research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 258-260

Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­­(naphthalen-2-ol)

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra 30 No. 45-03, Bogotá, Colombia, and bInstitut für Anorganische Chemie, Goethe-Universität, Max-von-Laue-Strasse 7, Frankfurt/Main D-60438, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 24 January 2015; accepted 30 January 2015; online 7 February 2015)

The crystal structure of the title compound, C25H24N2O2, at 173 K has monoclinic (C2/c) symmetry. The mol­ecule is located on a crystallographic twofold rotation axis with only half a mol­ecule in the asymmetric unit. The imidazolidine ring adopts a twist conformation, with a twist about the ring C—C bond. The crystal structure shows the anti­clinal disposition of the two (2-hy­droxy­naphthalen-1-yl)methyl substituents of the imidazolidine ring. The structure displays two intra­molecular O—H⋯N hydrogen bonds, each forming an S(6) ring motif.

1. Chemical context

We have been inter­ested in the synthesis and characterization of a family of symmetrical N,N′-disubstituted imidazolidines by the use of a Mannich-type condensation of cyclic cage aminals with phenols in a one-pot reaction. The main structural feature of the symmetrical N,N′-disubstituted imidazolidines, the so-called aromatic di-Mannich bases, is to form intra­molecular hydrogen bonds that reveal great structural and thermodynamic stability. These di-Mannich bases which contain a phenolic or naphtho­lic hydroxyl group as a proton donor, as well as an ortho-amino­methyl group as a proton acceptor in the same mol­ecule are convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions (Koll et al., 2006[Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55-64.]).

[Scheme 1]

In previous studies (Rivera et al., 2006[Rivera, A., Ríos-Motta, J. & Navarro, M. A. (2006). Heterocycles, 68, 531-537.]), 1,1′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(naphthalen-2-ol), (I)[link], was obtained in good yields by an one-pot Mannich-type reaction involving 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and naph­thalen-2-ol in classical solvents for Mannich reactions, such as dioxane or ethanol. Intriguingly, reactions of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) with naphthalen-2-ol may lead to other results. It has been found (Rivera & Quevedo, 2013[Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416-1420.]) that inter­action of TATD with naphthalen-2-ol in solvent-free conditions by heating in an oil bath a 1:4 mixture with stirring at 423 K for 20 min gives 1,1′-methyl­enebis(naphthalen-2-ol) in good yields. On the other hand, the reactions of TATD with naphthalen-2-ol under solvent-free microwave-assisted conditions yields the title compound and no formation of 1,1′-methyl­enebis(naphthalen-2-ol) was observed. In contrast to classical Mannich reaction conditions this reaction required neither solvent nor inert atmosphere conditions.

2. Structural commentary

In contrast to the closely related structure (Rivera et al., 2012a[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170-o171.]), which crystallized in the monoclinic P21/n space group, the title compound crystallizes in the C2/c space group. The mol­ecular structure is shown in Fig. 1[link]. The asymmetric unit contains one half mol­ecule and the whole mol­ecule is generated by twofold rotational symmetry (see Fig. 1[link]). The near planarity of the fused aromatic ring system is illustrated by the very small deviation of all the atoms from the plane [largest deviation = 0.0227 (17) Å for atom C11]. The imidazolidine ring (C1/N1/C2/C2′/N1′) is in a twisted conformation on C2—C2′, with puckering parameters Q(2) = 0.4126 (17) Å and φ(2) = 126.0 (2)° (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The crystal structure shows the anti­clinal disposition of the two (2-hy­droxy­naphthalen-1-yl)methyl substituents of the imidazolidine ring [pseudo-torsion angle CH2—N⋯N—CH2 = −121.77 (18)°]. The mean plane of the imidazolidine ring, defined by atoms N1, C1 and N1′, makes a dihedral angle of 70.92 (4)° with the pendant aromatic rings (C11–C20). The dihedral angle between the planes of the naphthyl rings is 60.55 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix `A' are generated using the symmetry operator (−x + 1, y, −z + [{1\over 2}]).

As with related structures in this series, the mol­ecular conformation is stabilized by two intra­molecular O—H⋯N hydrogen-bond inter­actions with S(6) graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Due to symmetry and contrary to other structures, where hydrogen-bond distances were different, the two observed intra­molecular hydrogen-bond distances were identical (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.05 (2) 1.65 (2) 2.6143 (19) 151.0 (19)
C2—H2A⋯O1i 0.99 2.64 3.257 (2) 121
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].

3. Supra­molecular features

Unlike the situation found in related structures, there is only one significant inter­molecular inter­action involving the O—H group (as acceptor) and a methyl­ene-H atom (as donor) to consolidate the crystal packing. These weak inter­actions led to the formation of parallel sets of zigzag chains extending along the c axis of the crystal (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, howing one of the zigzag chains that extend along the crystal c-axis direction. Hydrogen bonds are drawn as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the fragment 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol yielded seven hits, namely 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(4-tert-butyl­phenol) (Rivera, Nerio & Bolte, 2013[Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.]), 2,2′-[imidazolidine-1,3-diyl­bis(methyl­ene)]bis­(4-chloro­phenol) (Rivera et al., 2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.]), 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­[4-(2,4,4-tri­methyl­pen­tan-2-yl)phenol] (Kober et al., 2012[Kober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188-5192.]), 4,4′-di­fluoro-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012b[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043-o3044.]) 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(6-methyl­phenol) (Rivera et al., 2014[Rivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243.]), 2,2′-[imidazolidine-1,3-diyl­bis(methyl­ene)]diphenol (Rivera et al., 2012b[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043-o3044.]) and 4,4′-di­methyl-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012c[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.]). In all of these compounds, the hy­droxy groups in the ortho position of the aromatic ring form an intra­molecular hydrogen bond to an N atom of the imidazoline ring.

5. Synthesis and crystallization

The title compound has been synthesized in solution according to a literature procedure (Rivera et al., 2006[Rivera, A., Ríos-Motta, J. & Navarro, M. A. (2006). Heterocycles, 68, 531-537.]); however, in this instance, the synthesis was carried out under microwave-assisted solvent free conditions. A mixture of 1 mmol of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and 2 mmol of naphthalen-2-ol was subjected to microwave irradiation (200 W) for 10 min at a temperature of 373 K. The product was washed with water and then with benzene (yield 94%, m.p. 435–436 K). Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in the difference electron-density map. The hy­droxy H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding model, with Uiso(H) values set at 1.2Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C25H24N2O2
Mr 384.46
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 34.883 (5), 8.3956 (9), 6.5830 (8)
β (°) 95.650 (11)
V3) 1918.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.19 × 0.17 × 0.11
 
Data collection
Diffractometer Stoe IPDS II two circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.972, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 8297, 1852, 1451
Rint 0.090
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.159, 1.09
No. of reflections 1852
No. of parameters 136
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.23
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

We have been inter­ested in the synthesis and characterization of a family of symmetrical N,N'-disubstituted imidazolidines by the use of a Mannich-type condensation of cyclic cage aminals with phenols in a one-pot reaction. The main structural feature of the symmetrical N,N'-disubstituted imidazolidines, the so-called aromatic di-Mannich bases, is to form intra­molecular hydrogen bonds that reveal great structural and thermodynamic stability. These di-Mannich bases which contain a phenolic or naphtho­lic hydroxyl group as a proton donor, as well as an ortho-amino­methyl group as a proton acceptor in the same molecule are convenient models for studying the nature of hydrogen bonding and other weak noncovalent inter­actions (Koll et al., 2006). In previous studies (Rivera et al., 2006), 1,1'-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(naphthalen-2-ol), (I), was obtained in good yields by an one-pot Mannich-type reaction involving 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) and naphthalen-2-ol in classical solvents for Mannich reactions, such as dioxane or ethanol. Intriguingly, reactions of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) with naphthalen-2-ol may lead to other results. It has been found (Rivera & Quevedo, 2013) that inter­action of TATD with naphthalen-2-ol in solvent-free conditions by heating in an oil bath a 1:4 mixture with stirring at 423 K for 20 min gives 1,1'-methyl­enebis(naphthalen-2-ol) in good yields. On the other hand, the reactions of TATD with naphthalen-2-ol under solvent-free microwave-assisted conditions yields the title compound and no formation of 1,1'-methyl­enebis(naphthalen-2-ol) was observed. In contrast to classical Mannich reaction conditions this reaction required neither solvent nor inert atmosphere conditions.

Structural commentary top

In contrast to the closely related structure (Rivera et al., 2012a), which crystallized in the monoclinic P21/n space group, the title compound crystallizes in the C2/c space group. The molecular structure is shown in Fig. 1. The asymmetric unit contains one half molecule and the whole molecule is generated by twofold rotational symmetry (see Fig. 1). The planarity of the aromatic ring is illustrated by the very small deviation of all the atoms from the plane [largest deviation = 0.0227 (17) Å for atom C11]. The imidazolidine ring (C1/N1/C2/C2'/N1') is in a twisted conformation on C2—C2', with puckering parameters Q(2) = 0.4126 (17) Å and ϕ(2) = 126.0 (2)° (Cremer & Pople, 1975). The crystal structure shows the anti­clinal disposition of the two (2-hy­droxy­naphthalen-1-yl)methyl substituents of the imidazolidine ring [pseudo-torsion angle CH2—N···N—CH2 = -121.77 (18)°]. The mean plane of the imidazolidine ring, defined by atoms N1, C1 and N1', makes a dihedral angle of 70.92 (4)° with the pendant aromatic rings (C11–C20). The dihedral angle between the planes of the naphthyl rings is 60.55 (4)°.

As with related structures in this series, the molecular conformation is stabilized by two intra­molecular O—H···N hydrogen-bond inter­actions with S(6) graph-set motifs (Bernstein et al., 1995). Due to symmetry and contrary to other structures, where hydrogen-bond distances were different, the two observed intra­molecular hydrogen-bond distances were identical (Table 1).

Supra­molecular features top

Unlike the situation found in related structures, there is only one significant inter­molecular inter­action involving the O—H group and a methyl­ene H atom to consolidate the crystal packing. These weak inter­actions led to the formation of parallel sets of zigzag chains extending along the c axis of the crystal (Fig. 2).

Database survey top

A search in the Cambridge Structural Database (Groom & Allen, 2014) for the fragment 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol yielded seven hits, namely 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(4-tert-butyl­phenol) (Rivera, Nerio & Bolte, 2013), 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(4-chloro­phenol) (Rivera et al., 2011), 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]bis­[4-(2,4,4-tri­methyl­pentan-2-yl)phenol] (Kober et al., 2012), 4,4'-di­fluoro-2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012b) 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(6-methyl­phenol) (Rivera et al., 2014), 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012b) and 4,4'-di­methyl-2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol, (Rivera et al., 2012c). In all of these, the hy­droxy groups in the ortho position of the aromatic ring form an intra­molecular hydrogen bond to an N atom of the imidazoline ring.

Synthesis and crystallization top

The title compound has been synthesized in solution according to a literature procedure (Rivera et al., 2006); however, in this instance, the synthesis was carried out under microwave-assisted solvent free conditions. A mixture of 1 mmol of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) and 2 mmol of naphthalen-2-ol was subjected to microwave irradiation (200 W) for 10 min at a temperature of 373 K. The product was washed with water and benzene (yield 94%, m.p. 435–436 K). Crystals suitable for X-ray diffraction were obtained from MeOH upon slow evaporation of the solvent at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in the difference electron-density map. The hy­droxy H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with Uiso(H) values set at 1.2Ueq of the parent atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix `a' are generated using the symmetry operator (-x+1, y, -z+1/2).
[Figure 2] Fig. 2. The crystal packing of the title compound , howing one of the zigzag chains that extend along the crystal c-axis direction. Hydrogen bonds are drawn as dashed lines.
1-({3-[(2-Hydroxynaphthalen-1-yl)methyl]imidazolidin-1-yl}methyl)naphthalen-2-ol top
Crystal data top
C25H24N2O2F(000) = 816
Mr = 384.46Dx = 1.331 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 34.883 (5) ÅCell parameters from 8026 reflections
b = 8.3956 (9) Åθ = 2.4–26.2°
c = 6.5830 (8) ŵ = 0.09 mm1
β = 95.650 (11)°T = 173 K
V = 1918.6 (4) Å3Block, colourless
Z = 40.19 × 0.17 × 0.11 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1451 reflections with I > 2σ(I)
ω scansRint = 0.090
Absorption correction: multi-scan
X-AREA (Stoe & Cie, 2001)
θmax = 26.0°, θmin = 2.5°
Tmin = 0.972, Tmax = 0.989h = 4234
8297 measured reflectionsk = 1010
1852 independent reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.085P)2 + 0.4089P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1852 reflectionsΔρmax = 0.24 e Å3
136 parametersΔρmin = 0.23 e Å3
Crystal data top
C25H24N2O2V = 1918.6 (4) Å3
Mr = 384.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 34.883 (5) ŵ = 0.09 mm1
b = 8.3956 (9) ÅT = 173 K
c = 6.5830 (8) Å0.19 × 0.17 × 0.11 mm
β = 95.650 (11)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1852 independent reflections
Absorption correction: multi-scan
X-AREA (Stoe & Cie, 2001)
1451 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.989Rint = 0.090
8297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
1852 reflectionsΔρmin = 0.23 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45368 (4)0.77294 (16)0.70176 (19)0.0507 (4)
H10.4677 (6)0.723 (3)0.583 (4)0.061 (6)*
N10.47179 (4)0.69601 (18)0.3384 (2)0.0455 (4)
C10.50000.5948 (4)0.25000.0627 (8)
H1A0.51320.52580.35700.075*0.5
H1B0.48680.52580.14300.075*0.5
C20.47856 (5)0.8543 (2)0.2548 (2)0.0488 (5)
H2A0.47070.93960.34590.059*
H2B0.46460.86780.11750.059*
C30.43203 (5)0.6374 (2)0.2997 (3)0.0491 (5)
H3A0.43190.52120.32490.059*
H3B0.42310.65490.15400.059*
C110.40403 (5)0.7157 (2)0.4287 (2)0.0437 (4)
C120.41619 (5)0.7796 (2)0.6188 (2)0.0446 (4)
C130.38994 (6)0.8541 (2)0.7379 (3)0.0511 (5)
H130.39900.89930.86600.061*
C140.35197 (6)0.8623 (2)0.6724 (3)0.0541 (5)
H140.33480.91490.75360.065*
C150.33758 (5)0.7931 (2)0.4833 (3)0.0499 (5)
C160.29795 (6)0.7964 (3)0.4150 (3)0.0611 (6)
H160.28050.84890.49480.073*
C170.28426 (6)0.7252 (3)0.2355 (3)0.0682 (6)
H170.25750.72860.19100.082*
C180.30975 (6)0.6476 (3)0.1178 (3)0.0662 (6)
H180.30010.59650.00550.079*
C190.34828 (6)0.6438 (3)0.1770 (3)0.0545 (5)
H190.36500.59080.09380.065*
C200.36387 (5)0.7181 (2)0.3618 (2)0.0455 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0588 (8)0.0562 (8)0.0367 (6)0.0007 (6)0.0024 (5)0.0039 (5)
N10.0551 (9)0.0469 (8)0.0350 (7)0.0057 (6)0.0072 (6)0.0001 (6)
C10.0688 (18)0.0559 (17)0.0670 (17)0.0000.0256 (14)0.000
C20.0617 (11)0.0505 (11)0.0342 (8)0.0027 (8)0.0047 (7)0.0023 (7)
C30.0615 (12)0.0496 (10)0.0364 (8)0.0001 (8)0.0061 (7)0.0058 (7)
C110.0590 (11)0.0412 (9)0.0318 (8)0.0009 (8)0.0086 (7)0.0016 (6)
C120.0574 (11)0.0438 (10)0.0331 (8)0.0026 (7)0.0067 (7)0.0024 (6)
C130.0676 (12)0.0525 (11)0.0342 (8)0.0042 (9)0.0098 (8)0.0063 (7)
C140.0667 (12)0.0548 (11)0.0436 (9)0.0030 (9)0.0192 (8)0.0039 (8)
C150.0570 (11)0.0539 (11)0.0399 (9)0.0012 (8)0.0107 (7)0.0054 (7)
C160.0597 (12)0.0746 (14)0.0508 (11)0.0032 (10)0.0141 (9)0.0079 (9)
C170.0549 (12)0.0951 (18)0.0539 (12)0.0018 (11)0.0020 (9)0.0091 (11)
C180.0678 (14)0.0890 (16)0.0409 (10)0.0065 (12)0.0010 (9)0.0002 (10)
C190.0614 (12)0.0646 (12)0.0376 (9)0.0022 (9)0.0055 (8)0.0020 (8)
C200.0602 (11)0.0455 (10)0.0316 (8)0.0021 (8)0.0082 (7)0.0036 (6)
Geometric parameters (Å, º) top
O1—C121.368 (2)C12—C131.409 (3)
O1—H11.05 (2)C13—C141.354 (3)
N1—C11.464 (2)C13—H130.9500
N1—C21.467 (2)C14—C151.420 (3)
N1—C31.470 (2)C14—H140.9500
C1—N1i1.464 (2)C15—C161.411 (3)
C1—H1A0.9900C15—C201.422 (3)
C1—H1B0.9900C16—C171.368 (3)
C2—C2i1.503 (4)C16—H160.9500
C2—H2A0.9900C17—C181.397 (3)
C2—H2B0.9900C17—H170.9500
C3—C111.507 (2)C18—C191.362 (3)
C3—H3A0.9900C18—H180.9500
C3—H3B0.9900C19—C201.427 (2)
C11—C121.389 (2)C19—H190.9500
C11—C201.427 (3)
C12—O1—H1102.4 (12)O1—C12—C13116.36 (15)
C1—N1—C2103.73 (15)C11—C12—C13121.01 (17)
C1—N1—C3113.36 (14)C14—C13—C12120.94 (16)
C2—N1—C3114.98 (14)C14—C13—H13119.5
N1i—C1—N1109.0 (2)C12—C13—H13119.5
N1i—C1—H1A109.9C13—C14—C15120.60 (17)
N1—C1—H1A109.9C13—C14—H14119.7
N1i—C1—H1B109.9C15—C14—H14119.7
N1—C1—H1B109.9C16—C15—C14121.46 (18)
H1A—C1—H1B108.3C16—C15—C20119.72 (18)
N1—C2—C2i102.34 (10)C14—C15—C20118.82 (18)
N1—C2—H2A111.3C17—C16—C15120.9 (2)
C2i—C2—H2A111.3C17—C16—H16119.5
N1—C2—H2B111.3C15—C16—H16119.5
C2i—C2—H2B111.3C16—C17—C18119.7 (2)
H2A—C2—H2B109.2C16—C17—H17120.1
N1—C3—C11114.13 (14)C18—C17—H17120.1
N1—C3—H3A108.7C19—C18—C17121.1 (2)
C11—C3—H3A108.7C19—C18—H18119.5
N1—C3—H3B108.7C17—C18—H18119.5
C11—C3—H3B108.7C18—C19—C20121.08 (19)
H3A—C3—H3B107.6C18—C19—H19119.5
C12—C11—C20118.43 (16)C20—C19—H19119.5
C12—C11—C3121.27 (17)C15—C20—C11120.07 (16)
C20—C11—C3120.22 (15)C15—C20—C19117.41 (18)
O1—C12—C11122.62 (16)C11—C20—C19122.50 (17)
C2—N1—C1—N1i13.70 (8)C13—C14—C15—C201.4 (3)
C3—N1—C1—N1i139.08 (14)C14—C15—C16—C17178.1 (2)
C1—N1—C2—C2i34.89 (17)C20—C15—C16—C171.6 (3)
C3—N1—C2—C2i159.24 (14)C15—C16—C17—C180.2 (4)
C1—N1—C3—C11166.25 (14)C16—C17—C18—C191.2 (4)
C2—N1—C3—C1174.64 (18)C17—C18—C19—C200.4 (3)
N1—C3—C11—C1226.7 (2)C16—C15—C20—C11179.33 (16)
N1—C3—C11—C20156.64 (15)C14—C15—C20—C111.0 (3)
C20—C11—C12—O1175.45 (15)C16—C15—C20—C192.2 (3)
C3—C11—C12—O11.3 (3)C14—C15—C20—C19177.39 (17)
C20—C11—C12—C133.9 (3)C12—C11—C20—C153.6 (3)
C3—C11—C12—C13179.33 (16)C3—C11—C20—C15179.57 (16)
O1—C12—C13—C14177.87 (16)C12—C11—C20—C19174.69 (17)
C11—C12—C13—C141.5 (3)C3—C11—C20—C192.1 (3)
C12—C13—C14—C151.2 (3)C18—C19—C20—C151.3 (3)
C13—C14—C15—C16178.20 (18)C18—C19—C20—C11179.66 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.05 (2)1.65 (2)2.6143 (19)151.0 (19)
C2—H2A···O1ii0.992.643.257 (2)121
Symmetry code: (ii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.05 (2)1.65 (2)2.6143 (19)151.0 (19)
C2—H2A···O1i0.992.643.257 (2)120.6
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H24N2O2
Mr384.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)34.883 (5), 8.3956 (9), 6.5830 (8)
β (°) 95.650 (11)
V3)1918.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.17 × 0.11
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
X-AREA (Stoe & Cie, 2001)
Tmin, Tmax0.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8297, 1852, 1451
Rint0.090
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.159, 1.09
No. of reflections1852
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

 

Acknowledgements

We acknowledge the financial support provided to us by the Dirección de Investigación, Sede Bogotá (DIB) at the Universidad Nacional de Colombia through the research project No. 19151 (Code QUIPU 201010020518). JJR thanks COLCIENCIAS for a fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188–5192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKoll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043–o3044.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J. & Navarro, M. A. (2006). Heterocycles, 68, 531–537.  CrossRef CAS Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 258-260
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds