organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o152-o153

Crystal structure of ethyl 1′,5-di­methyl-2′′,3-dioxo-3H-di­spiro­[benzo[b]thiophene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, and cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 602 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 23 January 2015; online 7 February 2015)

The title compound, C23H22N2O4S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. They have very similar conformations with the pyrrolidine ring having a twisted conformation, on the Cspiro—Cspiro bond, in both mol­ecules. In mol­ecule A, the mean planes of the benzo­thio­phene and indoline ring systems are inclined to the mean plane of the pyrrolidine ring by 87.59 (10) and 84.51 (11)°, respectively, and to one another by 72.69 (7)°. The corresponding angles in mol­ecule B are 87.15 (10), 84.58 (10) and 72.07 (7)°, respectively. In the crystal, the A and B mol­ecules are linked to one another by two N—H⋯O hydrogen bonds, forming a dimer. These dimers are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For examples of the biological activity of indole derivatives, see: Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]); Chai et al. (2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]). For the biological activity of indole alkaloids extracted from plants, see: Quetin-Leclercq (1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]); Mukhopadhyay et al. (1981[Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.]). For details of highly functionalized pyrrolidines as the main structural element of many natural and synthetic pharmacologically active compounds, see: Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For the crystal structure of a related compound, see: Ganesh et al. (2012[Ganesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902-o2903.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H22N2O4S

  • Mr = 422.50

  • Monoclinic, P 2/n

  • a = 16.311 (5) Å

  • b = 11.103 (5) Å

  • c = 23.585 (5) Å

  • β = 98.354 (5)°

  • V = 4226 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.967

  • 36508 measured reflections

  • 10504 independent reflections

  • 5696 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.182

  • S = 1.07

  • 10504 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3′ 0.86 2.09 2.941 (3) 168
N2′—H2′⋯O3 0.86 2.15 3.005 (3) 172
C13′—H13′⋯O2′i 0.93 2.57 3.439 (3) 155
C14′—H14′⋯01ii 0.93 2.54 3.402 (3) 154
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{3\over 2}}, -y+1, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995).

Fig. 1 shows the asymmetric unit consisting of the two independent molecules (A and B) of the title compound. The two molecules have the same geometrical parameters within the precision of the experiment. In molecule A the benzothiophene and indoline ring systems are inclined to the mean plane of the pyrrolidine ring by 87.59 (10) and 84.51 (11) °, respectively, and to one another by 72.6987) °. The corresponding angles in molecule B are 87.15 (10), 84.58 (10) and 72.0787) °, respectively.

In the crystal, the A and B molecules are linked to one another by two N-H···O hydrogen bonds forming a dimer (Table 1 and Fig. 2). These dimers are linked via C-H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For examples of the biological activity of indole derivatives, see: Singh et al. (2000); Chai et al. (2006); Nieto et al. (2005); Andreani et al. (2001). For the biological activity of indole alkaloids extracted from plants, see: Quetin-Leclercq (1994); Mukhopadhyay et al. (1981). For details concerning highly functionalized pyrrolidines as the main structural element of many natural and synthetic pharmacologically active compounds, see: Waldmann (1995). For the crystal structure of a related compound, see: Ganesh et al. (2012).

Experimental top

A mixture of (E)-ethyl 2-(5-methyl-3-oxobenzo[b]thiophen-2(3H)-ylidene) acetate (1.0 mmol), isatin (1.1 mmol) and sarcosine (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction, monitored by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration the organic solvent was evaporated under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as an eluent to give a colorless solid. The product was dissolved in chloroform (3 ml) and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent giving single crystals suitable for X-ray crystallographic studies.

Refinement top

N and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: N-H = 0.86 Å, C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table for details; H atoms not involved in these interactions have been omitted for clarity).
Ethyl 1',5-dimethyl-2'',3-dioxo-3H-dispiro[benzo[b]thiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate top
Crystal data top
C23H22N2O4SF(000) = 1776
Mr = 422.50Dx = 1.328 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 5696 reflections
a = 16.311 (5) Åθ = 1.4–28.4°
b = 11.103 (5) ŵ = 0.19 mm1
c = 23.585 (5) ÅT = 293 K
β = 98.354 (5)°Block, colourless
V = 4226 (2) Å30.20 × 0.19 × 0.18 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
10504 independent reflections
Radiation source: fine-focus sealed tube5696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.964, Tmax = 0.967k = 1014
36508 measured reflectionsl = 3128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0924P)2]
where P = (Fo2 + 2Fc2)/3
10504 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H22N2O4SV = 4226 (2) Å3
Mr = 422.50Z = 8
Monoclinic, P2/nMo Kα radiation
a = 16.311 (5) ŵ = 0.19 mm1
b = 11.103 (5) ÅT = 293 K
c = 23.585 (5) Å0.20 × 0.19 × 0.18 mm
β = 98.354 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
10504 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5696 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.967Rint = 0.032
36508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
10504 reflectionsΔρmin = 0.25 e Å3
541 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.03963 (16)0.6232 (2)0.96161 (10)0.0660 (8)
H1A1.06580.59340.99800.099*
H1B1.04030.56190.93300.099*
H1C0.98330.64490.96430.099*
C1'0.96287 (16)0.7862 (2)0.53352 (10)0.0622 (7)
H1'10.93580.81310.49680.093*
H1'21.01850.76200.53040.093*
H1'30.96400.85060.56080.093*
C21.17418 (14)0.7110 (2)0.94672 (10)0.0551 (6)
H2A1.18620.62790.93830.066*
H2B1.20430.73190.98400.066*
C2'0.82877 (14)0.7046 (2)0.55249 (9)0.0481 (6)
H2'10.79760.68230.51580.058*
H2'20.81810.78860.55990.058*
C3'0.80481 (13)0.62477 (19)0.60028 (9)0.0403 (5)
H3'0.80160.67650.63350.048*
C31.19796 (13)0.7946 (2)0.90055 (9)0.0423 (5)
H31.20330.74530.86680.051*
C4'0.72363 (14)0.5595 (2)0.58713 (10)0.0464 (6)
C41.27782 (15)0.8619 (2)0.91628 (11)0.0539 (6)
C5'0.63677 (17)0.4216 (3)0.62987 (13)0.0721 (8)
H5'10.59620.44960.59850.087*
H5'20.61410.43290.66530.087*
C51.3651 (2)1.0082 (3)0.87962 (19)0.1127 (14)
H5A1.39780.99310.91670.135*
H5B1.39810.98630.85020.135*
C61.3442 (2)1.1317 (3)0.87467 (16)0.1019 (11)
H6A1.39401.17900.87890.153*
H6B1.31201.15330.90410.153*
H6C1.31261.14660.83770.153*
C6'0.6545 (2)0.2917 (3)0.62196 (15)0.0927 (10)
H6'10.60430.24620.62080.139*
H6'20.69430.26430.65330.139*
H6'30.67640.28100.58670.139*
C7'0.88089 (12)0.54207 (18)0.61532 (8)0.0342 (5)
C71.12099 (12)0.87597 (18)0.88528 (8)0.0340 (5)
C81.11405 (12)0.93915 (19)0.82729 (8)0.0352 (5)
C8'0.88814 (12)0.48160 (19)0.67382 (8)0.0349 (5)
C9'0.88955 (13)0.35001 (19)0.66913 (8)0.0366 (5)
C91.11184 (13)1.07020 (19)0.83294 (9)0.0390 (5)
C10'0.89327 (14)0.2689 (2)0.71447 (9)0.0472 (6)
H10'0.89570.29730.75180.057*
C101.10808 (15)1.1524 (2)0.78791 (10)0.0505 (6)
H101.10631.12510.75050.061*
C11'0.89341 (15)0.1460 (2)0.70409 (10)0.0507 (6)
C111.10697 (15)1.2746 (2)0.79895 (11)0.0554 (6)
C121.1061 (2)1.3648 (3)0.75117 (12)0.0791 (9)
H12A1.10391.32310.71530.119*
H12B1.15551.41290.75770.119*
H12C1.05841.41590.75000.119*
C12'0.8946 (2)0.0567 (2)0.75203 (11)0.0755 (8)
H12D0.89680.09890.78780.113*
H12E0.94230.00580.75330.113*
H12F0.84530.00840.74570.113*
C131.10894 (16)1.3109 (2)0.85551 (12)0.0608 (7)
H131.10731.39300.86320.073*
C13'0.89070 (15)0.1080 (2)0.64755 (10)0.0535 (6)
H13'0.89200.02570.64030.064*
C141.11315 (15)1.2320 (2)0.90078 (11)0.0561 (7)
H141.11461.25970.93810.067*
C14'0.88627 (15)0.1860 (2)0.60194 (10)0.0498 (6)
H14'0.88400.15740.56470.060*
C15'0.88522 (13)0.30946 (18)0.61322 (8)0.0375 (5)
C151.11514 (13)1.1091 (2)0.88890 (9)0.0421 (5)
C16'0.95153 (12)0.63320 (18)0.60834 (8)0.0347 (5)
C161.05081 (12)0.78321 (18)0.89070 (8)0.0357 (5)
C17'0.96067 (14)0.72987 (19)0.65762 (9)0.0394 (5)
C171.04294 (14)0.68991 (19)0.83996 (9)0.0404 (5)
C18'1.08655 (13)0.6382 (2)0.66030 (8)0.0403 (5)
C180.91621 (13)0.7782 (2)0.83823 (8)0.0393 (5)
C190.83341 (14)0.8042 (2)0.82256 (10)0.0518 (6)
H190.80280.76890.79050.062*
C19'1.16826 (14)0.6109 (2)0.67618 (10)0.0531 (6)
H19'1.19910.64750.70780.064*
C200.79785 (15)0.8845 (3)0.85629 (11)0.0604 (7)
H200.74220.90430.84650.072*
C20'1.20368 (15)0.5272 (3)0.64379 (11)0.0605 (7)
H20'1.25920.50680.65390.073*
C210.84242 (16)0.9360 (3)0.90390 (11)0.0601 (7)
H210.81680.98990.92590.072*
C21'1.15838 (16)0.4738 (3)0.59713 (11)0.0598 (7)
H21'1.18350.41780.57590.072*
C220.92554 (15)0.9083 (2)0.91941 (10)0.0510 (6)
H220.95540.94180.95220.061*
C22'1.07519 (15)0.5024 (2)0.58109 (10)0.0473 (6)
H22'1.04490.46700.54890.057*
C23'1.03826 (12)0.58414 (19)0.61354 (8)0.0363 (5)
C230.96336 (12)0.83105 (19)0.88591 (8)0.0365 (5)
N1'0.91755 (11)0.68408 (16)0.55265 (7)0.0402 (4)
N11.08421 (11)0.72884 (17)0.94574 (7)0.0446 (5)
N20.96489 (11)0.69805 (17)0.81200 (7)0.0457 (5)
H20.94710.65830.78140.055*
N2'1.03867 (11)0.72204 (17)0.68548 (7)0.0451 (5)
H2'1.05700.76380.71540.054*
O1'0.67445 (11)0.57029 (18)0.54481 (7)0.0713 (6)
O11.32537 (12)0.8496 (2)0.95875 (8)0.0923 (7)
O21.09558 (10)0.62012 (14)0.82891 (7)0.0563 (4)
O2'0.90884 (10)0.80189 (14)0.66769 (7)0.0550 (4)
O3'0.89380 (10)0.53817 (14)0.71813 (6)0.0484 (4)
O31.11019 (10)0.88373 (14)0.78238 (6)0.0495 (4)
O4'0.71261 (10)0.49014 (16)0.63163 (7)0.0619 (5)
O41.29010 (11)0.93490 (18)0.87355 (8)0.0734 (6)
S11.12144 (4)0.99348 (5)0.93983 (2)0.04493 (17)
S1'0.87786 (4)0.42250 (5)0.56126 (2)0.04015 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0680 (18)0.0669 (18)0.0596 (15)0.0137 (15)0.0021 (13)0.0282 (14)
C1'0.0692 (18)0.0551 (16)0.0608 (15)0.0119 (14)0.0045 (13)0.0244 (13)
C20.0465 (15)0.0608 (16)0.0547 (14)0.0004 (12)0.0038 (11)0.0186 (13)
C2'0.0479 (14)0.0416 (13)0.0518 (13)0.0023 (11)0.0030 (11)0.0053 (11)
C3'0.0433 (13)0.0333 (11)0.0429 (12)0.0025 (10)0.0015 (10)0.0031 (10)
C30.0412 (13)0.0417 (13)0.0422 (12)0.0023 (10)0.0005 (10)0.0013 (10)
C4'0.0414 (14)0.0476 (14)0.0489 (13)0.0004 (11)0.0024 (11)0.0018 (12)
C40.0438 (14)0.0609 (17)0.0551 (15)0.0039 (13)0.0011 (12)0.0003 (13)
C5'0.0544 (17)0.074 (2)0.088 (2)0.0178 (15)0.0110 (14)0.0100 (17)
C50.062 (2)0.085 (3)0.183 (4)0.0248 (19)0.006 (2)0.036 (3)
C60.091 (3)0.082 (3)0.129 (3)0.027 (2)0.005 (2)0.001 (2)
C6'0.088 (2)0.071 (2)0.124 (3)0.0207 (19)0.031 (2)0.002 (2)
C7'0.0416 (12)0.0284 (10)0.0318 (10)0.0028 (9)0.0025 (9)0.0036 (9)
C70.0381 (12)0.0321 (11)0.0307 (10)0.0015 (9)0.0010 (8)0.0041 (9)
C80.0394 (12)0.0338 (11)0.0314 (10)0.0000 (9)0.0014 (9)0.0017 (9)
C8'0.0408 (12)0.0328 (11)0.0305 (10)0.0041 (9)0.0027 (9)0.0027 (9)
C9'0.0461 (13)0.0296 (11)0.0328 (10)0.0051 (10)0.0017 (9)0.0019 (9)
C90.0456 (13)0.0312 (11)0.0391 (11)0.0022 (10)0.0023 (10)0.0028 (10)
C10'0.0630 (16)0.0405 (13)0.0376 (12)0.0029 (11)0.0054 (11)0.0011 (10)
C100.0672 (17)0.0376 (13)0.0457 (13)0.0041 (12)0.0049 (11)0.0009 (11)
C11'0.0647 (16)0.0321 (12)0.0539 (14)0.0030 (11)0.0041 (12)0.0081 (11)
C110.0610 (17)0.0373 (13)0.0673 (16)0.0025 (12)0.0079 (13)0.0061 (13)
C120.101 (2)0.0467 (16)0.088 (2)0.0008 (16)0.0110 (18)0.0204 (15)
C12'0.112 (2)0.0482 (16)0.0651 (17)0.0046 (16)0.0091 (16)0.0183 (14)
C130.0681 (18)0.0331 (13)0.0838 (19)0.0031 (12)0.0194 (15)0.0085 (14)
C13'0.0727 (17)0.0289 (12)0.0592 (15)0.0048 (12)0.0107 (13)0.0027 (12)
C140.0659 (17)0.0421 (14)0.0626 (16)0.0051 (13)0.0177 (13)0.0167 (13)
C14'0.0699 (17)0.0329 (12)0.0471 (13)0.0042 (11)0.0103 (12)0.0101 (11)
C15'0.0446 (13)0.0305 (11)0.0367 (11)0.0039 (9)0.0032 (9)0.0041 (9)
C150.0431 (13)0.0377 (12)0.0454 (12)0.0044 (10)0.0059 (10)0.0074 (10)
C16'0.0413 (12)0.0295 (11)0.0321 (10)0.0038 (9)0.0011 (9)0.0017 (9)
C160.0403 (12)0.0341 (11)0.0313 (10)0.0015 (9)0.0007 (9)0.0008 (9)
C17'0.0488 (14)0.0272 (11)0.0416 (12)0.0034 (10)0.0042 (10)0.0020 (9)
C170.0504 (14)0.0301 (11)0.0398 (12)0.0060 (11)0.0034 (10)0.0007 (10)
C18'0.0408 (13)0.0432 (13)0.0363 (11)0.0063 (11)0.0036 (9)0.0058 (10)
C180.0427 (13)0.0392 (12)0.0349 (11)0.0066 (10)0.0016 (9)0.0043 (10)
C190.0426 (14)0.0632 (17)0.0464 (13)0.0103 (12)0.0045 (11)0.0105 (13)
C19'0.0423 (14)0.0670 (17)0.0472 (13)0.0072 (13)0.0031 (11)0.0079 (13)
C200.0394 (14)0.0703 (18)0.0709 (17)0.0032 (13)0.0059 (13)0.0201 (15)
C20'0.0389 (14)0.0718 (19)0.0712 (18)0.0064 (14)0.0092 (13)0.0229 (15)
C210.0509 (16)0.0629 (17)0.0695 (17)0.0054 (13)0.0185 (13)0.0007 (14)
C21'0.0541 (17)0.0604 (17)0.0690 (17)0.0113 (14)0.0223 (14)0.0025 (14)
C220.0498 (15)0.0563 (15)0.0474 (13)0.0016 (12)0.0092 (11)0.0077 (12)
C22'0.0500 (15)0.0474 (14)0.0452 (13)0.0014 (11)0.0095 (11)0.0024 (11)
C23'0.0401 (12)0.0349 (11)0.0336 (10)0.0020 (10)0.0045 (9)0.0037 (9)
C230.0394 (12)0.0377 (11)0.0319 (10)0.0026 (10)0.0036 (9)0.0030 (9)
N1'0.0428 (11)0.0383 (10)0.0377 (9)0.0041 (8)0.0007 (8)0.0072 (8)
N10.0453 (11)0.0495 (12)0.0365 (9)0.0072 (9)0.0023 (8)0.0109 (9)
N20.0532 (12)0.0453 (11)0.0356 (9)0.0079 (9)0.0038 (9)0.0108 (9)
N2'0.0494 (12)0.0452 (11)0.0379 (10)0.0093 (9)0.0029 (8)0.0096 (9)
O1'0.0528 (11)0.0899 (15)0.0651 (12)0.0163 (10)0.0122 (9)0.0105 (11)
O10.0568 (12)0.138 (2)0.0736 (13)0.0199 (13)0.0199 (10)0.0183 (14)
O20.0621 (11)0.0367 (9)0.0693 (11)0.0060 (8)0.0072 (9)0.0138 (8)
O2'0.0594 (11)0.0365 (9)0.0672 (11)0.0033 (8)0.0028 (8)0.0148 (8)
O3'0.0742 (11)0.0388 (9)0.0315 (8)0.0085 (8)0.0049 (7)0.0114 (7)
O30.0749 (12)0.0410 (9)0.0325 (8)0.0065 (8)0.0068 (7)0.0079 (7)
O4'0.0516 (11)0.0670 (12)0.0649 (11)0.0160 (9)0.0008 (8)0.0121 (9)
O40.0516 (11)0.0732 (13)0.0909 (14)0.0201 (10)0.0042 (9)0.0250 (11)
S10.0582 (4)0.0439 (3)0.0318 (3)0.0069 (3)0.0039 (2)0.0096 (2)
S1'0.0562 (4)0.0333 (3)0.0298 (3)0.0054 (3)0.0026 (2)0.0052 (2)
Geometric parameters (Å, º) top
C1—N11.457 (3)C10—C111.381 (3)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11'—C13'1.393 (3)
C1—H1C0.9600C11'—C12'1.502 (3)
C1'—N1'1.460 (3)C11—C131.390 (3)
C1'—H1'10.9600C11—C121.506 (3)
C1'—H1'20.9600C12—H12A0.9600
C1'—H1'30.9600C12—H12B0.9600
C2—N11.478 (3)C12—H12C0.9600
C2—C31.523 (3)C12'—H12D0.9600
C2—H2A0.9700C12'—H12E0.9600
C2—H2B0.9700C12'—H12F0.9600
C2'—N1'1.465 (3)C13—C141.375 (3)
C2'—C3'1.529 (3)C13—H130.9300
C2'—H2'10.9700C13'—C14'1.375 (3)
C2'—H2'20.9700C13'—H13'0.9300
C3'—C4'1.502 (3)C14—C151.394 (3)
C3'—C7'1.543 (3)C14—H140.9300
C3'—H3'0.9800C14'—C15'1.397 (3)
C3—C41.501 (3)C14'—H14'0.9300
C3—C71.546 (3)C15'—S1'1.746 (2)
C3—H30.9800C15—S11.751 (2)
C4'—O1'1.192 (2)C16'—N1'1.463 (2)
C4'—O4'1.335 (3)C16'—C23'1.504 (3)
C4—O11.182 (3)C16'—C17'1.573 (3)
C4—O41.331 (3)C16—N11.463 (2)
C5'—O4'1.448 (3)C16—C231.511 (3)
C5'—C6'1.488 (4)C16—C171.574 (3)
C5'—H5'10.9700C17'—O2'1.212 (2)
C5'—H5'20.9700C17'—N2'1.347 (3)
C5—C61.413 (5)C17—O21.213 (3)
C5—O41.458 (3)C17—N21.349 (3)
C5—H5A0.9700C18'—C19'1.365 (3)
C5—H5B0.9700C18'—C23'1.394 (3)
C6—H6A0.9600C18'—N2'1.402 (3)
C6—H6B0.9600C18—C191.378 (3)
C6—H6C0.9600C18—N21.395 (3)
C6'—H6'10.9600C18—C231.396 (3)
C6'—H6'20.9600C19—C201.378 (4)
C6'—H6'30.9600C19—H190.9300
C7'—C8'1.524 (3)C19'—C20'1.382 (4)
C7'—C16'1.560 (3)C19'—H19'0.9300
C7'—S1'1.836 (2)C20—C211.371 (4)
C7—C81.527 (3)C20—H200.9300
C7—C161.559 (3)C20'—C21'1.368 (4)
C7—S11.832 (2)C20'—H20'0.9300
C8—O31.219 (2)C21—C221.387 (3)
C8—C91.462 (3)C21—H210.9300
C8'—O3'1.211 (2)C21'—C22'1.391 (3)
C8'—C9'1.466 (3)C21'—H21'0.9300
C9'—C15'1.385 (3)C22—C231.372 (3)
C9'—C10'1.392 (3)C22—H220.9300
C9—C151.382 (3)C22'—C23'1.380 (3)
C9—C101.395 (3)C22'—H22'0.9300
C10'—C11'1.387 (3)N2—H20.8600
C10'—H10'0.9300N2'—H2'0.8600
N1—C1—H1A109.5C13—C11—C12121.4 (2)
N1—C1—H1B109.5C11—C12—H12A109.5
H1A—C1—H1B109.5C11—C12—H12B109.5
N1—C1—H1C109.5H12A—C12—H12B109.5
H1A—C1—H1C109.5C11—C12—H12C109.5
H1B—C1—H1C109.5H12A—C12—H12C109.5
N1'—C1'—H1'1109.5H12B—C12—H12C109.5
N1'—C1'—H1'2109.5C11'—C12'—H12D109.5
H1'1—C1'—H1'2109.5C11'—C12'—H12E109.5
N1'—C1'—H1'3109.5H12D—C12'—H12E109.5
H1'1—C1'—H1'3109.5C11'—C12'—H12F109.5
H1'2—C1'—H1'3109.5H12D—C12'—H12F109.5
N1—C2—C3105.23 (17)H12E—C12'—H12F109.5
N1—C2—H2A110.7C14—C13—C11123.5 (2)
C3—C2—H2A110.7C14—C13—H13118.3
N1—C2—H2B110.7C11—C13—H13118.3
C3—C2—H2B110.7C14'—C13'—C11'123.3 (2)
H2A—C2—H2B108.8C14'—C13'—H13'118.4
N1'—C2'—C3'105.46 (17)C11'—C13'—H13'118.4
N1'—C2'—H2'1110.6C13—C14—C15117.9 (2)
C3'—C2'—H2'1110.6C13—C14—H14121.1
N1'—C2'—H2'2110.6C15—C14—H14121.1
C3'—C2'—H2'2110.6C13'—C14'—C15'118.0 (2)
H2'1—C2'—H2'2108.8C13'—C14'—H14'121.0
C4'—C3'—C2'116.09 (18)C15'—C14'—H14'121.0
C4'—C3'—C7'114.57 (18)C9'—C15'—C14'120.0 (2)
C2'—C3'—C7'103.36 (16)C9'—C15'—S1'115.04 (16)
C4'—C3'—H3'107.4C14'—C15'—S1'124.97 (16)
C2'—C3'—H3'107.4C9—C15—C14119.9 (2)
C7'—C3'—H3'107.4C9—C15—S1114.58 (17)
C4—C3—C2115.39 (19)C14—C15—S1125.48 (18)
C4—C3—C7114.41 (19)N1'—C16'—C23'116.25 (16)
C2—C3—C7103.89 (17)N1'—C16'—C7'98.97 (15)
C4—C3—H3107.6C23'—C16'—C7'117.18 (17)
C2—C3—H3107.6N1'—C16'—C17'112.51 (17)
C7—C3—H3107.6C23'—C16'—C17'101.53 (16)
O1'—C4'—O4'124.4 (2)C7'—C16'—C17'110.89 (15)
O1'—C4'—C3'126.2 (2)N1—C16—C23115.93 (16)
O4'—C4'—C3'109.35 (19)N1—C16—C799.34 (15)
O1—C4—O4124.0 (2)C23—C16—C7117.27 (17)
O1—C4—C3126.2 (2)N1—C16—C17112.44 (17)
O4—C4—C3109.7 (2)C23—C16—C17101.69 (16)
O4'—C5'—C6'109.4 (2)C7—C16—C17110.62 (15)
O4'—C5'—H5'1109.8O2'—C17'—N2'125.7 (2)
C6'—C5'—H5'1109.8O2'—C17'—C16'126.9 (2)
O4'—C5'—H5'2109.8N2'—C17'—C16'107.32 (18)
C6'—C5'—H5'2109.8O2—C17—N2125.8 (2)
H5'1—C5'—H5'2108.2O2—C17—C16127.0 (2)
C6—C5—O4110.2 (3)N2—C17—C16107.13 (18)
C6—C5—H5A109.6C19'—C18'—C23'122.6 (2)
O4—C5—H5A109.6C19'—C18'—N2'127.8 (2)
C6—C5—H5B109.6C23'—C18'—N2'109.61 (19)
O4—C5—H5B109.6C19—C18—N2127.8 (2)
H5A—C5—H5B108.1C19—C18—C23122.1 (2)
C5—C6—H6A109.5N2—C18—C23110.04 (18)
C5—C6—H6B109.5C18—C19—C20117.3 (2)
H6A—C6—H6B109.5C18—C19—H19121.3
C5—C6—H6C109.5C20—C19—H19121.3
H6A—C6—H6C109.5C18'—C19'—C20'117.9 (2)
H6B—C6—H6C109.5C18'—C19'—H19'121.1
C5'—C6'—H6'1109.5C20'—C19'—H19'121.1
C5'—C6'—H6'2109.5C21—C20—C19121.7 (2)
H6'1—C6'—H6'2109.5C21—C20—H20119.2
C5'—C6'—H6'3109.5C19—C20—H20119.2
H6'1—C6'—H6'3109.5C21'—C20'—C19'121.1 (2)
H6'2—C6'—H6'3109.5C21'—C20'—H20'119.5
C8'—C7'—C3'115.11 (16)C19'—C20'—H20'119.5
C8'—C7'—C16'114.84 (16)C20—C21—C22120.3 (2)
C3'—C7'—C16'99.87 (16)C20—C21—H21119.8
C8'—C7'—S1'107.51 (14)C22—C21—H21119.8
C3'—C7'—S1'109.33 (13)C20'—C21'—C22'120.7 (2)
C16'—C7'—S1'109.96 (13)C20'—C21'—H21'119.6
C8—C7—C3115.41 (16)C22'—C21'—H21'119.6
C8—C7—C16114.67 (15)C23—C22—C21119.4 (2)
C3—C7—C16100.14 (16)C23—C22—H22120.3
C8—C7—S1107.12 (14)C21—C22—H22120.3
C3—C7—S1109.40 (13)C23'—C22'—C21'119.1 (2)
C16—C7—S1109.94 (13)C23'—C22'—H22'120.5
O3—C8—C9125.66 (19)C21'—C22'—H22'120.5
O3—C8—C7122.30 (19)C22'—C23'—C18'118.7 (2)
C9—C8—C7112.04 (16)C22'—C23'—C16'132.36 (19)
O3'—C8'—C9'125.59 (19)C18'—C23'—C16'108.97 (18)
O3'—C8'—C7'122.6 (2)C22—C23—C18119.1 (2)
C9'—C8'—C7'111.77 (16)C22—C23—C16132.47 (19)
C15'—C9'—C10'120.8 (2)C18—C23—C16108.43 (18)
C15'—C9'—C8'113.37 (18)C1'—N1'—C16'115.75 (17)
C10'—C9'—C8'125.86 (18)C1'—N1'—C2'115.02 (18)
C15—C9—C10120.9 (2)C16'—N1'—C2'107.92 (15)
C15—C9—C8113.59 (19)C1—N1—C16115.13 (17)
C10—C9—C8125.51 (19)C1—N1—C2114.82 (19)
C11'—C10'—C9'120.1 (2)C16—N1—C2108.06 (16)
C11'—C10'—H10'119.9C17—N2—C18112.54 (17)
C9'—C10'—H10'119.9C17—N2—H2123.7
C11—C10—C9120.0 (2)C18—N2—H2123.7
C11—C10—H10120.0C17'—N2'—C18'112.40 (17)
C9—C10—H10120.0C17'—N2'—H2'123.8
C10'—C11'—C13'117.8 (2)C18'—N2'—H2'123.8
C10'—C11'—C12'121.1 (2)C4'—O4'—C5'119.5 (2)
C13'—C11'—C12'121.1 (2)C4—O4—C5118.8 (2)
C10—C11—C13117.8 (2)C15—S1—C792.67 (10)
C10—C11—C12120.7 (2)C15'—S1'—C7'92.30 (9)
N1'—C2'—C3'—C4'138.63 (19)S1—C7—C16—C17173.63 (13)
N1'—C2'—C3'—C7'12.3 (2)N1'—C16'—C17'—O2'48.1 (3)
N1—C2—C3—C4138.1 (2)C23'—C16'—C17'—O2'173.1 (2)
N1—C2—C3—C712.1 (2)C7'—C16'—C17'—O2'61.7 (3)
C2'—C3'—C4'—O1'5.2 (3)N1'—C16'—C17'—N2'129.14 (18)
C7'—C3'—C4'—O1'125.6 (3)C23'—C16'—C17'—N2'4.2 (2)
C2'—C3'—C4'—O4'177.55 (18)C7'—C16'—C17'—N2'121.06 (18)
C7'—C3'—C4'—O4'57.1 (2)N1—C16—C17—O248.7 (3)
C2—C3—C4—O15.5 (4)C23—C16—C17—O2173.4 (2)
C7—C3—C4—O1125.9 (3)C7—C16—C17—O261.3 (3)
C2—C3—C4—O4177.6 (2)N1—C16—C17—N2128.69 (18)
C7—C3—C4—O457.2 (3)C23—C16—C17—N24.0 (2)
C4'—C3'—C7'—C8'72.2 (2)C7—C16—C17—N2121.25 (18)
C2'—C3'—C7'—C8'160.55 (17)N2—C18—C19—C20178.2 (2)
C4'—C3'—C7'—C16'164.28 (17)C23—C18—C19—C200.6 (3)
C2'—C3'—C7'—C16'37.01 (19)C23'—C18'—C19'—C20'0.7 (3)
C4'—C3'—C7'—S1'48.9 (2)N2'—C18'—C19'—C20'178.0 (2)
C2'—C3'—C7'—S1'78.35 (17)C18—C19—C20—C210.6 (4)
C4—C3—C7—C873.3 (2)C18'—C19'—C20'—C21'0.3 (4)
C2—C3—C7—C8160.00 (18)C19—C20—C21—C220.1 (4)
C4—C3—C7—C16163.00 (17)C19'—C20'—C21'—C22'0.1 (4)
C2—C3—C7—C1636.33 (19)C20—C21—C22—C231.6 (4)
C4—C3—C7—S147.5 (2)C20'—C21'—C22'—C23'1.2 (4)
C2—C3—C7—S179.15 (18)C21'—C22'—C23'—C18'2.1 (3)
C3—C7—C8—O359.8 (3)C21'—C22'—C23'—C16'179.6 (2)
C16—C7—C8—O355.9 (3)C19'—C18'—C23'—C22'1.9 (3)
S1—C7—C8—O3178.13 (17)N2'—C18'—C23'—C22'176.99 (18)
C3—C7—C8—C9120.8 (2)C19'—C18'—C23'—C16'179.44 (19)
C16—C7—C8—C9123.53 (19)N2'—C18'—C23'—C16'1.7 (2)
S1—C7—C8—C91.3 (2)N1'—C16'—C23'—C22'52.5 (3)
C3'—C7'—C8'—O3'60.0 (3)C7'—C16'—C23'—C22'64.1 (3)
C16'—C7'—C8'—O3'55.2 (3)C17'—C16'—C23'—C22'175.0 (2)
S1'—C7'—C8'—O3'177.89 (17)N1'—C16'—C23'—C18'125.88 (19)
C3'—C7'—C8'—C9'121.49 (19)C7'—C16'—C23'—C18'117.47 (19)
C16'—C7'—C8'—C9'123.31 (19)C17'—C16'—C23'—C18'3.5 (2)
S1'—C7'—C8'—C9'0.6 (2)C21—C22—C23—C182.7 (3)
O3'—C8'—C9'—C15'177.6 (2)C21—C22—C23—C16179.9 (2)
C7'—C8'—C9'—C15'0.9 (2)C19—C18—C23—C222.2 (3)
O3'—C8'—C9'—C10'3.5 (4)N2—C18—C23—C22176.70 (18)
C7'—C8'—C9'—C10'178.0 (2)C19—C18—C23—C16179.95 (19)
O3—C8—C9—C15178.4 (2)N2—C18—C23—C161.1 (2)
C7—C8—C9—C150.9 (3)N1—C16—C23—C2252.1 (3)
O3—C8—C9—C102.6 (4)C7—C16—C23—C2264.9 (3)
C7—C8—C9—C10178.1 (2)C17—C16—C23—C22174.4 (2)
C15'—C9'—C10'—C11'0.6 (3)N1—C16—C23—C18125.32 (19)
C8'—C9'—C10'—C11'179.4 (2)C7—C16—C23—C18117.70 (19)
C15—C9—C10—C110.5 (4)C17—C16—C23—C183.0 (2)
C8—C9—C10—C11179.5 (2)C23'—C16'—N1'—C1'60.5 (2)
C9'—C10'—C11'—C13'0.7 (4)C7'—C16'—N1'—C1'173.11 (18)
C9'—C10'—C11'—C12'178.0 (2)C17'—C16'—N1'—C1'56.0 (2)
C9—C10—C11—C130.6 (4)C23'—C16'—N1'—C2'169.02 (17)
C9—C10—C11—C12177.7 (2)C7'—C16'—N1'—C2'42.61 (19)
C10—C11—C13—C141.0 (4)C17'—C16'—N1'—C2'74.5 (2)
C12—C11—C13—C14177.3 (3)C3'—C2'—N1'—C1'150.53 (18)
C10'—C11'—C13'—C14'1.3 (4)C3'—C2'—N1'—C16'19.6 (2)
C12'—C11'—C13'—C14'177.4 (2)C23—C16—N1—C161.8 (3)
C11—C13—C14—C150.3 (4)C7—C16—N1—C1171.59 (19)
C11'—C13'—C14'—C15'0.6 (4)C17—C16—N1—C154.6 (2)
C10'—C9'—C15'—C14'1.3 (3)C23—C16—N1—C2168.35 (18)
C8'—C9'—C15'—C14'179.7 (2)C7—C16—N1—C241.7 (2)
C10'—C9'—C15'—S1'178.21 (17)C17—C16—N1—C275.3 (2)
C8'—C9'—C15'—S1'0.7 (2)C3—C2—N1—C1149.20 (19)
C13'—C14'—C15'—C9'0.7 (3)C3—C2—N1—C1619.2 (2)
C13'—C14'—C15'—S1'178.73 (18)O2—C17—N2—C18173.8 (2)
C10—C9—C15—C141.2 (3)C16—C17—N2—C183.7 (2)
C8—C9—C15—C14179.7 (2)C19—C18—N2—C17177.1 (2)
C10—C9—C15—S1178.93 (18)C23—C18—N2—C171.8 (2)
C8—C9—C15—S10.2 (2)O2'—C17'—N2'—C18'173.8 (2)
C13—C14—C15—C90.8 (4)C16'—C17'—N2'—C18'3.5 (2)
C13—C14—C15—S1179.36 (19)C19'—C18'—N2'—C17'177.5 (2)
C8'—C7'—C16'—N1'171.82 (16)C23'—C18'—N2'—C17'1.3 (2)
C3'—C7'—C16'—N1'48.09 (17)O1'—C4'—O4'—C5'0.3 (4)
S1'—C7'—C16'—N1'66.79 (16)C3'—C4'—O4'—C5'177.6 (2)
C8'—C7'—C16'—C23'62.4 (2)C6'—C5'—O4'—C4'107.4 (3)
C3'—C7'—C16'—C23'173.85 (16)O1—C4—O4—C52.3 (4)
S1'—C7'—C16'—C23'58.97 (19)C3—C4—O4—C5179.3 (2)
C8'—C7'—C16'—C17'53.5 (2)C6—C5—O4—C4121.2 (3)
C3'—C7'—C16'—C17'70.28 (19)C9—C15—S1—C70.53 (18)
S1'—C7'—C16'—C17'174.85 (13)C14—C15—S1—C7179.6 (2)
C8—C7—C16—N1171.27 (16)C8—C7—S1—C150.99 (15)
C3—C7—C16—N147.09 (17)C3—C7—S1—C15124.78 (15)
S1—C7—C16—N167.99 (16)C16—C7—S1—C15126.18 (14)
C8—C7—C16—C2363.0 (2)C9'—C15'—S1'—C7'0.32 (17)
C3—C7—C16—C23172.77 (16)C14'—C15'—S1'—C7'179.8 (2)
S1—C7—C16—C2357.69 (19)C8'—C7'—S1'—C15'0.17 (15)
C8—C7—C16—C1752.9 (2)C3'—C7'—S1'—C15'125.44 (15)
C3—C7—C16—C1771.29 (19)C16'—C7'—S1'—C15'125.85 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.862.092.941 (3)168
N2—H2···O30.862.153.005 (3)172
C13—H13···O2i0.932.573.439 (3)155
C14—H14···01ii0.932.543.402 (3)154
Symmetry codes: (i) x, y1, z; (ii) x3/2, y+1, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3'0.862.092.941 (3)168
N2'—H2'···O30.862.153.005 (3)172
C13'—H13'···O2'i0.932.573.439 (3)155
C14'—H14'···01ii0.932.543.402 (3)154
Symmetry codes: (i) x, y1, z; (ii) x3/2, y+1, z3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGanesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902–o2903.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o152-o153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds