organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o173-o174

Crystal structure of 1-(2-chloro­acet­yl)-3,3-di­methyl-2,6-di-p-tolyl­piperidin-4-one

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab., Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India, and bDivision of Life Sciences, Central Instrumentation Facility, Institute of Advanced Study in Science & Technology (IASST), Guwahati 781 035, Assam, India
*Correspondence e-mail: kabilanchem60@rediffmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 January 2015; accepted 7 February 2015; online 13 February 2015)

In the title compound, C23H26ClNO2, the piperidin-4-one ring adopts a distorted boat conformation. The two p-tolyl rings are nearly normal to each other, making a dihedral angle of 83.33 (10)°. They are inclined to the mean plane of the piperidine ring by 73.2 (1) and 87.22 (9)°. In the crystal, there are no significant inter­molecular inter­actions present.

1. Related literature

For some biological properties of piperidones, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). For the synthesis of the title compound, see: Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153-1163.]). For further literature on piperidones and the crystal structures of similar compounds, see: Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]); Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833-4840.]); Krishnakumar & Krishnapillay (1996[Krishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418-425.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H26ClNO2

  • Mr = 383.90

  • Monoclinic, C 2/c

  • a = 18.7923 (6) Å

  • b = 18.8289 (5) Å

  • c = 11.6689 (3) Å

  • β = 93.162 (2)°

  • V = 4122.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.959

  • 29055 measured reflections

  • 3989 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.03

  • 3989 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic properties (Dimmock et al., 2001). They were also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001). The present investigation was undertaken to establish the structure, conformation of the heterocyclic ring and orientation of the 4-tolyl groups in the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. The sum of the bond angles around atom N1 is 359.39° indicating sp2 hybridization. The N1—C22 [1.349 (2) Å] and C22—O1[1.218 (2) Å] bond distances indicate electron delocalization. The six membered piperidine ring (N1/C15-C19) adopts a distorted boat conformation. The two p-tolyl rings are nearly orthogonal to each other with a dihedral angle of 83.33 (10)°. The methyl substituents are oriented equatorially [N1—C15—C16—C20 = 175 (16)°] and axially [N1—C15—C16—C21 = 56.52 (19)°] at the C3 position. The two p-tolyl (C2-C7 and C8-C13) are inclined to the mean plane of the piperidine ring by 73.2 (1) and 87.22 (9) °, respectively.

In the crystal, there are no significant intermolecular interactions present.

Related literature top

For some biological properties of piperidones, see: Dimmock et al. (2001); Perumal et al. (2001). For the synthesis of the title compound, see: Aridoss et al. (2007). For further literature on piperidones and the crystal structures of similar compounds, see: Parthiban et al. (2009); Ravindran et al. (1991); Krishnakumar & Krishnapillay (1996).

Experimental top

The title compound was synthesized according to a published procedure (Aridoss et al., 2007). To a well stirred solution of 3, 3-dimethyl-2, 6-di-p-tolyl piperidin-4-one (5 mmol), and triethylamine (5 mmol) in 20 ml of benzene, dichloroacetylchloride (5 mmol) in 20 ml of benzene was added drop wise through the additional funnel over ca. 30 min. Stirring was continued with mild heating using a magnetic stirrer for 7 h. The progress of the reaction was monitored by TLC. After completion of reaction, the mixture was poured into water and extracted with ether. The collected ether extracts were then washed well with 3% sodium bicarbonate solution and dried over anhydrous Na2SO4. The pasty mass obtained was purified by crystallization from distilled ethanol giving the compound in pure form as colourless block-like crystals.

Refinement top

H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
1-(2-Chloroacetyl)-3,3-dimethyl-2,6-di-p-tolylpiperidin-4-one top
Crystal data top
C23H26ClNO2F(000) = 1632
Mr = 383.90Dx = 1.237 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8523 reflections
a = 18.7923 (6) Åθ = 2.3–25.5°
b = 18.8289 (5) ŵ = 0.20 mm1
c = 11.6689 (3) ÅT = 296 K
β = 93.162 (2)°Block, colourless
V = 4122.6 (2) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3989 independent reflections
Radiation source: fine-focus sealed tube3097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 25.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2322
Tmin = 0.931, Tmax = 0.959k = 2323
29055 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2 + 3.5027P]
where P = (Fo2 + 2Fc2)/3
3989 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H26ClNO2V = 4122.6 (2) Å3
Mr = 383.90Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.7923 (6) ŵ = 0.20 mm1
b = 18.8289 (5) ÅT = 296 K
c = 11.6689 (3) Å0.35 × 0.30 × 0.25 mm
β = 93.162 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3097 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.959Rint = 0.028
29055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3989 reflectionsΔρmin = 0.22 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.99934 (14)0.15212 (14)0.4159 (3)0.0785 (8)
H1A0.97620.11180.38020.118*
H1B1.00970.14230.49590.118*
H1C1.04290.16160.37950.118*
C20.95102 (11)0.21596 (11)0.40374 (19)0.0516 (5)
C30.97183 (11)0.28078 (11)0.44787 (18)0.0532 (5)
H31.01690.28540.48410.064*
C40.92751 (10)0.33922 (10)0.43974 (17)0.0466 (5)
H40.94310.38230.47110.056*
C50.86037 (9)0.33477 (9)0.38582 (15)0.0372 (4)
C60.83961 (11)0.26980 (10)0.34030 (19)0.0519 (5)
H60.79490.26520.30290.062*
C70.88421 (12)0.21166 (11)0.3495 (2)0.0603 (6)
H70.86880.16850.31830.072*
C80.67209 (9)0.34288 (10)0.22260 (15)0.0399 (4)
C90.68688 (10)0.30852 (12)0.12166 (17)0.0501 (5)
H90.71180.33260.06690.060*
C100.66551 (12)0.23935 (12)0.1004 (2)0.0580 (6)
H100.67700.21770.03220.070*
C110.62763 (11)0.20178 (11)0.1777 (2)0.0540 (5)
C120.61085 (12)0.23649 (12)0.27655 (19)0.0607 (6)
H120.58420.21290.32960.073*
C130.63251 (11)0.30541 (12)0.29906 (18)0.0529 (5)
H130.62030.32710.36680.064*
C140.60485 (15)0.12615 (13)0.1559 (3)0.0794 (8)
H14A0.57920.10930.21940.119*
H14B0.64620.09700.14750.119*
H14C0.57470.12390.08690.119*
C150.70211 (9)0.41716 (10)0.24177 (16)0.0388 (4)
H150.69400.44220.16860.047*
C160.66973 (10)0.46453 (10)0.33298 (16)0.0433 (4)
C170.68764 (10)0.43549 (10)0.45226 (16)0.0426 (4)
C180.75270 (10)0.38867 (10)0.46625 (16)0.0449 (4)
H18A0.73700.33960.46110.054*
H18B0.77380.39580.54320.054*
C190.81131 (9)0.39888 (9)0.38170 (15)0.0369 (4)
H190.83970.44020.40710.044*
C200.58947 (11)0.47386 (14)0.3074 (2)0.0619 (6)
H20A0.58100.49230.23120.093*
H20B0.57100.50640.36180.093*
H20C0.56610.42880.31340.093*
C210.70482 (13)0.53857 (11)0.33111 (19)0.0565 (5)
H21A0.69530.56000.25720.085*
H21B0.75540.53390.34590.085*
H21C0.68560.56800.38910.085*
C220.82141 (10)0.43472 (10)0.17806 (16)0.0419 (4)
C230.90131 (10)0.43746 (11)0.20559 (18)0.0494 (5)
H23A0.92060.38970.20520.059*
H23B0.91060.45700.28190.059*
N10.78074 (7)0.41404 (8)0.26376 (12)0.0364 (3)
O10.79731 (8)0.44923 (10)0.08186 (12)0.0640 (4)
O20.65195 (8)0.44814 (8)0.53268 (12)0.0578 (4)
Cl10.94435 (3)0.48999 (3)0.10507 (5)0.05769 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0700 (16)0.0599 (15)0.106 (2)0.0246 (12)0.0088 (15)0.0049 (14)
C20.0500 (12)0.0459 (11)0.0597 (13)0.0105 (9)0.0113 (10)0.0060 (10)
C30.0437 (11)0.0577 (13)0.0573 (13)0.0083 (9)0.0054 (9)0.0013 (10)
C40.0461 (10)0.0427 (11)0.0499 (11)0.0013 (8)0.0072 (8)0.0017 (9)
C50.0391 (9)0.0377 (9)0.0348 (9)0.0004 (7)0.0019 (7)0.0050 (7)
C60.0448 (11)0.0429 (11)0.0669 (14)0.0011 (9)0.0084 (9)0.0048 (10)
C70.0619 (14)0.0384 (11)0.0804 (16)0.0004 (10)0.0013 (12)0.0094 (10)
C80.0325 (9)0.0502 (11)0.0366 (9)0.0013 (8)0.0010 (7)0.0024 (8)
C90.0458 (11)0.0631 (13)0.0421 (11)0.0107 (9)0.0082 (8)0.0081 (9)
C100.0530 (12)0.0657 (14)0.0558 (13)0.0064 (10)0.0087 (10)0.0222 (11)
C110.0475 (11)0.0507 (12)0.0632 (14)0.0044 (9)0.0033 (10)0.0054 (10)
C120.0657 (14)0.0617 (14)0.0556 (13)0.0186 (11)0.0106 (11)0.0026 (11)
C130.0562 (12)0.0604 (13)0.0432 (11)0.0132 (10)0.0111 (9)0.0082 (9)
C140.0800 (17)0.0545 (14)0.103 (2)0.0098 (13)0.0022 (15)0.0091 (14)
C150.0326 (9)0.0460 (10)0.0373 (9)0.0011 (7)0.0022 (7)0.0009 (8)
C160.0405 (10)0.0446 (10)0.0442 (11)0.0056 (8)0.0030 (8)0.0038 (8)
C170.0431 (10)0.0423 (10)0.0427 (10)0.0013 (8)0.0033 (8)0.0077 (8)
C180.0504 (11)0.0487 (11)0.0355 (10)0.0053 (9)0.0011 (8)0.0014 (8)
C190.0391 (9)0.0370 (9)0.0339 (9)0.0012 (7)0.0044 (7)0.0012 (7)
C200.0449 (12)0.0752 (15)0.0650 (14)0.0169 (11)0.0015 (10)0.0091 (12)
C210.0664 (14)0.0447 (11)0.0574 (13)0.0061 (10)0.0057 (11)0.0001 (10)
C220.0396 (10)0.0468 (10)0.0392 (10)0.0015 (8)0.0002 (8)0.0064 (8)
C230.0396 (10)0.0571 (12)0.0516 (12)0.0056 (9)0.0025 (8)0.0161 (10)
N10.0324 (7)0.0433 (8)0.0331 (8)0.0007 (6)0.0022 (6)0.0033 (6)
O10.0448 (8)0.1056 (13)0.0410 (8)0.0026 (8)0.0019 (6)0.0212 (8)
O20.0571 (9)0.0680 (10)0.0495 (8)0.0061 (7)0.0138 (7)0.0085 (7)
Cl10.0489 (3)0.0632 (3)0.0617 (3)0.0087 (2)0.0092 (2)0.0175 (3)
Geometric parameters (Å, º) top
C1—C21.508 (3)C14—H14B0.9600
C1—H1A0.9600C14—H14C0.9600
C1—H1B0.9600C15—N11.487 (2)
C1—H1C0.9600C15—C161.540 (3)
C2—C31.373 (3)C15—H150.9800
C2—C71.377 (3)C16—C171.516 (3)
C3—C41.380 (3)C16—C201.531 (3)
C3—H30.9300C16—C211.543 (3)
C4—C51.381 (3)C17—O21.207 (2)
C4—H40.9300C17—C181.509 (3)
C5—C61.381 (3)C18—C191.531 (3)
C5—C191.518 (2)C18—H18A0.9700
C6—C71.379 (3)C18—H18B0.9700
C6—H60.9300C19—N11.489 (2)
C7—H70.9300C19—H190.9800
C8—C91.385 (3)C20—H20A0.9600
C8—C131.386 (3)C20—H20B0.9600
C8—C151.520 (3)C20—H20C0.9600
C9—C101.381 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.376 (3)C21—H21C0.9600
C10—H100.9300C22—O11.218 (2)
C11—C121.377 (3)C22—N11.349 (2)
C11—C141.505 (3)C22—C231.519 (3)
C12—C131.381 (3)C23—Cl11.7644 (19)
C12—H120.9300C23—H23A0.9700
C13—H130.9300C23—H23B0.9700
C14—H14A0.9600
C2—C1—H1A109.5C8—C15—C16118.50 (15)
C2—C1—H1B109.5N1—C15—H15106.0
H1A—C1—H1B109.5C8—C15—H15106.0
C2—C1—H1C109.5C16—C15—H15106.0
H1A—C1—H1C109.5C17—C16—C20112.73 (17)
H1B—C1—H1C109.5C17—C16—C15110.46 (15)
C3—C2—C7117.28 (18)C20—C16—C15110.77 (16)
C3—C2—C1121.0 (2)C17—C16—C21105.40 (15)
C7—C2—C1121.7 (2)C20—C16—C21108.11 (17)
C2—C3—C4121.64 (19)C15—C16—C21109.16 (16)
C2—C3—H3119.2O2—C17—C18120.85 (18)
C4—C3—H3119.2O2—C17—C16122.55 (18)
C3—C4—C5121.03 (18)C18—C17—C16116.60 (16)
C3—C4—H4119.5C17—C18—C19117.67 (16)
C5—C4—H4119.5C17—C18—H18A107.9
C4—C5—C6117.42 (17)C19—C18—H18A107.9
C4—C5—C19120.27 (16)C17—C18—H18B107.9
C6—C5—C19122.27 (16)C19—C18—H18B107.9
C7—C6—C5121.02 (19)H18A—C18—H18B107.2
C7—C6—H6119.5N1—C19—C5112.60 (14)
C5—C6—H6119.5N1—C19—C18111.41 (14)
C2—C7—C6121.6 (2)C5—C19—C18109.69 (14)
C2—C7—H7119.2N1—C19—H19107.6
C6—C7—H7119.2C5—C19—H19107.6
C9—C8—C13116.72 (18)C18—C19—H19107.6
C9—C8—C15117.68 (17)C16—C20—H20A109.5
C13—C8—C15125.58 (17)C16—C20—H20B109.5
C10—C9—C8121.54 (19)H20A—C20—H20B109.5
C10—C9—H9119.2C16—C20—H20C109.5
C8—C9—H9119.2H20A—C20—H20C109.5
C11—C10—C9121.5 (2)H20B—C20—H20C109.5
C11—C10—H10119.2C16—C21—H21A109.5
C9—C10—H10119.2C16—C21—H21B109.5
C10—C11—C12117.13 (19)H21A—C21—H21B109.5
C10—C11—C14121.9 (2)C16—C21—H21C109.5
C12—C11—C14121.0 (2)H21A—C21—H21C109.5
C11—C12—C13121.8 (2)H21B—C21—H21C109.5
C11—C12—H12119.1O1—C22—N1123.42 (17)
C13—C12—H12119.1O1—C22—C23120.02 (17)
C12—C13—C8121.27 (19)N1—C22—C23116.54 (15)
C12—C13—H13119.4C22—C23—Cl1111.25 (13)
C8—C13—H13119.4C22—C23—H23A109.4
C11—C14—H14A109.5Cl1—C23—H23A109.4
C11—C14—H14B109.5C22—C23—H23B109.4
H14A—C14—H14B109.5Cl1—C23—H23B109.4
C11—C14—H14C109.5H23A—C23—H23B108.0
H14A—C14—H14C109.5C22—N1—C15117.32 (14)
H14B—C14—H14C109.5C22—N1—C19122.34 (14)
N1—C15—C8110.26 (14)C15—N1—C19119.73 (14)
N1—C15—C16109.30 (14)
C7—C2—C3—C40.8 (3)C8—C15—C16—C21176.06 (15)
C1—C2—C3—C4178.4 (2)C20—C16—C17—O231.5 (3)
C2—C3—C4—C50.5 (3)C15—C16—C17—O2156.03 (18)
C3—C4—C5—C60.2 (3)C21—C16—C17—O286.2 (2)
C3—C4—C5—C19177.66 (18)C20—C16—C17—C18147.89 (18)
C4—C5—C6—C70.6 (3)C15—C16—C17—C1823.4 (2)
C19—C5—C6—C7177.3 (2)C21—C16—C17—C1894.40 (19)
C3—C2—C7—C60.4 (3)O2—C17—C18—C19154.92 (18)
C1—C2—C7—C6178.8 (2)C16—C17—C18—C1925.7 (2)
C5—C6—C7—C20.2 (4)C4—C5—C19—N1129.92 (18)
C13—C8—C9—C102.4 (3)C6—C5—C19—N152.3 (2)
C15—C8—C9—C10175.93 (18)C4—C5—C19—C18105.40 (19)
C8—C9—C10—C111.0 (3)C6—C5—C19—C1872.4 (2)
C9—C10—C11—C121.0 (3)C17—C18—C19—N137.9 (2)
C9—C10—C11—C14179.3 (2)C17—C18—C19—C5163.28 (15)
C10—C11—C12—C131.6 (3)O1—C22—C23—Cl119.9 (3)
C14—C11—C12—C13178.7 (2)N1—C22—C23—Cl1161.74 (15)
C11—C12—C13—C80.2 (4)O1—C22—N1—C157.0 (3)
C9—C8—C13—C121.8 (3)C23—C22—N1—C15174.71 (16)
C15—C8—C13—C12176.37 (19)O1—C22—N1—C19177.95 (18)
C9—C8—C15—N170.5 (2)C23—C22—N1—C193.7 (3)
C13—C8—C15—N1107.6 (2)C8—C15—N1—C22105.19 (18)
C9—C8—C15—C16162.48 (17)C16—C15—N1—C22122.88 (17)
C13—C8—C15—C1619.4 (3)C8—C15—N1—C1983.58 (18)
N1—C15—C16—C1758.92 (19)C16—C15—N1—C1948.3 (2)
C8—C15—C16—C1768.5 (2)C5—C19—N1—C2265.7 (2)
N1—C15—C16—C20175.44 (16)C18—C19—N1—C22170.53 (16)
C8—C15—C16—C2057.1 (2)C5—C19—N1—C15123.48 (16)
N1—C15—C16—C2156.52 (19)C18—C19—N1—C150.2 (2)

Experimental details

Crystal data
Chemical formulaC23H26ClNO2
Mr383.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)18.7923 (6), 18.8289 (5), 11.6689 (3)
β (°) 93.162 (2)
V3)4122.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.931, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
29055, 3989, 3097
Rint0.028
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.03
No. of reflections3989
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SJ is thankful to the CSIR, New Delhi, for the award of a Senior Research Fellowship through research grant No. 01/2454/11/EMR-II, and is also grateful to the UGC for the award of a UGC–BSR fellowship through a Research Fellowship in Science for Meritorious Students (RFSMS). The authors acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153–1163.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418–425.  Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. J. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o173-o174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds