organic compounds
N-(benzyloxycarbonyl)glycylglycyl-L-norvaline
of the tripeptideaDept. of Physics, Indian Institute of Science, Bangalore 560012, India
*Correspondence e-mail: sumeshnicholas@gmail.com
The title tripeptide, C17H23N3O6, contains a nonproteinogenic C-terminal amino acid residue, norvaline, which is an isomer of the amino acid valine. Norvaline, unlike valine, has an unbranched side chain. The molecule has a Gly–Gly segment which adopts an extended conformation. The norvaline residue also adopts an extended backbone conformation while its side chain has a g+t conformation. In the N—H⋯O and O—H⋯O hydrogen bonds stabilize the packing. Molecules translated along the crystallographic a axis associate through an N—H⋯O hydrogen bond. The remaining three hydrogen bonds are between molecules related by a 21 screw axis.
Keywords: crystal structure; peptide; conformation; norvaline; glycine; hydrogen bonding.
CCDC reference: 1051240
1. Related literature
For information on the amino acid norvaline, see: Kisumi, Sugiura & Chibata (1976); Kisumi, Sugiura, Kato & Chibata (1976); Alvarez-Carreño et al. (2013). For the conformation of glycine residues in proteins and see: Ramakrishnan & Srinivasan (1990). For examples of the conformational flexibility of Gly–Gly segments in see: Smith et al. (1978); Karle et al. (1983); Aubry et al. (1989).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1051240
10.1107/S205698901500393X/rz5147sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500393X/rz5147Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901500393X/rz5147Isup3.docx
Supporting information file. DOI: 10.1107/S205698901500393X/rz5147Isup4.cml
Norvaline is a non-proteinogenic aminoacid with an unbranched side chain. It is an isomer of the β-turn and 310 helical structures (Karle et al., 1983; Smith & Griffin, 1978; Aubry et al., 1989). This demonstrates the conformational flexibility of consecutive glycine sequences.
aminoacid valine. It is postulated that norvaline has been an abundant protein component during primitive stages of cell evolution (Alvarez-Carreño et al., 2013). Norvaline is formed as a byproduct during isoleucine from threonine by Serratia marcescens (Kisumi, Sugiura & Chibata, 1976; Kisumi, Sugiura, Kato & Chibata, 1976). The title peptide contains a Gly-Gly segment. This structural study was undertaken as part of an endeavour to understand the conformational flexibility of consecutive glycine segments in short Due to the conformational freedom of glycine residues they are increasingly found in turns (Ramakrishnan & Srinivasan, 1990). In various polymorphic forms of Tyr-Gly-Gly-Phe-Leu, the Gly-Gly segment adopts extended conformation, type-I'The Gly-Gly segment of the protected tripeptide has an extended conformation with Gly(1) adopting torsion angle values ϕ1 = 76.2 (7)° and ψ1 = -166.6 (4)° and Gly(2) adopting torsion angle values ϕ2 = 133.1 (5)° and ψ2 = -175.5 (5)°. The norvaline residue adopts an extended conformation with torsion angle values ϕ3 = -152.6 (6)° and ψ3 = 165.6 (6)°. There are no intramolecular hydrogen bonds which stabilize the backbone conformation of the peptide molecule. The side chain of norvaline adopts a g+t conformation.
The packing in the
is stabilized by four intermolecular hydrogen bonds (Table 1). Molecules translated along the crystallographic a axis associate through a N—H···O hydrogen bond. The remaining three hydrogen bonds are between molecules related by a 21 screw axis.The title compound was purchased commercially. Needle-shaped crystals of the title compound were obtained by slow evaporation from methanol/water (1:1 v/v) solution.
The H-atoms bonded to N3 and C3A could be located from a difference Fourier map and refined freely. The remaining H-atoms were fixed geometrically in calculated positions and included in the
using a riding model approximation. The C—H distances were fixed at 0.97, 0.96 and 0.93 Å in case of hydrogens attached to methylene, methyl and aromatic carbon atoms, respectively. N–H and O–H distances were fixed at 0.86 and 0.82 Å, respectively. The isotropic displacement parameters Uiso for hydrogen atoms were set at 1.5 times the Ueq of the carrier atoms in case of methyl groups and hydroxyl groups. In case of hydrogens attached to aromatic carbons, methylene carbons and nitrogen atoms, Uiso was set at 1.2 times the Ueq of the carrier atoms. The anisotropic displacement parameters of the carbon atoms C3A, C3B, C3C and C3D were restrained to be equal within a of 0.01Å2 using the DELU command in SHELXL97 (Sheldrick, 2008). In the absence of significant effects, 1967 Friedel pairs were merged. The was known for the purchased material. The relatively high value of Rint (0.12) is due to the poor quality of the crystal available.Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Thermal ellipsoid plot of the title compound drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. | |
Fig. 2. Crystal packing of the title compound viewed down the a axis. Hydrogen bonds are represented as dotted lines. Hydrogen atoms, except those involved in hydrogen bonds, are omitted for clarity. |
C17H23N3O6 | Z = 4 |
Mr = 365.38 | F(000) = 776 |
Orthorhombic, P212121 | Dx = 1.290 Mg m−3 |
Hall symbol: P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9857 (6) Å | µ = 0.10 mm−1 |
b = 19.372 (2) Å | T = 293 K |
c = 19.476 (2) Å | Needle-shaped, colourless |
V = 1881.1 (4) Å3 | 0.6 × 0.1 × 0.1 mm |
Bruker Kappa APEXII CCD diffractometer | 2747 independent reflections |
Radiation source: fine-focus sealed tube | 1421 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.156 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −5→6 |
Tmin = 0.635, Tmax = 0.746 | k = −25→25 |
33216 measured reflections | l = −23→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.083 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.249 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1213P)2 + 0.3601P] where P = (Fo2 + 2Fc2)/3 |
2747 reflections | (Δ/σ)max < 0.001 |
243 parameters | Δρmax = 0.32 e Å−3 |
5 restraints | Δρmin = −0.23 e Å−3 |
C17H23N3O6 | V = 1881.1 (4) Å3 |
Mr = 365.38 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.9857 (6) Å | µ = 0.10 mm−1 |
b = 19.372 (2) Å | T = 293 K |
c = 19.476 (2) Å | 0.6 × 0.1 × 0.1 mm |
Bruker Kappa APEXII CCD diffractometer | 2747 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1421 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.746 | Rint = 0.156 |
33216 measured reflections |
R[F2 > 2σ(F2)] = 0.083 | 5 restraints |
wR(F2) = 0.249 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.32 e Å−3 |
2747 reflections | Δρmin = −0.23 e Å−3 |
243 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C02 | 1.389 (2) | 0.5256 (5) | 0.1660 (5) | 0.118 (3) | |
H02 | 1.4846 | 0.4846 | 0.1698 | 0.141* | |
C3B | 0.793 (2) | −0.1324 (4) | 0.1074 (5) | 0.120 (3) | |
H3B1 | 0.7123 | −0.1758 | 0.1212 | 0.144* | |
H3B2 | 0.6699 | −0.1099 | 0.0759 | 0.144* | |
C06 | 1.051 (3) | 0.5922 (5) | 0.1164 (6) | 0.161 (4) | |
H06 | 0.9095 | 0.5983 | 0.0860 | 0.194* | |
C3C | 1.050 (3) | −0.1472 (6) | 0.0703 (7) | 0.177 (5) | |
H3C1 | 1.1610 | −0.1754 | 0.1001 | 0.212* | |
H3C2 | 1.1434 | −0.1037 | 0.0638 | 0.212* | |
C04 | 1.327 (5) | 0.6385 (11) | 0.2032 (8) | 0.205 (11) | |
H04 | 1.3823 | 0.6749 | 0.2308 | 0.246* | |
C05 | 1.131 (5) | 0.6467 (6) | 0.1615 (11) | 0.227 (10) | |
H05 | 1.0399 | 0.6885 | 0.1605 | 0.272* | |
C03 | 1.449 (4) | 0.5791 (9) | 0.2068 (6) | 0.170 (6) | |
H03 | 1.5833 | 0.5736 | 0.2394 | 0.204* | |
C3D | 1.033 (5) | −0.1837 (12) | −0.0004 (9) | 0.326 (13) | |
H3D1 | 1.2106 | −0.1923 | −0.0174 | 0.489* | |
H3D2 | 0.9385 | −0.1546 | −0.0322 | 0.489* | |
H3D3 | 0.9389 | −0.2266 | 0.0045 | 0.489* | |
H3 | 1.140 (14) | −0.013 (3) | 0.156 (3) | 0.082 (18)* | |
H3A | 0.634 (15) | −0.076 (3) | 0.184 (3) | 0.085 (18)* | |
O3 | 1.2086 (8) | −0.1099 (2) | 0.2416 (2) | 0.0781 (11) | |
O2 | 0.5636 (8) | 0.0281 (2) | 0.1214 (2) | 0.0778 (11) | |
N3 | 0.9505 (9) | −0.0208 (2) | 0.1555 (3) | 0.0688 (12) | |
C2A | 0.9611 (10) | 0.0969 (2) | 0.1159 (3) | 0.0652 (13) | |
H2A1 | 1.0607 | 0.1104 | 0.1565 | 0.078* | |
H2A2 | 1.0892 | 0.0875 | 0.0796 | 0.078* | |
N1 | 0.6659 (10) | 0.3373 (2) | 0.1138 (2) | 0.0674 (11) | |
H1 | 0.5879 | 0.3575 | 0.1477 | 0.081* | |
C2' | 0.8037 (10) | 0.0320 (3) | 0.1312 (3) | 0.0593 (12) | |
O1 | 0.9811 (8) | 0.23128 (19) | 0.1640 (2) | 0.0730 (10) | |
O08 | 0.9223 (10) | 0.43006 (18) | 0.1063 (2) | 0.0864 (13) | |
C1' | 0.8092 (10) | 0.2157 (2) | 0.1204 (3) | 0.0586 (12) | |
O4 | 0.8419 (9) | −0.1744 (2) | 0.2531 (3) | 0.1091 (18) | |
H4 | 0.9301 | −0.1940 | 0.2828 | 0.164* | |
O0 | 0.9319 (11) | 0.3519 (2) | 0.0213 (2) | 0.0946 (15) | |
C1A | 0.5999 (11) | 0.2674 (2) | 0.0977 (3) | 0.0645 (13) | |
H1A1 | 0.5757 | 0.2635 | 0.0484 | 0.077* | |
H1A2 | 0.4304 | 0.2560 | 0.1193 | 0.077* | |
N2 | 0.7901 (9) | 0.1528 (2) | 0.0953 (2) | 0.0652 (11) | |
H2 | 0.6687 | 0.1447 | 0.0650 | 0.078* | |
C3' | 0.9838 (11) | −0.1230 (3) | 0.2268 (3) | 0.0727 (15) | |
C01 | 1.1876 (17) | 0.5311 (3) | 0.1188 (4) | 0.092 (2) | |
C0' | 0.8478 (13) | 0.3711 (3) | 0.0767 (3) | 0.0683 (14) | |
C3A | 0.8252 (14) | −0.0865 (3) | 0.1714 (4) | 0.0841 (17) | |
C07 | 1.1156 (18) | 0.4727 (3) | 0.0718 (4) | 0.100 (2) | |
H07A | 1.0404 | 0.4905 | 0.0294 | 0.120* | |
H07B | 1.2742 | 0.4460 | 0.0607 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C02 | 0.120 (6) | 0.132 (7) | 0.101 (6) | 0.005 (6) | 0.001 (6) | 0.002 (5) |
C3B | 0.131 (6) | 0.083 (4) | 0.145 (6) | −0.026 (4) | −0.064 (5) | 0.029 (4) |
C06 | 0.163 (9) | 0.094 (6) | 0.228 (12) | 0.020 (7) | 0.003 (11) | 0.006 (7) |
C3C | 0.150 (8) | 0.165 (9) | 0.215 (11) | 0.058 (8) | −0.072 (7) | −0.103 (9) |
C04 | 0.26 (2) | 0.206 (18) | 0.151 (12) | −0.117 (19) | 0.104 (14) | −0.084 (13) |
C05 | 0.26 (2) | 0.080 (7) | 0.34 (3) | −0.005 (11) | 0.09 (2) | −0.068 (11) |
C03 | 0.191 (13) | 0.209 (14) | 0.110 (8) | −0.065 (13) | 0.013 (8) | −0.043 (9) |
C3D | 0.30 (2) | 0.42 (3) | 0.255 (19) | 0.06 (3) | −0.050 (19) | −0.17 (2) |
O3 | 0.062 (2) | 0.103 (3) | 0.069 (2) | 0.005 (2) | 0.0027 (19) | 0.023 (2) |
O2 | 0.062 (2) | 0.078 (2) | 0.093 (3) | 0.0043 (19) | −0.012 (2) | 0.018 (2) |
N3 | 0.052 (2) | 0.062 (3) | 0.092 (3) | 0.004 (2) | −0.009 (2) | 0.017 (2) |
C2A | 0.059 (3) | 0.057 (3) | 0.080 (3) | 0.004 (2) | −0.010 (3) | 0.001 (2) |
N1 | 0.079 (3) | 0.056 (2) | 0.067 (3) | 0.003 (2) | 0.019 (2) | −0.0038 (19) |
C2' | 0.052 (3) | 0.065 (3) | 0.061 (3) | 0.008 (2) | −0.008 (2) | −0.004 (2) |
O1 | 0.069 (2) | 0.071 (2) | 0.079 (2) | −0.003 (2) | −0.016 (2) | −0.0113 (18) |
O08 | 0.112 (3) | 0.059 (2) | 0.088 (3) | −0.015 (2) | 0.034 (3) | −0.0024 (18) |
C1' | 0.052 (2) | 0.061 (3) | 0.063 (3) | −0.004 (2) | 0.012 (3) | 0.001 (2) |
O4 | 0.070 (2) | 0.108 (3) | 0.150 (5) | 0.000 (3) | −0.012 (3) | 0.067 (3) |
O0 | 0.120 (4) | 0.094 (3) | 0.070 (3) | −0.017 (3) | 0.036 (3) | −0.013 (2) |
C1A | 0.063 (3) | 0.059 (3) | 0.071 (3) | 0.003 (3) | 0.006 (3) | 0.001 (2) |
N2 | 0.066 (2) | 0.058 (2) | 0.072 (3) | 0.006 (2) | −0.018 (2) | −0.0061 (19) |
C3' | 0.053 (3) | 0.075 (3) | 0.090 (4) | 0.004 (3) | 0.001 (3) | 0.025 (3) |
C01 | 0.111 (5) | 0.060 (3) | 0.105 (5) | −0.012 (4) | 0.042 (5) | 0.008 (3) |
C0' | 0.081 (3) | 0.057 (3) | 0.067 (3) | −0.005 (3) | 0.011 (3) | 0.005 (2) |
C3A | 0.067 (3) | 0.074 (4) | 0.111 (5) | −0.005 (3) | −0.021 (4) | 0.032 (3) |
C07 | 0.126 (6) | 0.083 (4) | 0.090 (4) | −0.039 (4) | 0.032 (4) | −0.004 (3) |
C02—C03 | 1.341 (15) | N3—H3 | 0.96 (7) |
C02—C01 | 1.364 (12) | C2A—N2 | 1.435 (6) |
C02—H02 | 0.9300 | C2A—C2' | 1.511 (7) |
C3B—C3C | 1.501 (16) | C2A—H2A1 | 0.9700 |
C3B—C3A | 1.540 (11) | C2A—H2A2 | 0.9700 |
C3B—H3B1 | 0.9700 | N1—C0' | 1.333 (7) |
C3B—H3B2 | 0.9700 | N1—C1A | 1.427 (6) |
C06—C01 | 1.365 (12) | N1—H1 | 0.8600 |
C06—C05 | 1.428 (19) | O1—C1' | 1.244 (6) |
C06—H06 | 0.9300 | O08—C0' | 1.331 (6) |
C3C—C3D | 1.551 (17) | O08—C07 | 1.436 (7) |
C3C—H3C1 | 0.9700 | C1'—N2 | 1.317 (6) |
C3C—H3C2 | 0.9700 | C1'—C1A | 1.513 (7) |
C04—C05 | 1.28 (3) | O4—C3' | 1.324 (7) |
C04—C03 | 1.30 (2) | O4—H4 | 0.8200 |
C04—H04 | 0.9300 | O0—C0' | 1.216 (6) |
C05—H05 | 0.9300 | C1A—H1A1 | 0.9700 |
C03—H03 | 0.9300 | C1A—H1A2 | 0.9700 |
C3D—H3D1 | 0.9600 | N2—H2 | 0.8600 |
C3D—H3D2 | 0.9600 | C3'—C3A | 1.513 (8) |
C3D—H3D3 | 0.9600 | C01—C07 | 1.499 (9) |
O3—C3' | 1.185 (7) | C3A—H3A | 1.01 (7) |
O2—C2' | 1.214 (6) | C07—H07A | 0.9700 |
N3—C2' | 1.343 (7) | C07—H07B | 0.9700 |
N3—C3A | 1.452 (8) | ||
C03—C02—C01 | 120.1 (11) | C0'—N1—C1A | 120.3 (4) |
C03—C02—H02 | 119.9 | C0'—N1—H1 | 119.9 |
C01—C02—H02 | 119.9 | C1A—N1—H1 | 119.9 |
C3C—C3B—C3A | 114.2 (7) | O2—C2'—N3 | 123.0 (5) |
C3C—C3B—H3B1 | 108.7 | O2—C2'—C2A | 122.2 (5) |
C3A—C3B—H3B1 | 108.7 | N3—C2'—C2A | 114.8 (4) |
C3C—C3B—H3B2 | 108.7 | C0'—O08—C07 | 118.6 (5) |
C3A—C3B—H3B2 | 108.7 | O1—C1'—N2 | 121.8 (5) |
H3B1—C3B—H3B2 | 107.6 | O1—C1'—C1A | 121.0 (4) |
C01—C06—C05 | 118.7 (14) | N2—C1'—C1A | 117.1 (5) |
C01—C06—H06 | 120.6 | C3'—O4—H4 | 109.5 |
C05—C06—H06 | 120.6 | N1—C1A—C1' | 113.8 (4) |
C3B—C3C—C3D | 117.8 (13) | N1—C1A—H1A1 | 108.8 |
C3B—C3C—H3C1 | 107.8 | C1'—C1A—H1A1 | 108.8 |
C3D—C3C—H3C1 | 107.8 | N1—C1A—H1A2 | 108.8 |
C3B—C3C—H3C2 | 107.8 | C1'—C1A—H1A2 | 108.8 |
C3D—C3C—H3C2 | 107.8 | H1A1—C1A—H1A2 | 107.7 |
H3C1—C3C—H3C2 | 107.2 | C1'—N2—C2A | 123.5 (4) |
C05—C04—C03 | 120.0 (17) | C1'—N2—H2 | 118.2 |
C05—C04—H04 | 120.0 | C2A—N2—H2 | 118.2 |
C03—C04—H04 | 120.0 | O3—C3'—O4 | 125.0 (5) |
C04—C05—C06 | 120.7 (17) | O3—C3'—C3A | 124.5 (5) |
C04—C05—H05 | 119.6 | O4—C3'—C3A | 110.3 (5) |
C06—C05—H05 | 119.6 | C02—C01—C06 | 117.2 (8) |
C04—C03—C02 | 123.2 (16) | C02—C01—C07 | 121.8 (8) |
C04—C03—H03 | 118.4 | C06—C01—C07 | 121.0 (9) |
C02—C03—H03 | 118.4 | O0—C0'—N1 | 124.4 (5) |
C3C—C3D—H3D1 | 109.5 | O0—C0'—O08 | 123.4 (5) |
C3C—C3D—H3D2 | 109.5 | N1—C0'—O08 | 112.2 (5) |
H3D1—C3D—H3D2 | 109.5 | N3—C3A—C3' | 109.7 (5) |
C3C—C3D—H3D3 | 109.5 | N3—C3A—C3B | 112.2 (6) |
H3D1—C3D—H3D3 | 109.5 | C3'—C3A—C3B | 111.3 (6) |
H3D2—C3D—H3D3 | 109.5 | N3—C3A—H3A | 107 (4) |
C2'—N3—C3A | 120.6 (4) | C3'—C3A—H3A | 114 (4) |
C2'—N3—H3 | 115 (4) | C3B—C3A—H3A | 102 (4) |
C3A—N3—H3 | 124 (4) | O08—C07—C01 | 108.0 (5) |
N2—C2A—C2' | 112.0 (4) | O08—C07—H07A | 110.1 |
N2—C2A—H2A1 | 109.2 | C01—C07—H07A | 110.1 |
C2'—C2A—H2A1 | 109.2 | O08—C07—H07B | 110.1 |
N2—C2A—H2A2 | 109.2 | C01—C07—H07B | 110.1 |
C2'—C2A—H2A2 | 109.2 | H07A—C07—H07B | 108.4 |
H2A1—C2A—H2A2 | 107.9 | ||
C3A—C3B—C3C—C3D | −171.1 (13) | C05—C06—C01—C02 | 1.7 (16) |
C03—C04—C05—C06 | −3 (3) | C05—C06—C01—C07 | −178.9 (11) |
C01—C06—C05—C04 | 0 (3) | C1A—N1—C0'—O0 | 14.0 (9) |
C05—C04—C03—C02 | 4 (3) | C1A—N1—C0'—O08 | −167.9 (5) |
C01—C02—C03—C04 | −2 (2) | C07—O08—C0'—O0 | −1.1 (10) |
C3A—N3—C2'—O2 | 0.0 (9) | C07—O08—C0'—N1 | −179.3 (6) |
C3A—N3—C2'—C2A | −179.2 (5) | C2'—N3—C3A—C3' | −152.6 (6) |
N2—C2A—C2'—O2 | 5.3 (7) | C2'—N3—C3A—C3B | 83.1 (8) |
N2—C2A—C2'—N3 | −175.5 (5) | O3—C3'—C3A—N3 | −18.6 (10) |
C0'—N1—C1A—C1' | 76.2 (7) | O4—C3'—C3A—N3 | 165.6 (6) |
O1—C1'—C1A—N1 | 17.7 (7) | O3—C3'—C3A—C3B | 106.2 (8) |
N2—C1'—C1A—N1 | −166.6 (4) | O4—C3'—C3A—C3B | −69.7 (8) |
O1—C1'—N2—C2A | 0.5 (8) | C3C—C3B—C3A—N3 | 57.1 (9) |
C1A—C1'—N2—C2A | −175.2 (4) | C3C—C3B—C3A—C3' | −66.3 (9) |
C2'—C2A—N2—C1' | 133.1 (5) | C0'—O08—C07—C01 | −173.7 (6) |
C03—C02—C01—C06 | −1.0 (14) | C02—C01—C07—O08 | 87.8 (9) |
C03—C02—C01—C07 | 179.6 (9) | C06—C01—C07—O08 | −91.5 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.47 | 3.061 (6) | 127 |
N2—H2···O0ii | 0.86 | 2.06 | 2.891 (6) | 164 |
N3—H3···O2iii | 0.96 (7) | 2.36 (7) | 3.268 (6) | 159 (5) |
O4—H4···O1iv | 0.82 | 1.83 | 2.593 (5) | 153 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z; (iii) x+1, y, z; (iv) −x+2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.47 | 3.061 (6) | 127.0 |
N2—H2···O0ii | 0.86 | 2.06 | 2.891 (6) | 163.8 |
N3—H3···O2iii | 0.96 (7) | 2.36 (7) | 3.268 (6) | 159 (5) |
O4—H4···O1iv | 0.82 | 1.83 | 2.593 (5) | 153.2 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z; (iii) x+1, y, z; (iv) −x+2, y−1/2, −z+1/2. |
Acknowledgements
The X-ray diffraction facility at IISc, Bangalore, is acknowledged. Financial Assistances from Indian Institute of Science, Bangalore, and Council of Scientific and Industrial Research (CSIR), India, are gratefully acknowledged.
References
Alvarez-Carreño, C., Becerra, A. & Lazcano, A. (2013). Orig. Life Evol. Biosph. 43, 363–375. PubMed Google Scholar
Aubry, A., Birlirakis, N., Sakarellos-Daitsiotis, M., Sakarellos, C. & Marraud, M. (1989). Biopolymers, 28, 27–40. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A. & Camerman, N. (1983). Acta Cryst. B39, 625–637. CrossRef CAS IUCr Journals Google Scholar
Kisumi, M., Sugiura, M. & Chibata, I. (1976). J. Biochem. 80, 333–339. CAS PubMed Google Scholar
Kisumi, M., Sugiura, M., Kato, J. & Chibata, I. (1976). J. Biochem. 79, 1021–1028. CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ramakrishnan, C. & Srinivasan, N. (1990). Curr. Sci. India, 59, 851–862. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, D. & Griffin, J. F. (1978). Science, 199, 1214–1216. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.