520.127*
H3B0.57480.03170.57350.127*
C20.69992 (17)0.6537 (5)0.7035 (2)0.0252 (11)
N40.7180 (2)0.6254 (5)0.6658 (3)0.0482 (14)
H4A0.72100.54200.65710.058*
H4B0.72730.68960.64900.058*
N50.68617 (16)0.5573 (4)0.7284 (2)0.0310 (10)
H5A0.68920.47410.71960.037*
H5B0.67390.57600.75380.037*
N60.69567 (17)0.7785 (5)0.7166 (2)0.0355 (11)
H6A0.70500.84260.69990.043*
H6B0.68350.79760.74200.043*
C30.4036 (2)0.6616 (5)0.2726 (3)0.0290 (11)
N70.43204 (15)0.5625 (4)0.3073 (2)0.0324 (10)
H7A0.45460.57570.34790.039*
H7B0.42840.48340.28980.039*
N80.36976 (18)0.6419 (5)0.2123 (2)0.0444 (13)
H8A0.35070.70780.18940.053*
H8B0.36610.56280.19470.053*
N90.4097 (3)0.7778 (5)0.2998 (3)0.075 (2)
H9A0.39100.84480.27750.090*
H9B0.43260.78940.34030.090*
C40.5228 (3)0.8412 (9)0.2828 (4)0.028 (2)0.50
N100.50000.7313 (6)0.25000.0368 (16)
H10A0.4775 (14)0.686 (4)0.2159 (13)0.044*
N110.50000.9567 (6)0.25000.0471 (19)
H11A0.5223 (16)1.002 (4)0.2844 (14)0.057*
N120.5653 (4)0.8331 (14)0.3368 (6)0.039 (3)0.50
H12A0.579 (3)0.753 (5)0.343 (6)0.046*0.50
H12B0.584 (3)0.905 (6)0.355 (6)0.046*0.50
O1W0.51593 (15)0.6741 (4)0.42228 (19)0.0400 (10)
H1AW0.5475 (12)0.638 (6)0.446 (3)0.060*
H1BW0.507 (2)0.678 (6)0.456 (2)0.060*
O2W0.52988 (18)0.0205 (5)0.4254 (3)0.0609 (13)
H2AW0.508 (3)0.006 (8)0.3811 (14)0.091*
H2BW0.553 (2)0.091 (6)0.435 (4)0.091*
O3W0.6421 (2)0.3187 (6)0.4650 (3)0.0764 (17)
H3AW0.6747 (13)0.346 (9)0.487 (4)0.115*
H3BW0.632 (4)0.398 (6)0.441 (4)0.115*
O4W0.5802 (4)0.8321 (11)0.3704 (5)0.036 (2)0.50
H4AW0.599 (4)0.911 (8)0.381 (6)0.055*0.50
H4BW0.602 (4)0.770 (10)0.402 (5)0.055*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01074 (9)0.01946 (10)0.01597 (9)0.00051 (6)0.00690 (7)0.00191 (7)
Mo10.01368 (19)0.0186 (2)0.0308 (2)0.00080 (15)0.01116 (17)0.00340 (17)
Mo20.0199 (2)0.0212 (2)0.0193 (2)0.00066 (16)0.00908 (17)0.00091 (16)
Mo30.0190 (2)0.0282 (2)0.0213 (2)0.00438 (17)0.01255 (17)0.00020 (17)
Mo40.01413 (19)0.0230 (2)0.01809 (19)0.00203 (15)0.00773 (16)0.00188 (16)
Mo50.0170 (2)0.0242 (2)0.01814 (19)0.00386 (16)0.01039 (17)0.00427 (16)
Mo60.01442 (19)0.0212 (2)0.0358 (2)0.00414 (16)0.01523 (18)0.01035 (18)
O1C0.0188 (16)0.0194 (17)0.0189 (15)0.0004 (13)0.0083 (13)0.0001 (13)
O2C0.0175 (16)0.0200 (17)0.0203 (16)0.0025 (13)0.0107 (14)0.0044 (13)
O3C0.0110 (15)0.0224 (17)0.0212 (16)0.0003 (13)0.0089 (13)0.0007 (13)
O4C0.0157 (16)0.0218 (17)0.0194 (16)0.0030 (13)0.0099 (13)0.0016 (13)
O5C0.0160 (15)0.0227 (17)0.0195 (15)0.0018 (13)0.0093 (13)0.0053 (13)
O6C0.0086 (14)0.0223 (17)0.0225 (16)0.0019 (12)0.0049 (13)0.0056 (13)
O7B0.0182 (16)0.0249 (18)0.0228 (17)0.0009 (14)0.0077 (14)0.0004 (14)
O8B0.0213 (17)0.0329 (19)0.0235 (17)0.0006 (15)0.0149 (15)0.0021 (15)
O9B0.0224 (17)0.0214 (17)0.0241 (16)0.0033 (14)0.0116 (14)0.0006 (14)
O10B0.0144 (15)0.0283 (18)0.0201 (16)0.0035 (13)0.0079 (13)0.0024 (14)
O11B0.0180 (16)0.0287 (18)0.0271 (17)0.0031 (14)0.0135 (15)0.0036 (15)
O12B0.0200 (17)0.0226 (18)0.041 (2)0.0029 (14)0.0185 (16)0.0060 (15)
O13T0.0204 (17)0.0244 (18)0.038 (2)0.0017 (14)0.0124 (16)0.0006 (15)
O14T0.0245 (18)0.0262 (19)0.038 (2)0.0018 (15)0.0131 (16)0.0075 (16)
O15T0.0318 (19)0.032 (2)0.0264 (18)0.0031 (16)0.0144 (16)0.0078 (16)
O16T0.030 (2)0.029 (2)0.0307 (19)0.0001 (15)0.0115 (17)0.0062 (15)
O17T0.0255 (19)0.057 (3)0.037 (2)0.0066 (17)0.0210 (18)0.0066 (18)
O18T0.048 (2)0.036 (2)0.0266 (19)0.0097 (18)0.0184 (18)0.0030 (17)
O19T0.0159 (16)0.033 (2)0.0313 (19)0.0022 (14)0.0099 (15)0.0011 (15)
O20T0.0261 (18)0.031 (2)0.0254 (17)0.0023 (15)0.0112 (15)0.0051 (15)
O21T0.0292 (19)0.038 (2)0.0257 (18)0.0018 (16)0.0173 (16)0.0027 (15)
O22T0.0311 (19)0.038 (2)0.0292 (18)0.0069 (17)0.0176 (16)0.0152 (16)
O23T0.0255 (18)0.0244 (18)0.044 (2)0.0039 (15)0.0197 (17)0.0126 (17)
O24T0.0257 (18)0.0280 (19)0.040 (2)0.0018 (15)0.0208 (17)0.0045 (16)
C10.035 (3)0.063 (5)0.052 (4)0.005 (3)0.013 (3)0.013 (3)
N10.035 (3)0.035 (3)0.100 (5)0.006 (2)0.024 (3)0.000 (3)
N20.035 (3)0.049 (3)0.057 (3)0.003 (2)0.029 (3)0.012 (3)
N30.134 (7)0.078 (5)0.185 (9)0.068 (5)0.140 (7)0.066 (5)
C20.019 (2)0.030 (3)0.021 (2)0.002 (2)0.006 (2)0.000 (2)
N40.075 (4)0.040 (3)0.063 (3)0.011 (3)0.059 (3)0.005 (3)
N50.038 (3)0.029 (2)0.035 (2)0.002 (2)0.026 (2)0.003 (2)
N60.038 (3)0.032 (3)0.038 (3)0.000 (2)0.021 (2)0.003 (2)
C30.034 (3)0.030 (3)0.028 (3)0.004 (2)0.019 (2)0.005 (2)
N70.031 (2)0.032 (2)0.026 (2)0.003 (2)0.0069 (19)0.0025 (19)
N80.038 (3)0.044 (3)0.036 (3)0.005 (2)0.006 (2)0.010 (2)
N90.154 (7)0.029 (3)0.045 (3)0.016 (4)0.050 (4)0.004 (3)
C40.022 (5)0.039 (6)0.031 (6)0.007 (4)0.019 (5)0.002 (5)
N100.033 (4)0.022 (3)0.045 (4)0.0000.012 (3)0.000
N110.042 (4)0.019 (3)0.083 (6)0.0000.033 (4)0.000
N120.035 (8)0.030 (6)0.043 (7)0.007 (5)0.013 (6)0.011 (7)
O1W0.039 (2)0.055 (3)0.031 (2)0.0063 (19)0.0207 (19)0.0038 (18)
O2W0.051 (3)0.037 (3)0.091 (4)0.000 (2)0.032 (3)0.006 (3)
O3W0.069 (4)0.072 (4)0.097 (5)0.027 (3)0.048 (4)0.009 (3)
O4W0.025 (6)0.034 (6)0.050 (7)0.010 (4)0.018 (5)0.001 (6)
Geometric parameters (Å, º) top
Pt1—O1C1.995 (3)O6C—O6Ci2.532 (6)
Pt1—O2C2.015 (3)O6C—H61.266 (3)
Pt1—O3C2.027 (3)O11B—H110.95 (2)
Pt1—O4C2.011 (3)C1—N21.254 (8)
Pt1—O5C1.997 (3)C1—N11.451 (10)
Pt1—O6C2.005 (3)C1—N31.451 (10)
Mo1—O1C2.150 (3)N1—H1A0.8800
Mo1—O6C2.317 (3)N1—H1B0.8800
Mo2—O1C2.248 (3)N2—H2A0.8800
Mo2—O2C2.286 (3)N2—H2B0.8800
Mo3—O2C2.307 (3)N3—H3A0.8800
Mo3—O3C2.318 (3)N3—H3B0.8800
Mo4—O3C2.287 (3)C2—N41.304 (7)
Mo4—O4C2.327 (3)C2—N51.314 (6)
Mo5—O4C2.289 (3)C2—N61.317 (7)
Mo5—O5C2.178 (3)N4—H4A0.8800
Mo6—O5C2.123 (3)N4—H4B0.8800
Mo6—O6C2.277 (3)N5—H5A0.8800
Mo1—O7B1.965 (3)N5—H5B0.8800
Mo1—O12B1.959 (3)N6—H6A0.8800
Mo2—O7B1.978 (3)N6—H6B0.8800
Mo2—O8B1.945 (3)C3—N91.303 (7)
Mo3—O8B1.934 (3)C3—N81.310 (7)
Mo3—O9B1.952 (3)C3—N71.322 (6)
Mo4—O9B1.941 (3)N7—H7A0.8800
Mo4—O10B1.959 (3)N7—H7B0.8800
Mo5—O10B1.895 (3)N8—H8A0.8800
Mo5—O11B2.058 (3)N8—H8B0.8800
Mo6—O11B2.075 (4)N9—H9A0.8800
Mo6—O12B1.894 (4)N9—H9B0.8800
Mo1—O14T1.706 (3)C4—N121.320 (12)
Mo1—O13T1.735 (3)C4—N101.340 (10)
Mo2—O15T1.702 (3)C4—N111.387 (10)
Mo2—O16T1.713 (3)N10—H10A0.893 (17)
Mo3—O17T1.705 (4)N11—H11A0.898 (18)
Mo3—O18T1.706 (4)N12—H12A0.90 (2)
Mo4—O19T1.704 (3)N12—H12B0.90 (2)
Mo4—O20T1.706 (3)O1W—H1AW0.94 (2)
Mo5—O22T1.708 (3)O1W—H1BW0.95 (2)
Mo5—O21T1.719 (3)O2W—H2AW0.94 (2)
Mo6—O23T1.710 (3)O2W—H2BW0.95 (2)
Mo6—O24T1.732 (3)O3W—H3AW0.93 (2)
O2C—H20.96 (2)O3W—H3BW0.94 (2)
O3C—H30.96 (2)O4W—H4AW0.95 (2)
O4C—H40.95 (2)O4W—H4BW0.95 (2)
Mo1—O1C—Mo295.79 (12)O21T—Mo5—O4C86.44 (14)
Mo2—O2C—Mo393.64 (11)O10B—Mo5—O4C72.56 (12)
Mo4—O3C—Mo393.75 (12)O11B—Mo5—O4C85.46 (12)
Mo5—O4C—Mo492.64 (11)O5C—Mo5—O4C72.30 (12)
Mo6—O5C—Mo5102.87 (13)O23T—Mo6—O24T105.40 (16)
Mo6—O6C—Mo191.14 (12)O23T—Mo6—O12B101.61 (17)
Mo1—O7B—Mo2111.71 (15)O24T—Mo6—O12B101.99 (16)
Mo3—O8B—Mo2119.36 (16)O23T—Mo6—O11B96.50 (16)
Mo4—O9B—Mo3119.39 (17)O24T—Mo6—O11B89.87 (15)
Mo5—O10B—Mo4120.02 (16)O12B—Mo6—O11B154.72 (14)
Mo5—O11B—Mo6108.97 (15)O23T—Mo6—O5C93.14 (14)
Mo6—O12B—Mo1116.75 (17)O24T—Mo6—O5C155.73 (14)
O1C—Pt1—O5C99.68 (14)O12B—Mo6—O5C89.14 (13)
O1C—Pt1—O6C84.05 (13)O11B—Mo6—O5C72.28 (12)
O5C—Pt1—O6C83.21 (12)O23T—Mo6—O6C166.99 (14)
O1C—Pt1—O4C177.35 (12)O24T—Mo6—O6C87.60 (14)
O5C—Pt1—O4C82.27 (13)O12B—Mo6—O6C75.67 (13)
O6C—Pt1—O4C97.99 (13)O11B—Mo6—O6C82.71 (13)
O1C—Pt1—O2C82.64 (13)O5C—Mo6—O6C74.21 (11)
O5C—Pt1—O2C177.41 (13)Pt1—O1C—Mo1104.21 (13)
O6C—Pt1—O2C98.20 (13)Pt1—O1C—Mo2103.95 (14)
O4C—Pt1—O2C95.37 (13)Pt1—O2C—Mo2101.92 (13)
O1C—Pt1—O3C95.12 (13)Pt1—O2C—Mo3103.51 (13)
O5C—Pt1—O3C95.66 (12)Pt1—O2C—H2116 (4)
O6C—Pt1—O3C178.46 (12)Mo2—O2C—H2113 (4)
O4C—Pt1—O3C82.87 (13)Mo3—O2C—H2125 (4)
O2C—Pt1—O3C82.96 (13)Pt1—O3C—Mo4103.59 (13)
O14T—Mo1—O13T105.87 (16)Pt1—O3C—Mo3102.74 (13)
O14T—Mo1—O12B99.01 (16)Pt1—O3C—H3108 (4)
O13T—Mo1—O12B98.14 (15)Mo4—O3C—H3124 (4)
O14T—Mo1—O7B100.03 (16)Mo3—O3C—H3122 (4)
O13T—Mo1—O7B95.86 (15)Pt1—O4C—Mo5100.53 (13)
O12B—Mo1—O7B152.25 (14)Pt1—O4C—Mo4102.74 (13)
O14T—Mo1—O1C93.17 (14)Pt1—O4C—H4124 (5)
O13T—Mo1—O1C160.02 (14)Mo5—O4C—H4109 (5)
O12B—Mo1—O1C84.50 (12)Mo4—O4C—H4122 (5)
O7B—Mo1—O1C74.48 (12)Pt1—O5C—Mo6103.69 (13)
O14T—Mo1—O6C165.12 (14)Pt1—O5C—Mo5104.87 (14)
O13T—Mo1—O6C88.14 (14)Pt1—O6C—Mo698.17 (12)
O12B—Mo1—O6C73.55 (13)Pt1—O6C—Mo198.14 (13)
O7B—Mo1—O6C83.11 (12)Pt1—O6C—O6Ci120.8 (2)
O1C—Mo1—O6C73.54 (11)Mo6—O6C—O6Ci121.27 (19)
O15T—Mo2—O16T107.06 (18)Mo1—O6C—O6Ci120.85 (19)
O15T—Mo2—O8B98.04 (15)Pt1—O6C—H6120.8 (2)
O16T—Mo2—O8B100.65 (16)Mo6—O6C—H6121.27 (19)
O15T—Mo2—O7B100.70 (15)Mo1—O6C—H6120.85 (19)
O16T—Mo2—O7B96.07 (16)O6Ci—O6C—H60.00 (18)
O8B—Mo2—O7B149.93 (14)Mo5—O11B—H11118 (7)
O15T—Mo2—O1C94.74 (15)Mo6—O11B—H11125 (7)
O16T—Mo2—O1C156.95 (15)N2—C1—N1123.5 (6)
O8B—Mo2—O1C83.19 (13)N2—C1—N3119.2 (7)
O7B—Mo2—O1C72.05 (12)N1—C1—N3117.0 (6)
O15T—Mo2—O2C163.07 (14)C1—N1—H1A120.0
O16T—Mo2—O2C88.12 (15)C1—N1—H1B120.0
O8B—Mo2—O2C71.19 (12)H1A—N1—H1B120.0
O7B—Mo2—O2C84.67 (12)C1—N2—H2A120.0
O1C—Mo2—O2C71.47 (12)C1—N2—H2B120.0
O17T—Mo3—O18T106.36 (19)H2A—N2—H2B120.0
O17T—Mo3—O8B98.10 (16)C1—N3—H3A120.0
O18T—Mo3—O8B102.14 (16)C1—N3—H3B120.0
O17T—Mo3—O9B100.99 (16)H3A—N3—H3B120.0
O18T—Mo3—O9B97.16 (16)N4—C2—N5119.7 (5)
O8B—Mo3—O9B147.71 (13)N4—C2—N6120.0 (5)
O17T—Mo3—O2C160.66 (16)N5—C2—N6120.3 (5)
O18T—Mo3—O2C91.76 (16)C2—N4—H4A120.0
O8B—Mo3—O2C70.90 (12)C2—N4—H4B120.0
O9B—Mo3—O2C82.96 (12)H4A—N4—H4B120.0
O17T—Mo3—O3C92.54 (15)C2—N5—H5A120.0
O18T—Mo3—O3C159.28 (16)C2—N5—H5B120.0
O8B—Mo3—O3C83.03 (13)H5A—N5—H5B120.0
O9B—Mo3—O3C70.38 (13)C2—N6—H6A120.0
O2C—Mo3—O3C70.78 (11)C2—N6—H6B120.0
O19T—Mo4—O20T107.04 (16)H6A—N6—H6B120.0
O19T—Mo4—O9B100.65 (15)N9—C3—N8121.1 (5)
O20T—Mo4—O9B97.05 (15)N9—C3—N7118.8 (5)
O19T—Mo4—O10B99.01 (15)N8—C3—N7120.1 (5)
O20T—Mo4—O10B101.47 (15)C3—N7—H7A120.0
O9B—Mo4—O10B147.60 (13)C3—N7—H7B120.0
O19T—Mo4—O3C92.83 (14)H7A—N7—H7B120.0
O20T—Mo4—O3C158.72 (14)C3—N8—H8A120.0
O9B—Mo4—O3C71.24 (13)C3—N8—H8B120.0
O10B—Mo4—O3C82.34 (13)H8A—N8—H8B120.0
O19T—Mo4—O4C161.33 (14)C3—N9—H9A120.0
O20T—Mo4—O4C90.53 (14)C3—N9—H9B120.0
O9B—Mo4—O4C82.92 (12)H9A—N9—H9B120.0
O10B—Mo4—O4C70.65 (12)N12—C4—N10120.6 (9)
O3C—Mo4—O4C70.80 (11)N12—C4—N11126.3 (9)
O22T—Mo5—O21T106.73 (18)N10—C4—N11112.7 (7)
O22T—Mo5—O10B101.18 (15)C4—N10—H10A155 (2)
O21T—Mo5—O10B103.69 (15)C4—N12—H12A113 (7)
O22T—Mo5—O11B96.63 (15)C4—N12—H12B122 (8)
O21T—Mo5—O11B90.77 (15)H12A—N12—H4AW106 (10)
O10B—Mo5—O11B152.59 (14)H12B—N12—H4AW20 (10)
O22T—Mo5—O5C95.73 (15)H1AW—O1W—H1BW100 (6)
O21T—Mo5—O5C152.95 (14)H2AW—O2W—H2BW116 (8)
O10B—Mo5—O5C86.07 (13)H3AW—O3W—H3BW92 (8)
O11B—Mo5—O5C71.47 (12)H4AW—O4W—H4BW103 (10)
O22T—Mo5—O4C166.58 (15)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Ti0.96 (2)1.61 (2)2.578 (5)179 (6)
O3C—H3···O2W0.96 (2)1.69 (3)2.622 (6)164 (7)
O4C—H4···O13Ti0.95 (2)1.63 (2)2.568 (5)173 (9)
O6C—H6···O6Ci1.271.272.532 (6)180
O11B—H11···O7Bi0.95 (2)1.74 (2)2.679 (5)173 (10)
N1—H1B···O1C0.882.052.864 (6)154
N1—H1A···O3W0.882.332.973 (9)130
N2—H2A···O18Tii0.882.082.940 (7)165
N2—H2B···O19Tiii0.882.223.043 (6)155
N3—H3B···O8B0.882.042.874 (7)157
N3—H3A···O2Wiii0.882.252.979 (9)140
N4—H4B···O14Tiv0.882.092.944 (6)164
N4—H4A···O24Ti0.882.483.006 (6)119
N5—H5A···O16T0.882.062.890 (6)157
N5—H5B···O21Tv0.882.182.973 (5)149
N6—H6A···O15Tiv0.882.192.894 (6)136
N6—H6B···O21Tv0.882.593.281 (6)136
N7—H7B···O19T0.882.402.936 (5)119
N7—H7A···O1W0.882.112.927 (6)154
N8—H8B···O13Tvi0.882.393.006 (6)128
N8—H8A···O23Tvii0.882.042.918 (6)178
N9—H9A···O22Tvii0.882.212.938 (7)140
O1W—H1AW···O9B0.94 (2)2.20 (5)2.916 (5)132 (5)
O1W—H1BW···O17Tviii0.95 (2)1.85 (3)2.783 (5)166 (6)
O2W—H2BW···O4Wii0.95 (2)2.24 (7)2.902 (12)126 (6)
O3W—H3BW···O9Bii0.94 (2)2.35 (8)3.029 (7)128 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y+1, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) top
Pt1—O1C1.995 (3)Mo5—O5C2.178 (3)
Pt1—O2C2.015 (3)Mo6—O5C2.123 (3)
Pt1—O3C2.027 (3)Mo6—O6C2.277 (3)
Pt1—O4C2.011 (3)Mo1—O7B1.965 (3)
Pt1—O5C1.997 (3)Mo1—O12B1.959 (3)
Pt1—O6C2.005 (3)Mo2—O7B1.978 (3)
Mo1—O1C2.150 (3)Mo2—O8B1.945 (3)
Mo1—O6C2.317 (3)Mo3—O8B1.934 (3)
Mo2—O1C2.248 (3)Mo3—O9B1.952 (3)
Mo2—O2C2.286 (3)Mo4—O9B1.941 (3)
Mo3—O2C2.307 (3)Mo4—O10B1.959 (3)
Mo3—O3C2.318 (3)Mo5—O10B1.895 (3)
Mo4—O3C2.287 (3)Mo5—O11B2.058 (3)
Mo4—O4C2.327 (3)Mo6—O11B2.075 (4)
Mo5—O4C2.289 (3)Mo6—O12B1.894 (4)
Mo1—O1C—Mo295.79 (12)Mo1—O7B—Mo2111.71 (15)
Mo2—O2C—Mo393.64 (11)Mo3—O8B—Mo2119.36 (16)
Mo4—O3C—Mo393.75 (12)Mo4—O9B—Mo3119.39 (17)
Mo5—O4C—Mo492.64 (11)Mo5—O10B—Mo4120.02 (16)
Mo6—O5C—Mo5102.87 (13)Mo5—O11B—Mo6108.97 (15)
Mo6—O6C—Mo191.14 (12)Mo6—O12B—Mo1116.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Ti0.96 (2)1.61 (2)2.578 (5)179 (6)
O3C—H3···O2W0.96 (2)1.69 (3)2.622 (6)164 (7)
O4C—H4···O13Ti0.95 (2)1.63 (2)2.568 (5)173 (9)
O6C—H6···O6Ci1.2661.2662.532 (6)180.0
O11B—H11···O7Bi0.95 (2)1.74 (2)2.679 (5)173 (10)
N1—H1B···O1C0.882.052.864 (6)153.7
N1—H1A···O3W0.882.332.973 (9)130.1
N2—H2A···O18Tii0.882.082.940 (7)165.3
N2—H2B···O19Tiii0.882.223.043 (6)154.7
N3—H3B···O8B0.882.042.874 (7)156.6
N3—H3A···O2Wiii0.882.252.979 (9)140.0
N4—H4B···O14Tiv0.882.092.944 (6)164.3
N4—H4A···O24Ti0.882.483.006 (6)118.9
N5—H5A···O16T0.882.062.890 (6)156.8
N5—H5B···O21Tv0.882.182.973 (5)149.4
N6—H6A···O15Tiv0.882.192.894 (6)136.4
N6—H6B···O21Tv0.882.593.281 (6)136.4
N7—H7B···O19T0.882.402.936 (5)119.3
N7—H7A···O1W0.882.112.927 (6)153.7
N8—H8B···O13Tvi0.882.393.006 (6)127.8
N8—H8A···O23Tvii0.882.042.918 (6)177.7
N9—H9A···O22Tvii0.882.212.938 (7)140.0
O1W—H1AW···O9B0.94 (2)2.20 (5)2.916 (5)132 (5)
O1W—H1BW···O17Tviii0.95 (2)1.85 (3)2.783 (5)166 (6)
O2W—H2BW···O4Wii0.95 (2)2.24 (7)2.902 (12)126 (6)
O3W—H3BW···O9Bii0.94 (2)2.35 (8)3.029 (7)128 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y+1, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(CH6N3)7H9[PtMo6O24]2·7H2O
Mr2865.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)31.413 (10), 10.073 (3), 23.677 (7)
β (°) 119.451 (14)
V3)6524 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.62
Crystal size (mm)0.30 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.241, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
56606, 7107, 6050
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.03
No. of reflections7107
No. of parameters505
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0337P)2 + 47.9084P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.50, 1.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg,1998), SHELXL97.

 

Acknowledgements

The X-ray centre of Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAnderson, J. S. (1937). Nature (London), 140, 850.  CrossRef Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079–5087.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, U., Jang, S.-J., Joo, H.-C. & Park, K.-M. (2003). Acta Cryst. E59, m116–m118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311–e312.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i61–i63.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8–i9.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152–m155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37–45.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 268-271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds