organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o190-o191

Crystal structure of 2-{[(naphthalen-1-yl)­oxy]meth­yl}-5-(2,4,5-tri­fluoro­phen­yl)-1,3,4-oxa­diazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anna University, Chennai 600 025, India, bOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: kathsubramanianannauniv@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 2 February 2015; accepted 15 February 2015; online 21 February 2015)

In the title compound C19H11F3N2O2, the oxa­diazole ring and the naphthalene ring system are approximately planar (r.m.s. deviations of 0.001 and 0.020 Å, respectively) and the oxa­diazole ring makes dihedral angles of 13.11 (1) and 7.59 (1)° with the naphthalene ring system and the tri­fluoro­phenyl ring, respectively. In the crystal, C—H⋯N hydrogen bonds link mol­ecules into chains along the a-axis direction, while C—H⋯F contacts form additional chains along the ac diagonal. These contacts generate sheets of mol­ecules approximately parallel to the (011) plane.

1. Related literature

For the biological activity and other applications of triazole derivatives, see: Desai et al. (2014[Desai, N. C., Dodiya, A. M., Rajpara, K. M. & Rupala, Y. M. (2014). J. Saudi Chem. Soc. 18, 255-261.]); Bhat et al. (2011[Bhat, K. I., Sufeera, K. & Sunil Kumar, P. C. (2011). J. Young Pharm. 3, 310-314.]); Katrin et al. (2005[Katrin, B., Heinz, H. P. & Klaus, R. (2005). Arch. Pharm. Chem. Life Sci. 338, 78-86.]); Shailaja et al. (2010[Shailaja, M., Anitha, M., Manujla, A. & Vittal, R. B. (2010). Indian J. Chem. Sect. B, 49, 1088-1097.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H11F3N2O2

  • Mr = 356.30

  • Triclinic, [P \overline 1]

  • a = 7.4817 (5) Å

  • b = 7.5928 (5) Å

  • c = 15.7908 (10) Å

  • α = 78.673 (3)°

  • β = 78.404 (3)°

  • γ = 65.370 (3)°

  • V = 792.36 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.25 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.988

  • 11539 measured reflections

  • 3330 independent reflections

  • 2402 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.04

  • 3330 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.93 2.61 3.449 (3) 151
C5—H5⋯F2ii 0.93 2.51 3.290 (3) 141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3,4-Oxadiazoles are a class of 5-membered heterocyclic compounds that have a wide range of biological activity as well as polymer and material science applications (Shailaja et al., 2010). Their derivatives are commonly used pharmacophores due to their metabolic profile and ability to engage in hydrogen bonding. Their pharmaceutical applications include use as anti-inflammatory, analgesic, anti-HIV, antimycobacterial agents, cathepsin K, tyrosinase and monoamine oxidase (MAO) inhibitors (Desai et al., 2014). They are also used as anticonvulsant, anticancer, antifungal and tuberculostatic drugs (Bhat et al.,2011). They also have analgesic, antiplatelet and antithrombotic activities (Katrin et al., 2005). Moreover, their amino derivatives are very commonly used as antimicrobial and germicidal agents.

In the title compound C19H11N2O2F3, Fig. 1, the oxadiazole, napthalene and trifluorophenyl rings are planar and the oxadiazole ring (C12/N1/N2/C13/O2) makes dihedral angles of 13.11 (1)° and 7.59 (1)° with the naphthalene (C1-C10) ring system and the trifluorophenyl (C14—C19) ring respectively. The fluorine F1, F2 and F3 atoms deviate from the benzene ring by -0.0017 Å, 0.0175 Å and -0.0163 Å respectively.

In the crystal C1–H1···N2 hydrogen bonds link molecules into chains along a while C5–H5···F2 contacts form additional chains along the ac diagonal. These contacts generate sheets of molecules approximately parallel to the (011) plane. Within these sheets groups of four molecules form R44(37) ring motifs.

Related literature top

For the biological activity and other applications of triazole derivatives, see: Desai et al. (2014); Bhat et al. (2011); Katrin et al. (2005); Shailaja et al. (2010).

Experimental top

Iodobenzene diacetate (2.0 mol eq) was added to a solution of naphthalen-1-yloxy-acetic acid (2, 4, 5-trifluoro-benzylidene)-hydrazide (1.0 mole eq) in dioxane (10mL) at 25-30 ° C and stirred at the same temperature for 15-30 minutes. Completion of the reaction was confirmed by TLC (mobile phase ethyl acetate/hexane, 3:7). The dioxane was distilled off under vacuum. The resulting residue was dissolved in ethyl acetate and washed with saturated sodium bicarbonate solution, followed by water and brine solution. The separated organic layer was dried over anhydrous sodium sulfate and distilled under vacuum. The crude product was purified by column chromatography over silica gel (60-120 mesh) using hexane and ethyl acetate (9:1) as eluent to afford the pure product of as an off-white solid. After purification the compound was crystallized from methanol by the slow evaporation method.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å, refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis H-atoms not involved in H-bonds have been excluded for clarity.
2-{[(Naphthalen-1-yl)oxy]methyl}-5-(2,4,5-trifluorophenyl)-1,3,4-oxadiazole top
Crystal data top
C19H11F3N2O2Z = 2
Mr = 356.30F(000) = 364
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4817 (5) ÅCell parameters from 3330 reflections
b = 7.5928 (5) Åθ = 1.3–26.8°
c = 15.7908 (10) ŵ = 0.12 mm1
α = 78.673 (3)°T = 293 K
β = 78.404 (3)°Block, colourless
γ = 65.370 (3)°0.25 × 0.15 × 0.10 mm
V = 792.36 (9) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 26.8°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.970, Tmax = 0.988k = 99
11539 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2065P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3330 reflectionsΔρmax = 0.22 e Å3
236 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.006 (2)
Crystal data top
C19H11F3N2O2γ = 65.370 (3)°
Mr = 356.30V = 792.36 (9) Å3
Triclinic, P1Z = 2
a = 7.4817 (5) ÅMo Kα radiation
b = 7.5928 (5) ŵ = 0.12 mm1
c = 15.7908 (10) ÅT = 293 K
α = 78.673 (3)°0.25 × 0.15 × 0.10 mm
β = 78.404 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2402 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.031
11539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3330 reflectionsΔρmin = 0.31 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4888 (3)0.3315 (3)0.37814 (13)0.0588 (5)
H10.51140.28020.43540.071*
C20.6415 (3)0.3567 (3)0.31604 (15)0.0691 (6)
H20.76560.32120.33260.083*
C30.6121 (3)0.4313 (3)0.23273 (14)0.0673 (5)
H30.71680.44390.19250.081*
C40.4239 (3)0.4907 (3)0.20584 (12)0.0543 (5)
C50.3867 (3)0.5717 (3)0.12011 (13)0.0670 (5)
H50.48910.58620.07890.080*
C60.2045 (4)0.6293 (3)0.09616 (14)0.0744 (6)
H60.18300.68290.03900.089*
C70.0489 (3)0.6080 (3)0.15737 (14)0.0699 (6)
H70.07590.64830.14060.084*
C80.0783 (3)0.5289 (3)0.24135 (13)0.0578 (5)
H80.02650.51580.28140.069*
C90.2666 (3)0.4668 (2)0.26779 (11)0.0474 (4)
C100.3070 (3)0.3827 (2)0.35414 (11)0.0483 (4)
C110.1842 (3)0.2579 (3)0.49334 (11)0.0540 (4)
H11A0.20630.33650.52850.065*
H11B0.29980.13610.48980.065*
C120.0033 (3)0.2197 (2)0.53195 (11)0.0491 (4)
C130.1893 (3)0.1278 (2)0.63030 (12)0.0516 (4)
C140.2556 (3)0.0518 (3)0.71692 (12)0.0595 (5)
C150.1309 (4)0.0186 (3)0.78032 (14)0.0767 (6)
H150.00470.01680.76790.092*
C160.1951 (6)0.0916 (4)0.86218 (16)0.1020 (10)
C170.3818 (6)0.0941 (4)0.88135 (19)0.1061 (12)
C180.5058 (5)0.0245 (4)0.8207 (2)0.1034 (11)
H180.63230.02540.83420.124*
C190.4444 (4)0.0477 (3)0.73917 (17)0.0761 (7)
N10.1442 (3)0.2435 (2)0.49547 (10)0.0622 (4)
N20.2727 (2)0.1818 (2)0.56086 (11)0.0620 (4)
O10.14915 (18)0.35881 (19)0.40929 (8)0.0582 (4)
O20.01186 (18)0.14762 (17)0.61719 (7)0.0520 (3)
F10.0726 (4)0.1601 (3)0.92306 (11)0.1607 (9)
F20.4342 (4)0.1687 (3)0.96228 (11)0.1684 (11)
F30.5703 (2)0.1171 (3)0.68014 (13)0.1095 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0581 (11)0.0638 (11)0.0548 (11)0.0257 (9)0.0118 (9)0.0004 (9)
C20.0548 (11)0.0827 (14)0.0737 (14)0.0332 (10)0.0113 (10)0.0018 (11)
C30.0564 (11)0.0796 (13)0.0672 (13)0.0357 (10)0.0033 (10)0.0038 (10)
C40.0632 (11)0.0516 (9)0.0494 (10)0.0280 (8)0.0000 (8)0.0044 (8)
C50.0804 (14)0.0697 (12)0.0523 (11)0.0389 (11)0.0030 (10)0.0017 (9)
C60.0996 (18)0.0763 (14)0.0483 (11)0.0395 (13)0.0165 (11)0.0081 (10)
C70.0737 (13)0.0743 (13)0.0643 (13)0.0317 (11)0.0240 (11)0.0069 (10)
C80.0586 (11)0.0608 (11)0.0557 (11)0.0285 (9)0.0075 (9)0.0000 (8)
C90.0538 (10)0.0431 (8)0.0461 (9)0.0215 (7)0.0049 (7)0.0038 (7)
C100.0498 (10)0.0478 (9)0.0468 (10)0.0212 (7)0.0020 (8)0.0047 (7)
C110.0594 (11)0.0543 (10)0.0452 (10)0.0225 (8)0.0082 (8)0.0021 (8)
C120.0587 (10)0.0461 (9)0.0404 (9)0.0205 (8)0.0072 (8)0.0006 (7)
C130.0597 (11)0.0440 (9)0.0495 (10)0.0213 (8)0.0028 (8)0.0049 (7)
C140.0797 (13)0.0438 (9)0.0496 (11)0.0250 (9)0.0047 (9)0.0061 (8)
C150.1047 (18)0.0658 (12)0.0487 (12)0.0290 (12)0.0033 (11)0.0001 (9)
C160.170 (3)0.0668 (14)0.0494 (13)0.0327 (17)0.0085 (17)0.0005 (11)
C170.174 (3)0.0633 (14)0.0662 (17)0.0576 (18)0.047 (2)0.0151 (12)
C180.130 (3)0.0742 (16)0.100 (2)0.0583 (17)0.0498 (19)0.0246 (15)
C190.0887 (16)0.0575 (12)0.0788 (15)0.0364 (11)0.0182 (13)0.0137 (11)
N10.0677 (10)0.0713 (10)0.0480 (9)0.0315 (8)0.0122 (8)0.0060 (7)
N20.0668 (10)0.0677 (10)0.0549 (10)0.0327 (8)0.0108 (8)0.0020 (8)
O10.0534 (7)0.0692 (8)0.0444 (7)0.0241 (6)0.0046 (5)0.0083 (6)
O20.0606 (8)0.0538 (7)0.0410 (7)0.0243 (6)0.0080 (5)0.0010 (5)
F10.249 (3)0.1436 (16)0.0596 (10)0.0549 (17)0.0400 (13)0.0235 (10)
F20.303 (3)0.1016 (12)0.0759 (11)0.1005 (16)0.0777 (14)0.0141 (9)
F30.0853 (10)0.1222 (13)0.1295 (14)0.0566 (9)0.0005 (10)0.0139 (11)
Geometric parameters (Å, º) top
C1—C101.361 (3)C11—C121.487 (3)
C1—C21.401 (3)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.349 (3)C12—N11.277 (2)
C2—H20.9300C12—O21.351 (2)
C3—C41.415 (3)C13—N21.283 (2)
C3—H30.9300C13—O21.368 (2)
C4—C51.404 (3)C13—C141.451 (3)
C4—C91.421 (2)C14—C151.381 (3)
C5—C61.355 (3)C14—C191.398 (3)
C5—H50.9300C15—C161.378 (3)
C6—C71.400 (3)C15—H150.9300
C6—H60.9300C16—F11.340 (4)
C7—C81.364 (3)C16—C171.376 (5)
C7—H70.9300C17—F21.344 (3)
C8—C91.410 (3)C17—C181.344 (5)
C8—H80.9300C18—C191.366 (4)
C9—C101.422 (2)C18—H180.9300
C10—O11.375 (2)C19—F31.334 (3)
C11—O11.411 (2)N1—N21.413 (2)
C10—C1—C2119.51 (18)C12—C11—H11A110.5
C10—C1—H1120.2O1—C11—H11B110.5
C2—C1—H1120.2C12—C11—H11B110.5
C3—C2—C1121.32 (19)H11A—C11—H11B108.7
C3—C2—H2119.3N1—C12—O2113.26 (16)
C1—C2—H2119.3N1—C12—C11129.06 (16)
C2—C3—C4120.79 (18)O2—C12—C11117.67 (15)
C2—C3—H3119.6N2—C13—O2112.38 (16)
C4—C3—H3119.6N2—C13—C14129.71 (19)
C5—C4—C3122.47 (18)O2—C13—C14117.91 (17)
C5—C4—C9118.68 (18)C15—C14—C19118.1 (2)
C3—C4—C9118.85 (18)C15—C14—C13120.0 (2)
C6—C5—C4121.36 (19)C19—C14—C13122.0 (2)
C6—C5—H5119.3C16—C15—C14119.4 (3)
C4—C5—H5119.3C16—C15—H15120.3
C5—C6—C7120.0 (2)C14—C15—H15120.3
C5—C6—H6120.0F1—C16—C17120.4 (3)
C7—C6—H6120.0F1—C16—C15118.9 (3)
C8—C7—C6120.7 (2)C17—C16—C15120.7 (3)
C8—C7—H7119.6F2—C17—C18121.7 (4)
C6—C7—H7119.6F2—C17—C16117.6 (4)
C7—C8—C9120.36 (18)C18—C17—C16120.7 (3)
C7—C8—H8119.8C17—C18—C19119.4 (3)
C9—C8—H8119.8C17—C18—H18120.3
C8—C9—C4118.84 (17)C19—C18—H18120.3
C8—C9—C10123.12 (16)F3—C19—C18118.4 (3)
C4—C9—C10118.04 (16)F3—C19—C14119.9 (2)
C1—C10—O1124.10 (16)C18—C19—C14121.7 (3)
C1—C10—C9121.46 (16)C12—N1—N2105.99 (15)
O1—C10—C9114.45 (15)C13—N2—N1106.01 (15)
O1—C11—C12106.06 (14)C10—O1—C11117.48 (14)
O1—C11—H11A110.5C12—O2—C13102.37 (13)
C10—C1—C2—C30.2 (3)C13—C14—C15—C16179.59 (18)
C1—C2—C3—C41.4 (3)C14—C15—C16—F1179.8 (2)
C2—C3—C4—C5179.02 (19)C14—C15—C16—C170.3 (4)
C2—C3—C4—C91.2 (3)F1—C16—C17—F20.6 (4)
C3—C4—C5—C6179.3 (2)C15—C16—C17—F2179.5 (2)
C9—C4—C5—C60.9 (3)F1—C16—C17—C18179.6 (2)
C4—C5—C6—C70.2 (3)C15—C16—C17—C180.3 (4)
C5—C6—C7—C80.3 (3)F2—C17—C18—C19179.3 (2)
C6—C7—C8—C90.1 (3)C16—C17—C18—C190.6 (4)
C7—C8—C9—C40.9 (3)C17—C18—C19—F3179.6 (2)
C7—C8—C9—C10179.79 (17)C17—C18—C19—C140.2 (4)
C5—C4—C9—C81.3 (3)C15—C14—C19—F3179.00 (19)
C3—C4—C9—C8178.98 (17)C13—C14—C19—F30.7 (3)
C5—C4—C9—C10179.36 (16)C15—C14—C19—C180.4 (3)
C3—C4—C9—C100.4 (2)C13—C14—C19—C18179.84 (19)
C2—C1—C10—O1178.07 (17)O2—C12—N1—N20.3 (2)
C2—C1—C10—C91.9 (3)C11—C12—N1—N2178.92 (17)
C8—C9—C10—C1177.39 (17)O2—C13—N2—N10.1 (2)
C4—C9—C10—C12.0 (2)C14—C13—N2—N1179.94 (17)
C8—C9—C10—O12.7 (2)C12—N1—N2—C130.2 (2)
C4—C9—C10—O1177.99 (14)C1—C10—O1—C116.4 (3)
O1—C11—C12—N19.7 (3)C9—C10—O1—C11173.59 (14)
O1—C11—C12—O2171.20 (14)C12—C11—O1—C10169.31 (14)
N2—C13—C14—C15172.59 (19)N1—C12—O2—C130.18 (19)
O2—C13—C14—C157.3 (3)C11—C12—O2—C13179.10 (14)
N2—C13—C14—C197.7 (3)N2—C13—O2—C120.01 (19)
O2—C13—C14—C19172.39 (16)C14—C13—O2—C12179.92 (14)
C19—C14—C15—C160.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.613.449 (3)151
C5—H5···F2ii0.932.513.290 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.613.449 (3)151
C5—H5···F2ii0.932.513.290 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1.
 

Acknowledgements

MG thanks the management of Orchid Chemicals & Pharmaceuticals Ltd for their support. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBhat, K. I., Sufeera, K. & Sunil Kumar, P. C. (2011). J. Young Pharm. 3, 310–314.  CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. C., Dodiya, A. M., Rajpara, K. M. & Rupala, Y. M. (2014). J. Saudi Chem. Soc. 18, 255–261.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatrin, B., Heinz, H. P. & Klaus, R. (2005). Arch. Pharm. Chem. Life Sci. 338, 78–86.  Google Scholar
First citationShailaja, M., Anitha, M., Manujla, A. & Vittal, R. B. (2010). Indian J. Chem. Sect. B, 49, 1088–1097.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o190-o191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds