organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o156-o157

Crystal structure of ethyl 5′′-fluoro-2′′,3-dioxo-6′,7′,8′,8a'-tetra­hydro-2′H,3H,5′H-di­spiro­[benzo[b]thio­phene-2,1′-indol­izine-3′,3′′-indoline]-2′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 602 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 31 January 2015; online 7 February 2015)

In the title compound, C25H23FN2O4S, the fused piperidine ring of the octa­hydro­indolizine ring system adopts a chair conformation and the five-membered ring has a twisted conformation on the N—C(spiro) bond. The mean planes of the benzo­thio­phene and indoline ring systems are inclined to the mean plane of the pyrrolidine ring by 83.1 (1) and 84.9 (1)°, respectively, and to each other by 29.37 (17)°. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via C—H⋯O hydrogen bonds, forming slabs lying parallel to (100). The packing between the slabs features a short [2.734 (2) Å] F⋯F contact.

1. Related literature

For the biological activity of indole derivatives, see: Barden (2011[Barden, T. C. (2011). Top Heterocycl. Chem. 26, 31-46.]); Oudard et al. (2011[Oudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178-184.]); Beale (2011[Beale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342-352. Philadelphia: Lippincott Williams and Wilkins.]); Aanandhi et al. (2008[Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588-4594.]); Muthukumar et al. (2008[Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461-1464.]). For crystal structures of similar compounds, see: Savithri et al. (2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H23FN2O4S

  • Mr = 466.51

  • Monoclinic, P 21 /c

  • a = 13.877 (2) Å

  • b = 11.8999 (19) Å

  • c = 15.426 (4) Å

  • β = 116.463 (4)°

  • V = 2280.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.955

  • 32121 measured reflections

  • 4784 independent reflections

  • 3652 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.04

  • 4784 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.87 (3) 1.96 (3) 2.834 (2) 179 (2)
C1—H1A⋯O1ii 0.96 2.50 3.401 (4) 156
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery (Barden, 2011). Several indole derivatives, such as Sunitinib, a tyrosine kinase inhibitor (Oudard et al., 2011), or Delavirdine a non-nucleoside reverse transcriptase inhibitor (Beale, 2011), are in clinical use. Spiroindoles are important heterocyclic compounds with diverse bioactivities (Aanandhi et al., 2008; Muthukumar et al., 2008).

The X-ray study confirmed the molecular structure and atomic connectivity for the title compound, as illustrated in Fig. 1. Pyridine ring adopts a chair conformation [puckering parameters q2= 0.069 (3) Å and π2= 303 (2)°]. The pyrrole ring adopts a twisted conformation with the lowest asymmetry parameters ΔC2(N1—C10) = 1.8 (2)°. The pyrrole ring system is oriented with a dihedral angles of 84.9 (1) and 83.1 (1)°, respectively with respect to the mean planes of benzothiophene ring and indole ring systems.

In the crystal, molecules are linked via N-H···O hydrogen bonds forming inversion dimers with an R22(8) ring motif (Table 1 and Fig. 2). The dimers are linked via C—H···O hydrogen bonds forming slabs lying parallel to (100); see Table 1 and Fig. 2. The slabs are linked by a short F···Fi interaction [2.73482) Å, symmetry code: (i) -x, -y+2, -z] forming a three-dimensional structure.

Related literature top

For the biological activity of indole derivatives, see: Barden (2011); Oudard et al. (2011); Beale (2011); Aanandhi et al. (2008); Muthukumar et al. (2008). For crystal structures of similar compounds, see: Savithri et al. (2014).

Experimental top

A reaction mixture of (E)-ethyl 2-(3-oxobenzo[b]thiophen-2(3H)-ylidene)acetate (1.0 mmol), 5-Fluoroisatin (1.1 mmol) and pipecolic acid (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2 x 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration and evaporation of the organic solvent was carried out under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as an eluent to give a colorless solid. The product was dissolved in chloroform (3 ml) and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for X-ray crystallographic studies.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
Ethyl 5''-fluoro-2'',3-dioxo-6',7',8',8a'-tetrahydro-2'H,3H,5'H-dispiro[benzo[b]thiophene-2,1'-indolizine-3',3''-indoline]-2'-carboxylate top
Crystal data top
C25H23FN2O4SF(000) = 976
Mr = 466.51Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.877 (2) ÅCell parameters from 3238 reflections
b = 11.8999 (19) Åθ = 1.6–25.0°
c = 15.426 (4) ŵ = 0.19 mm1
β = 116.463 (4)°T = 293 K
V = 2280.5 (8) Å3Block, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4784 independent reflections
Radiation source: fine-focus sealed tube3652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 26.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.947, Tmax = 0.955k = 1515
32121 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.3589P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4784 reflectionsΔρmax = 0.38 e Å3
303 parametersΔρmin = 0.24 e Å3
Crystal data top
C25H23FN2O4SV = 2280.5 (8) Å3
Mr = 466.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.877 (2) ŵ = 0.19 mm1
b = 11.8999 (19) ÅT = 293 K
c = 15.426 (4) Å0.30 × 0.30 × 0.30 mm
β = 116.463 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4784 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3652 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.955Rint = 0.033
32121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
4784 reflectionsΔρmin = 0.24 e Å3
303 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35506 (4)0.59504 (4)0.45922 (4)0.04126 (16)
F10.07518 (12)1.08370 (13)0.02567 (10)0.0707 (5)
O10.42901 (14)0.75803 (15)0.29676 (15)0.0677 (5)
O20.32609 (12)0.60522 (12)0.24108 (12)0.0484 (4)
O30.06507 (11)0.61184 (12)0.25149 (11)0.0497 (4)
O40.42650 (12)0.85900 (12)0.48990 (10)0.0464 (4)
N10.18102 (13)0.86296 (13)0.36986 (11)0.0320 (4)
N20.39881 (14)1.00547 (14)0.38496 (13)0.0413 (4)
H20.453 (2)1.047 (2)0.4226 (18)0.055 (7)*
C10.3758 (4)0.4290 (3)0.2058 (4)0.1166 (15)
H1A0.42270.38980.18540.175*
H1B0.30320.42480.15570.175*
H1C0.37990.39500.26380.175*
C20.4091 (2)0.5476 (2)0.2250 (2)0.0677 (8)
H2A0.47810.55380.28170.081*
H2B0.41550.58010.17010.081*
C30.34861 (16)0.70724 (17)0.27985 (16)0.0401 (5)
C40.25734 (14)0.74688 (15)0.29925 (13)0.0308 (4)
H40.19210.74070.23770.037*
C50.23753 (14)0.67371 (15)0.37302 (13)0.0305 (4)
C60.10876 (18)0.73457 (18)0.44935 (17)0.0459 (5)
H6A0.12250.66620.48730.055*
H6B0.04430.72360.38900.055*
C70.0934 (2)0.8330 (2)0.50504 (19)0.0569 (6)
H7A0.02970.82030.51460.068*
H7B0.15480.83800.56830.068*
C80.0813 (2)0.9427 (2)0.45076 (19)0.0553 (6)
H8A0.01290.94260.39300.066*
H8B0.08061.00460.49140.066*
C90.17105 (19)0.96107 (17)0.42185 (17)0.0454 (5)
H9A0.15571.02700.38090.054*
H9B0.23830.97370.47920.054*
C100.20346 (16)0.76111 (15)0.42910 (14)0.0336 (4)
H100.26600.77610.49120.040*
C110.26183 (14)0.86879 (15)0.33304 (13)0.0298 (4)
C120.23884 (15)0.95884 (15)0.25758 (13)0.0315 (4)
C130.15370 (16)0.97322 (17)0.16708 (14)0.0381 (5)
H130.09700.92230.14210.046*
C140.15659 (17)1.06670 (19)0.11540 (15)0.0443 (5)
C150.23724 (19)1.14452 (19)0.14926 (17)0.0499 (6)
H150.23491.20640.11160.060*
C160.32277 (18)1.13050 (18)0.24034 (17)0.0467 (5)
H160.37881.18220.26520.056*
C170.32165 (16)1.03742 (16)0.29245 (14)0.0358 (4)
C180.37352 (15)0.90668 (16)0.41243 (14)0.0346 (4)
C190.14945 (14)0.58543 (15)0.31808 (14)0.0331 (4)
C200.18285 (15)0.47195 (16)0.35464 (14)0.0344 (4)
C210.11991 (19)0.37579 (17)0.32308 (17)0.0464 (5)
H210.04850.38080.27670.056*
C220.1637 (2)0.27384 (19)0.3607 (2)0.0601 (7)
H220.12210.20900.34040.072*
C230.2707 (2)0.26735 (18)0.4297 (2)0.0589 (7)
H230.30020.19730.45370.071*
C240.33419 (19)0.36132 (18)0.46330 (17)0.0474 (5)
H240.40530.35560.51010.057*
C250.28901 (16)0.46518 (16)0.42540 (14)0.0349 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (2)0.0319 (3)0.0474 (3)0.0023 (2)0.0046 (2)0.0043 (2)
F10.0645 (9)0.0798 (11)0.0452 (8)0.0036 (8)0.0042 (7)0.0238 (7)
O10.0545 (10)0.0552 (10)0.1114 (15)0.0150 (8)0.0533 (11)0.0126 (10)
O20.0471 (9)0.0390 (8)0.0651 (10)0.0031 (7)0.0304 (8)0.0106 (7)
O30.0325 (7)0.0351 (8)0.0596 (10)0.0030 (6)0.0009 (7)0.0007 (7)
O40.0420 (8)0.0379 (8)0.0404 (8)0.0110 (6)0.0013 (6)0.0069 (6)
N10.0370 (8)0.0234 (8)0.0375 (9)0.0013 (6)0.0184 (7)0.0005 (6)
N20.0395 (9)0.0313 (9)0.0403 (9)0.0136 (8)0.0063 (8)0.0003 (7)
C10.159 (4)0.0526 (19)0.188 (4)0.030 (2)0.123 (4)0.005 (2)
C20.0676 (17)0.0603 (16)0.094 (2)0.0148 (14)0.0527 (16)0.0084 (15)
C30.0392 (11)0.0346 (11)0.0480 (12)0.0025 (9)0.0208 (9)0.0010 (9)
C40.0295 (9)0.0270 (9)0.0330 (10)0.0038 (7)0.0112 (8)0.0033 (7)
C50.0257 (9)0.0241 (9)0.0365 (10)0.0021 (7)0.0093 (8)0.0006 (7)
C60.0538 (13)0.0395 (12)0.0549 (13)0.0007 (10)0.0336 (11)0.0064 (10)
C70.0713 (17)0.0557 (15)0.0614 (15)0.0034 (13)0.0456 (14)0.0020 (12)
C80.0738 (17)0.0443 (13)0.0642 (15)0.0102 (12)0.0455 (14)0.0025 (12)
C90.0647 (14)0.0286 (10)0.0512 (13)0.0016 (10)0.0333 (11)0.0036 (9)
C100.0379 (10)0.0264 (9)0.0347 (10)0.0021 (8)0.0145 (8)0.0017 (8)
C110.0301 (9)0.0252 (9)0.0304 (9)0.0041 (7)0.0101 (8)0.0010 (7)
C120.0343 (10)0.0264 (9)0.0348 (10)0.0018 (8)0.0162 (8)0.0013 (8)
C130.0374 (10)0.0397 (11)0.0349 (10)0.0035 (9)0.0141 (9)0.0007 (9)
C140.0432 (12)0.0489 (13)0.0354 (11)0.0049 (10)0.0127 (9)0.0086 (10)
C150.0589 (14)0.0420 (12)0.0505 (13)0.0003 (11)0.0259 (11)0.0169 (10)
C160.0495 (13)0.0345 (11)0.0534 (13)0.0098 (9)0.0205 (11)0.0053 (10)
C170.0377 (10)0.0298 (10)0.0389 (11)0.0031 (8)0.0161 (9)0.0013 (8)
C180.0351 (10)0.0275 (9)0.0364 (10)0.0064 (8)0.0117 (8)0.0015 (8)
C190.0280 (9)0.0267 (9)0.0414 (11)0.0035 (7)0.0126 (8)0.0040 (8)
C200.0347 (10)0.0266 (9)0.0427 (11)0.0019 (8)0.0180 (9)0.0011 (8)
C210.0468 (12)0.0335 (11)0.0554 (13)0.0079 (9)0.0198 (11)0.0049 (10)
C220.0697 (17)0.0259 (11)0.0760 (17)0.0098 (11)0.0246 (14)0.0020 (11)
C230.0758 (17)0.0253 (11)0.0736 (17)0.0053 (11)0.0313 (14)0.0067 (11)
C240.0468 (12)0.0377 (11)0.0536 (13)0.0078 (10)0.0186 (11)0.0079 (10)
C250.0374 (10)0.0273 (9)0.0416 (11)0.0004 (8)0.0191 (9)0.0015 (8)
Geometric parameters (Å, º) top
S1—C251.753 (2)C7—H7A0.9700
S1—C51.8362 (18)C7—H7B0.9700
F1—C141.356 (2)C8—C91.515 (3)
O1—C31.191 (3)C8—H8A0.9700
O2—C31.328 (2)C8—H8B0.9700
O2—C21.454 (3)C9—H9A0.9700
O3—C191.205 (2)C9—H9B0.9700
O4—C181.228 (2)C10—H100.9800
N1—C91.458 (2)C11—C121.508 (3)
N1—C101.465 (2)C11—C181.554 (2)
N1—C111.467 (2)C12—C131.380 (3)
N2—C181.348 (2)C12—C171.390 (3)
N2—C171.402 (3)C13—C141.380 (3)
N2—H20.87 (3)C13—H130.9300
C1—C21.474 (4)C14—C151.365 (3)
C1—H1A0.9600C15—C161.387 (3)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.373 (3)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C19—C201.457 (3)
C3—C41.501 (3)C20—C211.389 (3)
C4—C111.533 (2)C20—C251.391 (3)
C4—C51.552 (3)C21—C221.365 (3)
C4—H40.9800C21—H210.9300
C5—C191.547 (2)C22—C231.391 (4)
C5—C101.555 (3)C22—H220.9300
C6—C101.513 (3)C23—C241.374 (3)
C6—C71.523 (3)C23—H230.9300
C6—H6A0.9700C24—C251.391 (3)
C6—H6B0.9700C24—H240.9300
C7—C81.520 (3)
C25—S1—C593.21 (9)C8—C9—H9B109.7
C3—O2—C2117.57 (19)H9A—C9—H9B108.2
C9—N1—C10111.42 (15)N1—C10—C6109.79 (16)
C9—N1—C11116.84 (15)N1—C10—C5103.83 (15)
C10—N1—C11107.09 (14)C6—C10—C5118.85 (16)
C18—N2—C17111.63 (16)N1—C10—H10108.0
C18—N2—H2123.8 (16)C6—C10—H10108.0
C17—N2—H2124.2 (16)C5—C10—H10108.0
C2—C1—H1A109.5N1—C11—C12113.40 (15)
C2—C1—H1B109.5N1—C11—C499.47 (14)
H1A—C1—H1B109.5C12—C11—C4116.58 (15)
C2—C1—H1C109.5N1—C11—C18112.01 (15)
H1A—C1—H1C109.5C12—C11—C18101.29 (14)
H1B—C1—H1C109.5C4—C11—C18114.69 (15)
O2—C2—C1106.6 (2)C13—C12—C17119.70 (18)
O2—C2—H2A110.4C13—C12—C11131.32 (17)
C1—C2—H2A110.4C17—C12—C11108.98 (16)
O2—C2—H2B110.4C14—C13—C12116.89 (19)
C1—C2—H2B110.4C14—C13—H13121.6
H2A—C2—H2B108.6C12—C13—H13121.6
O1—C3—O2124.9 (2)F1—C14—C15117.2 (2)
O1—C3—C4126.0 (2)F1—C14—C13118.98 (19)
O2—C3—C4109.08 (17)C15—C14—C13123.8 (2)
C3—C4—C11117.05 (16)C14—C15—C16119.4 (2)
C3—C4—C5114.26 (16)C14—C15—H15120.3
C11—C4—C5105.98 (15)C16—C15—H15120.3
C3—C4—H4106.3C17—C16—C15117.5 (2)
C11—C4—H4106.3C17—C16—H16121.2
C5—C4—H4106.3C15—C16—H16121.2
C19—C5—C4109.53 (15)C16—C17—C12122.62 (19)
C19—C5—C10113.40 (15)C16—C17—N2127.73 (19)
C4—C5—C10103.29 (14)C12—C17—N2109.64 (17)
C19—C5—S1106.29 (12)O4—C18—N2125.60 (18)
C4—C5—S1115.26 (13)O4—C18—C11125.97 (17)
C10—C5—S1109.29 (13)N2—C18—C11108.26 (16)
C10—C6—C7108.01 (18)O3—C19—C20126.31 (17)
C10—C6—H6A110.1O3—C19—C5121.35 (17)
C7—C6—H6A110.1C20—C19—C5112.32 (15)
C10—C6—H6B110.1C21—C20—C25120.52 (18)
C7—C6—H6B110.1C21—C20—C19125.85 (18)
H6A—C6—H6B108.4C25—C20—C19113.60 (16)
C8—C7—C6111.02 (19)C22—C21—C20119.5 (2)
C8—C7—H7A109.4C22—C21—H21120.3
C6—C7—H7A109.4C20—C21—H21120.3
C8—C7—H7B109.4C21—C22—C23119.7 (2)
C6—C7—H7B109.4C21—C22—H22120.1
H7A—C7—H7B108.0C23—C22—H22120.1
C9—C8—C7112.5 (2)C24—C23—C22122.0 (2)
C9—C8—H8A109.1C24—C23—H23119.0
C7—C8—H8A109.1C22—C23—H23119.0
C9—C8—H8B109.1C23—C24—C25118.1 (2)
C7—C8—H8B109.1C23—C24—H24120.9
H8A—C8—H8B107.8C25—C24—H24120.9
N1—C9—C8109.79 (18)C20—C25—C24120.17 (18)
N1—C9—H9A109.7C20—C25—S1114.38 (14)
C8—C9—H9A109.7C24—C25—S1125.45 (16)
N1—C9—H9B109.7
C3—O2—C2—C1165.9 (3)C4—C11—C12—C17128.26 (18)
C2—O2—C3—O15.0 (4)C18—C11—C12—C173.1 (2)
C2—O2—C3—C4174.5 (2)C17—C12—C13—C140.4 (3)
O1—C3—C4—C117.5 (3)C11—C12—C13—C14179.6 (2)
O2—C3—C4—C11172.97 (16)C12—C13—C14—F1179.32 (19)
O1—C3—C4—C5117.2 (2)C12—C13—C14—C150.8 (3)
O2—C3—C4—C562.3 (2)F1—C14—C15—C16179.5 (2)
C3—C4—C5—C1994.74 (18)C13—C14—C15—C160.6 (4)
C11—C4—C5—C19134.87 (15)C14—C15—C16—C170.0 (4)
C3—C4—C5—C10144.15 (16)C15—C16—C17—C120.3 (3)
C11—C4—C5—C1013.77 (18)C15—C16—C17—N2179.6 (2)
C3—C4—C5—S125.0 (2)C13—C12—C17—C160.1 (3)
C11—C4—C5—S1105.36 (15)C11—C12—C17—C16179.2 (2)
C25—S1—C5—C191.52 (14)C13—C12—C17—N2179.83 (18)
C25—S1—C5—C4123.05 (14)C11—C12—C17—N20.8 (2)
C25—S1—C5—C10121.20 (13)C18—N2—C17—C16177.7 (2)
C10—C6—C7—C854.8 (3)C18—N2—C17—C122.3 (2)
C6—C7—C8—C951.8 (3)C17—N2—C18—O4179.8 (2)
C10—N1—C9—C858.9 (2)C17—N2—C18—C114.3 (2)
C11—N1—C9—C8177.59 (17)N1—C11—C18—O458.7 (3)
C7—C8—C9—N152.5 (3)C12—C11—C18—O4179.9 (2)
C9—N1—C10—C664.7 (2)C4—C11—C18—O453.7 (3)
C11—N1—C10—C6166.38 (16)N1—C11—C18—N2116.76 (18)
C9—N1—C10—C5167.21 (16)C12—C11—C18—N24.4 (2)
C11—N1—C10—C538.31 (17)C4—C11—C18—N2130.83 (18)
C7—C6—C10—N161.1 (2)C4—C5—C19—O349.5 (3)
C7—C6—C10—C5179.72 (18)C10—C5—C19—O365.3 (2)
C19—C5—C10—N1104.87 (17)S1—C5—C19—O3174.61 (17)
C4—C5—C10—N113.58 (17)C4—C5—C19—C20128.87 (17)
S1—C5—C10—N1136.76 (13)C10—C5—C19—C20116.35 (18)
C19—C5—C10—C617.4 (2)S1—C5—C19—C203.7 (2)
C4—C5—C10—C6135.84 (18)O3—C19—C20—C214.7 (4)
S1—C5—C10—C6100.99 (18)C5—C19—C20—C21177.0 (2)
C9—N1—C11—C1263.7 (2)O3—C19—C20—C25173.4 (2)
C10—N1—C11—C12170.60 (15)C5—C19—C20—C254.8 (2)
C9—N1—C11—C4171.82 (16)C25—C20—C21—C221.3 (3)
C10—N1—C11—C446.10 (17)C19—C20—C21—C22176.8 (2)
C9—N1—C11—C1850.2 (2)C20—C21—C22—C230.4 (4)
C10—N1—C11—C1875.51 (17)C21—C22—C23—C241.5 (4)
C3—C4—C11—N1164.31 (16)C22—C23—C24—C250.9 (4)
C5—C4—C11—N135.55 (17)C21—C20—C25—C241.9 (3)
C3—C4—C11—C1273.4 (2)C19—C20—C25—C24176.41 (19)
C5—C4—C11—C12157.80 (15)C21—C20—C25—S1178.07 (17)
C3—C4—C11—C1844.7 (2)C19—C20—C25—S13.6 (2)
C5—C4—C11—C1884.10 (18)C23—C24—C25—C200.8 (3)
N1—C11—C12—C1362.1 (3)C23—C24—C25—S1179.14 (19)
C4—C11—C12—C1352.5 (3)C5—S1—C25—C201.11 (17)
C18—C11—C12—C13177.7 (2)C5—S1—C25—C24179.0 (2)
N1—C11—C12—C17117.10 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.87 (3)1.96 (3)2.834 (2)179 (2)
C1—H1A···O1ii0.962.503.401 (4)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.87 (3)1.96 (3)2.834 (2)179 (2)
C1—H1A···O1ii0.962.503.401 (4)156
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationAanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594.  CAS Google Scholar
First citationBarden, T. C. (2011). Top Heterocycl. Chem. 26, 31–46.  CrossRef Google Scholar
First citationBeale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342–352. Philadelphia: Lippincott Williams and Wilkins.  Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMuthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461–1464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178–184.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o156-o157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds