organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o216-o217

Crystal structure of the tripeptide N-(benzyl­oxycarbon­yl)glycylglycyl-L-norvaline

CROSSMARK_Color_square_no_text.svg

aDept. of Physics, Indian Institute of Science, Bangalore 560012, India
*Correspondence e-mail: sumeshnicholas@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 20 January 2015; accepted 25 February 2015; online 28 February 2015)

The title tripeptide, C17H23N3O6, contains a nonproteinogenic C-terminal amino acid residue, norvaline, which is an isomer of the amino acid valine. Norvaline, unlike valine, has an unbranched side chain. The mol­ecule has a Gly–Gly segment which adopts an extended conformation. The norvaline residue also adopts an extended backbone conformation while its side chain has a g+t conformation. In the crystal lattice, N—H⋯O and O—H⋯O hydrogen bonds stabilize the packing. Mol­ecules translated along the crystallographic a axis associate through an N—H⋯O hydrogen bond. The remaining three hydrogen bonds are between mol­ecules related by a 21 screw axis.

1. Related literature

For information on the amino acid norvaline, see: Kisumi, Sugiura & Chibata (1976[Kisumi, M., Sugiura, M. & Chibata, I. (1976). J. Biochem. 80, 333-339.]); Kisumi, Sugiura, Kato & Chibata (1976[Kisumi, M., Sugiura, M., Kato, J. & Chibata, I. (1976). J. Biochem. 79, 1021-1028.]); Alvarez-Carreño et al. (2013[Alvarez-Carreño, C., Becerra, A. & Lazcano, A. (2013). Orig. Life Evol. Biosph. 43, 363-375.]). For the conformation of glycine residues in proteins and peptides, see: Ramakrishnan & Srinivasan (1990[Ramakrishnan, C. & Srinivasan, N. (1990). Curr. Sci. India, 59, 851-862.]). For examples of the conformational flexibility of Gly–Gly segments in peptides, see: Smith et al. (1978[Smith, D. & Griffin, J. F. (1978). Science, 199, 1214-1216.]); Karle et al. (1983[Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A. & Camerman, N. (1983). Acta Cryst. B39, 625-637.]); Aubry et al. (1989[Aubry, A., Birlirakis, N., Sakarellos-Daitsiotis, M., Sakarellos, C. & Marraud, M. (1989). Biopolymers, 28, 27-40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H23N3O6

  • Mr = 365.38

  • Orthorhombic, P 21 21 21

  • a = 4.9857 (6) Å

  • b = 19.372 (2) Å

  • c = 19.476 (2) Å

  • V = 1881.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.6 × 0.1 × 0.1 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.635, Tmax = 0.746

  • 33216 measured reflections

  • 2747 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.156

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.249

  • S = 1.05

  • 2747 reflections

  • 243 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.47 3.061 (6) 127
N2—H2⋯O0ii 0.86 2.06 2.891 (6) 164
N3—H3⋯O2iii 0.96 (7) 2.36 (7) 3.268 (6) 159 (5)
O4—H4⋯O1iv 0.82 1.83 2.593 (5) 153
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x+1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

Norvaline is a non-proteinogenic amino­acid with an unbranched side chain. It is an isomer of the branched chain amino­acid valine. It is postulated that norvaline has been an abundant protein component during primitive stages of cell evolution (Alvarez-Carreño et al., 2013). Norvaline is formed as a byproduct during isoleucine fermentation from threonine by Serratia marcescens (Kisumi, Sugiura & Chibata, 1976; Kisumi, Sugiura, Kato & Chibata, 1976). The title peptide contains a Gly-Gly segment. This structural study was undertaken as part of an endeavour to understand the conformational flexibility of consecutive glycine segments in short peptides. Due to the conformational freedom of glycine residues they are increasingly found in turns (Ramakrishnan & Srinivasan, 1990). In various polymorphic forms of Tyr-Gly-Gly-Phe-Leu, the Gly-Gly segment adopts extended conformation, type-I' β-turn and 310 helical structures (Karle et al., 1983; Smith & Griffin, 1978; Aubry et al., 1989). This demonstrates the conformational flexibility of consecutive glycine sequences.

Structural commentary top

The Gly-Gly segment of the protected tripeptide has an extended conformation with Gly(1) adopting torsion angle values ϕ1 = 76.2 (7)° and ψ1 = -166.6 (4)° and Gly(2) adopting torsion angle values ϕ2 = 133.1 (5)° and ψ2 = -175.5 (5)°. The norvaline residue adopts an extended conformation with torsion angle values ϕ3 = -152.6 (6)° and ψ3 = 165.6 (6)°. There are no intra­molecular hydrogen bonds which stabilize the backbone conformation of the peptide molecule. The side chain of norvaline adopts a g+t conformation.

Supra­molecular features top

The packing in the crystal structure is stabilized by four inter­molecular hydrogen bonds (Table 1). Molecules translated along the crystallographic a axis associate through a N—H···O hydrogen bond. The remaining three hydrogen bonds are between molecules related by a 21 screw axis.

Synthesis and crystallization top

The title compound was purchased commercially. Needle-shaped crystals of the title compound were obtained by slow evaporation from methanol/water (1:1 v/v) solution.

Refinement top

The H-atoms bonded to N3 and C3A could be located from a difference Fourier map and refined freely. The remaining H-atoms were fixed geometrically in calculated positions and included in the refinement using a riding model approximation. The C—H distances were fixed at 0.97, 0.96 and 0.93 Å in case of hydrogens attached to methyl­ene, methyl and aromatic carbon atoms, respectively. N–H and O–H distances were fixed at 0.86 and 0.82 Å, respectively. The isotropic displacement parameters Uiso for hydrogen atoms were set at 1.5 times the Ueq of the carrier atoms in case of methyl groups and hydroxyl groups. In case of hydrogens attached to aromatic carbons, methyl­ene carbons and nitro­gen atoms, Uiso was set at 1.2 times the Ueq of the carrier atoms. The anisotropic displacement parameters of the carbon atoms C3A, C3B, C3C and C3D were restrained to be equal within a standard uncertainty of 0.01Å2 using the DELU command in SHELXL97 (Sheldrick, 2008). In the absence of significant anomalous scattering effects, 1967 Friedel pairs were merged. The absolute configuration was known for the purchased material. The relatively high value of Rint (0.12) is due to the poor quality of the crystal available.

Related literature top

For information on the amino acid norvaline, see: Kisumi, Sugiura & Chibata (1976); Kisumi, Sugiura, Kato & Chibata (1976); Alvarez-Carreño et al. (2013). For the conformation of glycine residues in proteins and peptides, see: Ramakrishnan & Srinivasan (1990). For examples of the conformational flexibility of Gly–Gly segments in peptides, see: Smith et al. (1978); Karle et al. (1983); Aubry et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Hydrogen bonds are represented as dotted lines. Hydrogen atoms, except those involved in hydrogen bonds, are omitted for clarity.
N-(Benzyloxycarbonyl)glycylglycyl-L-norvaline top
Crystal data top
C17H23N3O6Z = 4
Mr = 365.38F(000) = 776
Orthorhombic, P212121Dx = 1.290 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 4.9857 (6) ŵ = 0.10 mm1
b = 19.372 (2) ÅT = 293 K
c = 19.476 (2) ÅNeedle-shaped, colourless
V = 1881.1 (4) Å30.6 × 0.1 × 0.1 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2747 independent reflections
Radiation source: fine-focus sealed tube1421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.156
ϕ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 56
Tmin = 0.635, Tmax = 0.746k = 2525
33216 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1213P)2 + 0.3601P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.32 e Å3
5 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H23N3O6V = 1881.1 (4) Å3
Mr = 365.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9857 (6) ŵ = 0.10 mm1
b = 19.372 (2) ÅT = 293 K
c = 19.476 (2) Å0.6 × 0.1 × 0.1 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1421 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.746Rint = 0.156
33216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0835 restraints
wR(F2) = 0.249H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2747 reflectionsΔρmin = 0.23 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C021.389 (2)0.5256 (5)0.1660 (5)0.118 (3)
H021.48460.48460.16980.141*
C3B0.793 (2)0.1324 (4)0.1074 (5)0.120 (3)
H3B10.71230.17580.12120.144*
H3B20.66990.10990.07590.144*
C061.051 (3)0.5922 (5)0.1164 (6)0.161 (4)
H060.90950.59830.08600.194*
C3C1.050 (3)0.1472 (6)0.0703 (7)0.177 (5)
H3C11.16100.17540.10010.212*
H3C21.14340.10370.06380.212*
C041.327 (5)0.6385 (11)0.2032 (8)0.205 (11)
H041.38230.67490.23080.246*
C051.131 (5)0.6467 (6)0.1615 (11)0.227 (10)
H051.03990.68850.16050.272*
C031.449 (4)0.5791 (9)0.2068 (6)0.170 (6)
H031.58330.57360.23940.204*
C3D1.033 (5)0.1837 (12)0.0004 (9)0.326 (13)
H3D11.21060.19230.01740.489*
H3D20.93850.15460.03220.489*
H3D30.93890.22660.00450.489*
H31.140 (14)0.013 (3)0.156 (3)0.082 (18)*
H3A0.634 (15)0.076 (3)0.184 (3)0.085 (18)*
O31.2086 (8)0.1099 (2)0.2416 (2)0.0781 (11)
O20.5636 (8)0.0281 (2)0.1214 (2)0.0778 (11)
N30.9505 (9)0.0208 (2)0.1555 (3)0.0688 (12)
C2A0.9611 (10)0.0969 (2)0.1159 (3)0.0652 (13)
H2A11.06070.11040.15650.078*
H2A21.08920.08750.07960.078*
N10.6659 (10)0.3373 (2)0.1138 (2)0.0674 (11)
H10.58790.35750.14770.081*
C2'0.8037 (10)0.0320 (3)0.1312 (3)0.0593 (12)
O10.9811 (8)0.23128 (19)0.1640 (2)0.0730 (10)
O080.9223 (10)0.43006 (18)0.1063 (2)0.0864 (13)
C1'0.8092 (10)0.2157 (2)0.1204 (3)0.0586 (12)
O40.8419 (9)0.1744 (2)0.2531 (3)0.1091 (18)
H40.93010.19400.28280.164*
O00.9319 (11)0.3519 (2)0.0213 (2)0.0946 (15)
C1A0.5999 (11)0.2674 (2)0.0977 (3)0.0645 (13)
H1A10.57570.26350.04840.077*
H1A20.43040.25600.11930.077*
N20.7901 (9)0.1528 (2)0.0953 (2)0.0652 (11)
H20.66870.14470.06500.078*
C3'0.9838 (11)0.1230 (3)0.2268 (3)0.0727 (15)
C011.1876 (17)0.5311 (3)0.1188 (4)0.092 (2)
C0'0.8478 (13)0.3711 (3)0.0767 (3)0.0683 (14)
C3A0.8252 (14)0.0865 (3)0.1714 (4)0.0841 (17)
C071.1156 (18)0.4727 (3)0.0718 (4)0.100 (2)
H07A1.04040.49050.02940.120*
H07B1.27420.44600.06070.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C020.120 (6)0.132 (7)0.101 (6)0.005 (6)0.001 (6)0.002 (5)
C3B0.131 (6)0.083 (4)0.145 (6)0.026 (4)0.064 (5)0.029 (4)
C060.163 (9)0.094 (6)0.228 (12)0.020 (7)0.003 (11)0.006 (7)
C3C0.150 (8)0.165 (9)0.215 (11)0.058 (8)0.072 (7)0.103 (9)
C040.26 (2)0.206 (18)0.151 (12)0.117 (19)0.104 (14)0.084 (13)
C050.26 (2)0.080 (7)0.34 (3)0.005 (11)0.09 (2)0.068 (11)
C030.191 (13)0.209 (14)0.110 (8)0.065 (13)0.013 (8)0.043 (9)
C3D0.30 (2)0.42 (3)0.255 (19)0.06 (3)0.050 (19)0.17 (2)
O30.062 (2)0.103 (3)0.069 (2)0.005 (2)0.0027 (19)0.023 (2)
O20.062 (2)0.078 (2)0.093 (3)0.0043 (19)0.012 (2)0.018 (2)
N30.052 (2)0.062 (3)0.092 (3)0.004 (2)0.009 (2)0.017 (2)
C2A0.059 (3)0.057 (3)0.080 (3)0.004 (2)0.010 (3)0.001 (2)
N10.079 (3)0.056 (2)0.067 (3)0.003 (2)0.019 (2)0.0038 (19)
C2'0.052 (3)0.065 (3)0.061 (3)0.008 (2)0.008 (2)0.004 (2)
O10.069 (2)0.071 (2)0.079 (2)0.003 (2)0.016 (2)0.0113 (18)
O080.112 (3)0.059 (2)0.088 (3)0.015 (2)0.034 (3)0.0024 (18)
C1'0.052 (2)0.061 (3)0.063 (3)0.004 (2)0.012 (3)0.001 (2)
O40.070 (2)0.108 (3)0.150 (5)0.000 (3)0.012 (3)0.067 (3)
O00.120 (4)0.094 (3)0.070 (3)0.017 (3)0.036 (3)0.013 (2)
C1A0.063 (3)0.059 (3)0.071 (3)0.003 (3)0.006 (3)0.001 (2)
N20.066 (2)0.058 (2)0.072 (3)0.006 (2)0.018 (2)0.0061 (19)
C3'0.053 (3)0.075 (3)0.090 (4)0.004 (3)0.001 (3)0.025 (3)
C010.111 (5)0.060 (3)0.105 (5)0.012 (4)0.042 (5)0.008 (3)
C0'0.081 (3)0.057 (3)0.067 (3)0.005 (3)0.011 (3)0.005 (2)
C3A0.067 (3)0.074 (4)0.111 (5)0.005 (3)0.021 (4)0.032 (3)
C070.126 (6)0.083 (4)0.090 (4)0.039 (4)0.032 (4)0.004 (3)
Geometric parameters (Å, º) top
C02—C031.341 (15)N3—H30.96 (7)
C02—C011.364 (12)C2A—N21.435 (6)
C02—H020.9300C2A—C2'1.511 (7)
C3B—C3C1.501 (16)C2A—H2A10.9700
C3B—C3A1.540 (11)C2A—H2A20.9700
C3B—H3B10.9700N1—C0'1.333 (7)
C3B—H3B20.9700N1—C1A1.427 (6)
C06—C011.365 (12)N1—H10.8600
C06—C051.428 (19)O1—C1'1.244 (6)
C06—H060.9300O08—C0'1.331 (6)
C3C—C3D1.551 (17)O08—C071.436 (7)
C3C—H3C10.9700C1'—N21.317 (6)
C3C—H3C20.9700C1'—C1A1.513 (7)
C04—C051.28 (3)O4—C3'1.324 (7)
C04—C031.30 (2)O4—H40.8200
C04—H040.9300O0—C0'1.216 (6)
C05—H050.9300C1A—H1A10.9700
C03—H030.9300C1A—H1A20.9700
C3D—H3D10.9600N2—H20.8600
C3D—H3D20.9600C3'—C3A1.513 (8)
C3D—H3D30.9600C01—C071.499 (9)
O3—C3'1.185 (7)C3A—H3A1.01 (7)
O2—C2'1.214 (6)C07—H07A0.9700
N3—C2'1.343 (7)C07—H07B0.9700
N3—C3A1.452 (8)
C03—C02—C01120.1 (11)C0'—N1—C1A120.3 (4)
C03—C02—H02119.9C0'—N1—H1119.9
C01—C02—H02119.9C1A—N1—H1119.9
C3C—C3B—C3A114.2 (7)O2—C2'—N3123.0 (5)
C3C—C3B—H3B1108.7O2—C2'—C2A122.2 (5)
C3A—C3B—H3B1108.7N3—C2'—C2A114.8 (4)
C3C—C3B—H3B2108.7C0'—O08—C07118.6 (5)
C3A—C3B—H3B2108.7O1—C1'—N2121.8 (5)
H3B1—C3B—H3B2107.6O1—C1'—C1A121.0 (4)
C01—C06—C05118.7 (14)N2—C1'—C1A117.1 (5)
C01—C06—H06120.6C3'—O4—H4109.5
C05—C06—H06120.6N1—C1A—C1'113.8 (4)
C3B—C3C—C3D117.8 (13)N1—C1A—H1A1108.8
C3B—C3C—H3C1107.8C1'—C1A—H1A1108.8
C3D—C3C—H3C1107.8N1—C1A—H1A2108.8
C3B—C3C—H3C2107.8C1'—C1A—H1A2108.8
C3D—C3C—H3C2107.8H1A1—C1A—H1A2107.7
H3C1—C3C—H3C2107.2C1'—N2—C2A123.5 (4)
C05—C04—C03120.0 (17)C1'—N2—H2118.2
C05—C04—H04120.0C2A—N2—H2118.2
C03—C04—H04120.0O3—C3'—O4125.0 (5)
C04—C05—C06120.7 (17)O3—C3'—C3A124.5 (5)
C04—C05—H05119.6O4—C3'—C3A110.3 (5)
C06—C05—H05119.6C02—C01—C06117.2 (8)
C04—C03—C02123.2 (16)C02—C01—C07121.8 (8)
C04—C03—H03118.4C06—C01—C07121.0 (9)
C02—C03—H03118.4O0—C0'—N1124.4 (5)
C3C—C3D—H3D1109.5O0—C0'—O08123.4 (5)
C3C—C3D—H3D2109.5N1—C0'—O08112.2 (5)
H3D1—C3D—H3D2109.5N3—C3A—C3'109.7 (5)
C3C—C3D—H3D3109.5N3—C3A—C3B112.2 (6)
H3D1—C3D—H3D3109.5C3'—C3A—C3B111.3 (6)
H3D2—C3D—H3D3109.5N3—C3A—H3A107 (4)
C2'—N3—C3A120.6 (4)C3'—C3A—H3A114 (4)
C2'—N3—H3115 (4)C3B—C3A—H3A102 (4)
C3A—N3—H3124 (4)O08—C07—C01108.0 (5)
N2—C2A—C2'112.0 (4)O08—C07—H07A110.1
N2—C2A—H2A1109.2C01—C07—H07A110.1
C2'—C2A—H2A1109.2O08—C07—H07B110.1
N2—C2A—H2A2109.2C01—C07—H07B110.1
C2'—C2A—H2A2109.2H07A—C07—H07B108.4
H2A1—C2A—H2A2107.9
C3A—C3B—C3C—C3D171.1 (13)C05—C06—C01—C021.7 (16)
C03—C04—C05—C063 (3)C05—C06—C01—C07178.9 (11)
C01—C06—C05—C040 (3)C1A—N1—C0'—O014.0 (9)
C05—C04—C03—C024 (3)C1A—N1—C0'—O08167.9 (5)
C01—C02—C03—C042 (2)C07—O08—C0'—O01.1 (10)
C3A—N3—C2'—O20.0 (9)C07—O08—C0'—N1179.3 (6)
C3A—N3—C2'—C2A179.2 (5)C2'—N3—C3A—C3'152.6 (6)
N2—C2A—C2'—O25.3 (7)C2'—N3—C3A—C3B83.1 (8)
N2—C2A—C2'—N3175.5 (5)O3—C3'—C3A—N318.6 (10)
C0'—N1—C1A—C1'76.2 (7)O4—C3'—C3A—N3165.6 (6)
O1—C1'—C1A—N117.7 (7)O3—C3'—C3A—C3B106.2 (8)
N2—C1'—C1A—N1166.6 (4)O4—C3'—C3A—C3B69.7 (8)
O1—C1'—N2—C2A0.5 (8)C3C—C3B—C3A—N357.1 (9)
C1A—C1'—N2—C2A175.2 (4)C3C—C3B—C3A—C3'66.3 (9)
C2'—C2A—N2—C1'133.1 (5)C0'—O08—C07—C01173.7 (6)
C03—C02—C01—C061.0 (14)C02—C01—C07—O0887.8 (9)
C03—C02—C01—C07179.6 (9)C06—C01—C07—O0891.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.473.061 (6)127
N2—H2···O0ii0.862.062.891 (6)164
N3—H3···O2iii0.96 (7)2.36 (7)3.268 (6)159 (5)
O4—H4···O1iv0.821.832.593 (5)153
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.473.061 (6)127.0
N2—H2···O0ii0.862.062.891 (6)163.8
N3—H3···O2iii0.96 (7)2.36 (7)3.268 (6)159 (5)
O4—H4···O1iv0.821.832.593 (5)153.2
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The X-ray diffraction facility at IISc, Bangalore, is acknowledged. Financial Assistances from Indian Institute of Science, Bangalore, and Council of Scientific and Industrial Research (CSIR), India, are gratefully acknowledged.

References

First citationAlvarez-Carreño, C., Becerra, A. & Lazcano, A. (2013). Orig. Life Evol. Biosph. 43, 363–375.  PubMed Google Scholar
First citationAubry, A., Birlirakis, N., Sakarellos-Daitsiotis, M., Sakarellos, C. & Marraud, M. (1989). Biopolymers, 28, 27–40.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarle, I. L., Karle, J., Mastropaolo, D., Camerman, A. & Camerman, N. (1983). Acta Cryst. B39, 625–637.  CrossRef CAS IUCr Journals Google Scholar
First citationKisumi, M., Sugiura, M. & Chibata, I. (1976). J. Biochem. 80, 333–339.  CAS PubMed Google Scholar
First citationKisumi, M., Sugiura, M., Kato, J. & Chibata, I. (1976). J. Biochem. 79, 1021–1028.  CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamakrishnan, C. & Srinivasan, N. (1990). Curr. Sci. India, 59, 851–862.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, D. & Griffin, J. F. (1978). Science, 199, 1214–1216.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o216-o217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds