organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 1′,1′′-di­methyl-2′′,3-dioxo-3H-di­spiro­[benzo[b]thio­phene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 30 January 2015; online 4 February 2015)

In the title compound, C23H22N2O4S, the pyrrolidine ring has an envelope conformation with the spiro C atom, shared with the indoline ring system, as the flap. The mean planes of the benzo­thio­phene and indoline ring systems are inclined to the mean plane of the pyrrolidine ring by 88.81 (8) and 79.48 (8)°, respectively, and to each other by 68.12 (5)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [001].

1. Related literature

For various biological activities of indole derivatives, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]). For the crystal structures of two very similar compounds, see: Savithri et al. (2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H22N2O4S

  • Mr = 422.49

  • Monoclinic, C 2/c

  • a = 23.7049 (11) Å

  • b = 8.2632 (3) Å

  • c = 22.1003 (8) Å

  • β = 102.337 (2)°

  • V = 4229.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc , Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.910

  • 22087 measured reflections

  • 4621 independent reflections

  • 3869 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 4618 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.46 3.212 (2) 138
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc , Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc , Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc , Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit antiallergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). In view of this biological importance, the crystal structure of the title compound was determined and the results are presented here.

The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for similar structures (Savithri et al., 2014).

The five membered ring (N1/C1/C6-C8) in the indole moiety adopts an envelope conformation with the C8 as the flap atom [puckering parameters q2 = 0.0888 (2)Å and ϕ2 = 284.2 (1)°] and the pyrrolidine ring (N2/C8-C11) exhibits a twisted conformation [puckering parameters, q2 = 0.4626 (2)Å and ϕ2 = 233.4 (2)°]. The bond length C12-O2 = 1.211 Å indicates a keto group in the benzothiophene. The sum of angles at N2 of the pyrrolidine ring (339°) is in accordance with sp3 hybridization and the sum of angles at N1 of the indole moiety (359°) is in accordance with sp2 hybridization.

The pyrrolidine ring (N2/C8-C11) is perpendicular with benzothiophene (C11-C18/S1) oriented at a dihedral angle of 88.81 (8)° and is oriented with indole ring (N1/C1-C8) at a dihedral angle of 79.48 (8)°. The thiophene ring (C11-C14/S1) makes dihedral angles of 87.98 (8)° and 67.14 (6)° with pyrrolidine (N2/C8-C11) and indole (N1/C1-C8) rings, respectively.

In the crystal, hydrogen-bonded chains running along [001] are generated by connecting neighbouring molecules via C-H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For various biological activities of indole derivatives, see: Harris & Uhle (1960); Ho et al. (1986); Stevenson et al. (2000). For the crystal structures of two very similar compounds, see: Savithri et al. (2014).

Experimental top

(E)-ethyl 2-(3-oxobenzo[b]thiophen-2(3H)-ylidene) acetate (1.0 mmol), N-methyl isatin (1.1 mmol) and sarcosine (1.1 mmol) were refluxed in methanol (20ml) until completion of the reaction monitored by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration the organic solvent was evaporated under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as an eluent to give a colourless solid. The product was dissolved in chloroform (3 ml) and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent giving in single crystals suitable for X-ray crystallographic studies.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atom: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Dashed lines shows the intermolecular C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 1',1''-dimethyl-2'',3-dioxo-3H-dispiro[benzo[b]thiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate top
Crystal data top
C23H22N2O4SF(000) = 1776
Mr = 422.49Dx = 1.327 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4634 reflections
a = 23.7049 (11) Åθ = 2.3–27.0°
b = 8.2632 (3) ŵ = 0.19 mm1
c = 22.1003 (8) ÅT = 293 K
β = 102.337 (2)°Block, colourless
V = 4229.0 (3) Å30.35 × 0.30 × 0.30 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4621 independent reflections
Radiation source: fine-focus sealed tube3869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3030
Tmin = 0.896, Tmax = 0.910k = 108
22087 measured reflectionsl = 2228
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0502P)2 + 2.8328P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4618 reflectionsΔρmax = 0.40 e Å3
275 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (2)
Crystal data top
C23H22N2O4SV = 4229.0 (3) Å3
Mr = 422.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7049 (11) ŵ = 0.19 mm1
b = 8.2632 (3) ÅT = 293 K
c = 22.1003 (8) Å0.35 × 0.30 × 0.30 mm
β = 102.337 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3869 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.910Rint = 0.029
22087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
4618 reflectionsΔρmin = 0.20 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.141873 (15)0.31779 (4)0.413751 (16)0.03357 (12)
C110.13418 (6)0.09712 (17)0.41066 (6)0.0316 (3)
N10.16154 (6)0.18548 (15)0.30761 (6)0.0390 (3)
C10.18787 (6)0.08191 (18)0.32013 (6)0.0319 (3)
O20.05531 (5)0.07835 (14)0.36475 (6)0.0499 (3)
O10.17197 (6)0.27090 (14)0.40812 (6)0.0515 (3)
C80.18360 (6)0.02047 (17)0.38341 (6)0.0318 (3)
C120.07265 (6)0.05908 (19)0.37426 (7)0.0350 (3)
C140.07062 (6)0.34826 (19)0.37340 (7)0.0352 (3)
C70.17122 (6)0.16405 (18)0.37017 (7)0.0364 (3)
N20.23289 (5)0.05295 (16)0.43401 (6)0.0384 (3)
C130.03980 (6)0.2070 (2)0.35486 (7)0.0380 (3)
C60.17075 (6)0.04172 (19)0.27721 (7)0.0356 (3)
C20.20526 (7)0.2287 (2)0.30060 (8)0.0395 (4)
H20.21870.31050.32900.047*
O40.06476 (6)0.13849 (16)0.49836 (6)0.0556 (3)
C100.14909 (7)0.0263 (2)0.47706 (7)0.0405 (4)
H100.13600.08650.47470.049*
C90.21520 (8)0.0253 (2)0.49324 (8)0.0495 (4)
H9A0.22980.11040.52260.059*
H9B0.22960.07800.51100.059*
C150.04484 (7)0.4995 (2)0.36049 (8)0.0471 (4)
H150.06540.59420.37260.056*
C200.28698 (7)0.0239 (2)0.42869 (9)0.0541 (5)
H20A0.28260.13940.42900.081*
H20B0.31700.00830.46300.081*
H20C0.29690.00880.39060.081*
C180.01766 (8)0.2148 (2)0.32301 (9)0.0539 (5)
H180.03840.12060.31050.065*
C210.12051 (9)0.1125 (2)0.52268 (7)0.0498 (4)
C50.16713 (7)0.0205 (2)0.21453 (7)0.0474 (4)
H50.15470.10320.18630.057*
C30.20234 (8)0.2522 (2)0.23745 (8)0.0489 (4)
H30.21360.35080.22360.059*
O30.14426 (8)0.1504 (2)0.57445 (6)0.0794 (5)
C40.18291 (8)0.1304 (3)0.19547 (8)0.0530 (5)
H40.18030.14950.15350.064*
C190.15024 (10)0.3419 (2)0.27783 (10)0.0598 (5)
H19A0.15510.42520.30880.090*
H19B0.17670.35960.25110.090*
H19C0.11140.34450.25380.090*
C160.01201 (9)0.5045 (3)0.32919 (11)0.0646 (5)
H160.03000.60430.32040.078*
C170.04313 (8)0.3642 (3)0.31035 (11)0.0686 (6)
H170.08140.37130.28910.082*
C220.03086 (12)0.2257 (3)0.53552 (11)0.0763 (7)
H22A0.05190.32010.55440.092*
H22B0.02300.15650.56820.092*
C230.02388 (11)0.2757 (3)0.49378 (13)0.0819 (7)
H23A0.01560.34580.46210.123*
H23B0.04750.33200.51720.123*
H23C0.04400.18150.47490.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0366 (2)0.0301 (2)0.03283 (19)0.00394 (14)0.00468 (14)0.00350 (15)
C110.0373 (7)0.0291 (7)0.0280 (6)0.0048 (6)0.0063 (5)0.0004 (6)
N10.0449 (7)0.0305 (7)0.0405 (7)0.0051 (5)0.0066 (5)0.0084 (6)
C10.0295 (7)0.0325 (8)0.0336 (7)0.0001 (5)0.0066 (5)0.0022 (6)
O20.0461 (6)0.0378 (7)0.0646 (8)0.0129 (5)0.0090 (6)0.0061 (6)
O10.0686 (8)0.0314 (6)0.0514 (7)0.0028 (5)0.0059 (6)0.0072 (6)
C80.0346 (7)0.0279 (7)0.0309 (7)0.0026 (6)0.0028 (5)0.0017 (6)
C120.0363 (7)0.0380 (8)0.0319 (7)0.0083 (6)0.0103 (6)0.0018 (6)
C140.0354 (7)0.0394 (8)0.0314 (7)0.0017 (6)0.0087 (6)0.0023 (6)
C70.0374 (8)0.0297 (8)0.0402 (8)0.0012 (6)0.0042 (6)0.0028 (7)
N20.0368 (7)0.0393 (7)0.0344 (6)0.0001 (5)0.0027 (5)0.0052 (6)
C130.0351 (7)0.0424 (9)0.0363 (8)0.0039 (6)0.0074 (6)0.0016 (7)
C60.0324 (7)0.0380 (8)0.0357 (7)0.0004 (6)0.0056 (6)0.0049 (6)
C20.0405 (8)0.0361 (8)0.0447 (9)0.0032 (6)0.0153 (7)0.0022 (7)
O40.0676 (8)0.0583 (8)0.0484 (7)0.0018 (6)0.0292 (6)0.0051 (6)
C100.0561 (9)0.0360 (8)0.0286 (7)0.0033 (7)0.0071 (6)0.0036 (6)
C90.0574 (10)0.0516 (10)0.0339 (8)0.0029 (8)0.0028 (7)0.0021 (8)
C150.0486 (9)0.0402 (9)0.0527 (10)0.0024 (7)0.0116 (8)0.0048 (8)
C200.0412 (9)0.0573 (11)0.0574 (11)0.0070 (8)0.0038 (8)0.0107 (9)
C180.0388 (9)0.0560 (11)0.0624 (11)0.0086 (8)0.0010 (8)0.0020 (9)
C210.0757 (12)0.0444 (10)0.0326 (8)0.0061 (9)0.0187 (8)0.0056 (7)
C50.0516 (9)0.0556 (11)0.0341 (8)0.0001 (8)0.0075 (7)0.0095 (8)
C30.0518 (10)0.0489 (10)0.0511 (10)0.0011 (8)0.0223 (8)0.0104 (8)
O30.1083 (13)0.0999 (13)0.0299 (6)0.0017 (10)0.0146 (7)0.0060 (7)
C40.0585 (11)0.0672 (12)0.0359 (8)0.0068 (9)0.0160 (7)0.0067 (9)
C190.0756 (13)0.0414 (10)0.0633 (12)0.0176 (9)0.0168 (10)0.0216 (9)
C160.0524 (11)0.0571 (12)0.0803 (14)0.0142 (9)0.0051 (10)0.0150 (11)
C170.0396 (9)0.0744 (14)0.0835 (15)0.0060 (10)0.0054 (9)0.0138 (12)
C220.1001 (18)0.0769 (16)0.0680 (14)0.0025 (13)0.0542 (14)0.0079 (12)
C230.0883 (17)0.0679 (15)0.106 (2)0.0066 (13)0.0587 (16)0.0015 (14)
Geometric parameters (Å, º) top
S1—C141.7516 (15)C10—H100.9800
S1—C111.8324 (15)C9—H9A0.9700
C11—C121.540 (2)C9—H9B0.9700
C11—C101.5487 (19)C15—C161.378 (3)
C11—C81.561 (2)C15—H150.9300
N1—C71.364 (2)C20—H20A0.9600
N1—C61.405 (2)C20—H20B0.9600
N1—C191.449 (2)C20—H20C0.9600
C1—C21.380 (2)C18—C171.377 (3)
C1—C61.394 (2)C18—H180.9300
C1—C81.511 (2)C21—O31.204 (2)
O2—C121.2107 (18)C5—C41.393 (3)
O1—C71.2153 (19)C5—H50.9300
C8—N21.4592 (18)C3—C41.379 (3)
C8—C71.568 (2)C3—H30.9300
C12—C131.464 (2)C4—H40.9300
C14—C131.391 (2)C19—H19A0.9600
C14—C151.394 (2)C19—H19B0.9600
N2—C201.458 (2)C19—H19C0.9600
N2—C91.475 (2)C16—C171.389 (3)
C13—C181.395 (2)C16—H160.9300
C6—C51.381 (2)C17—H170.9300
C2—C31.396 (2)C22—C231.481 (4)
C2—H20.9300C22—H22A0.9700
O4—C211.333 (2)C22—H22B0.9700
O4—C221.457 (2)C23—H23A0.9600
C10—C211.508 (2)C23—H23B0.9600
C10—C91.531 (2)C23—H23C0.9600
C14—S1—C1192.67 (7)C10—C9—H9B110.7
C12—C11—C10114.63 (12)H9A—C9—H9B108.8
C12—C11—C8114.87 (11)C16—C15—C14117.94 (17)
C10—C11—C8100.04 (11)C16—C15—H15121.0
C12—C11—S1107.34 (10)C14—C15—H15121.0
C10—C11—S1109.86 (10)N2—C20—H20A109.5
C8—C11—S1109.95 (9)N2—C20—H20B109.5
C7—N1—C6111.44 (12)H20A—C20—H20B109.5
C7—N1—C19123.43 (14)N2—C20—H20C109.5
C6—N1—C19124.72 (14)H20A—C20—H20C109.5
C2—C1—C6119.63 (14)H20B—C20—H20C109.5
C2—C1—C8131.94 (13)C17—C18—C13118.84 (17)
C6—C1—C8108.43 (12)C17—C18—H18120.6
N2—C8—C1116.51 (12)C13—C18—H18120.6
N2—C8—C11100.00 (11)O3—C21—O4124.29 (18)
C1—C8—C11115.14 (11)O3—C21—C10124.94 (19)
N2—C8—C7114.14 (12)O4—C21—C10110.76 (14)
C1—C8—C7101.59 (11)C6—C5—C4117.01 (16)
C11—C8—C7109.90 (11)C6—C5—H5121.5
O2—C12—C13126.37 (14)C4—C5—H5121.5
O2—C12—C11122.04 (14)C4—C3—C2120.62 (17)
C13—C12—C11111.58 (12)C4—C3—H3119.7
C13—C14—C15120.82 (14)C2—C3—H3119.7
C13—C14—S1114.70 (12)C3—C4—C5121.49 (16)
C15—C14—S1124.48 (13)C3—C4—H4119.3
O1—C7—N1125.43 (14)C5—C4—H4119.3
O1—C7—C8127.09 (14)N1—C19—H19A109.5
N1—C7—C8107.43 (12)N1—C19—H19B109.5
C20—N2—C8115.60 (12)H19A—C19—H19B109.5
C20—N2—C9115.19 (13)N1—C19—H19C109.5
C8—N2—C9108.58 (12)H19A—C19—H19C109.5
C14—C13—C18120.33 (15)H19B—C19—H19C109.5
C14—C13—C12113.66 (13)C15—C16—C17121.70 (18)
C18—C13—C12125.96 (15)C15—C16—H16119.2
C5—C6—C1122.43 (15)C17—C16—H16119.2
C5—C6—N1127.21 (15)C18—C17—C16120.38 (17)
C1—C6—N1110.28 (13)C18—C17—H17119.8
C1—C2—C3118.71 (15)C16—C17—H17119.8
C1—C2—H2120.6O4—C22—C23107.59 (18)
C3—C2—H2120.6O4—C22—H22A110.2
C21—O4—C22118.09 (16)C23—C22—H22A110.2
C21—C10—C9115.47 (14)O4—C22—H22B110.2
C21—C10—C11114.26 (13)C23—C22—H22B110.2
C9—C10—C11103.79 (12)H22A—C22—H22B108.5
C21—C10—H10107.6C22—C23—H23A109.5
C9—C10—H10107.6C22—C23—H23B109.5
C11—C10—H10107.6H23A—C23—H23B109.5
N2—C9—C10105.23 (12)C22—C23—H23C109.5
N2—C9—H9A110.7H23A—C23—H23C109.5
C10—C9—H9A110.7H23B—C23—H23C109.5
N2—C9—H9B110.7
C14—S1—C11—C121.58 (10)S1—C14—C13—C121.56 (17)
C14—S1—C11—C10123.66 (11)O2—C12—C13—C14178.78 (15)
C14—S1—C11—C8127.17 (10)C11—C12—C13—C140.26 (18)
C2—C1—C8—N245.8 (2)O2—C12—C13—C181.3 (3)
C6—C1—C8—N2133.48 (13)C11—C12—C13—C18177.73 (15)
C2—C1—C8—C1170.9 (2)C2—C1—C6—C53.9 (2)
C6—C1—C8—C11109.88 (13)C8—C1—C6—C5176.69 (14)
C2—C1—C8—C7170.46 (15)C2—C1—C6—N1172.93 (13)
C6—C1—C8—C78.80 (14)C8—C1—C6—N16.44 (16)
C12—C11—C8—N2169.56 (12)C7—N1—C6—C5177.34 (15)
C10—C11—C8—N246.29 (13)C19—N1—C6—C54.5 (3)
S1—C11—C8—N269.26 (11)C7—N1—C6—C10.65 (17)
C12—C11—C8—C164.75 (16)C19—N1—C6—C1172.18 (15)
C10—C11—C8—C1171.98 (12)C6—C1—C2—C33.3 (2)
S1—C11—C8—C156.43 (14)C8—C1—C2—C3177.51 (15)
C12—C11—C8—C749.19 (16)C12—C11—C10—C2173.44 (17)
C10—C11—C8—C774.08 (13)C8—C11—C10—C21163.12 (13)
S1—C11—C8—C7170.37 (9)S1—C11—C10—C2147.50 (16)
C10—C11—C12—O257.80 (19)C12—C11—C10—C9159.94 (13)
C8—C11—C12—O257.28 (19)C8—C11—C10—C936.51 (14)
S1—C11—C12—O2179.88 (12)S1—C11—C10—C979.11 (13)
C10—C11—C12—C13121.29 (14)C20—N2—C9—C10148.67 (14)
C8—C11—C12—C13123.63 (13)C8—N2—C9—C1017.23 (17)
S1—C11—C12—C131.03 (14)C21—C10—C9—N2139.30 (14)
C11—S1—C14—C131.87 (12)C11—C10—C9—N213.45 (17)
C11—S1—C14—C15177.39 (14)C13—C14—C15—C160.3 (2)
C6—N1—C7—O1172.45 (15)S1—C14—C15—C16178.89 (14)
C19—N1—C7—O10.5 (3)C14—C13—C18—C170.0 (3)
C6—N1—C7—C85.18 (17)C12—C13—C18—C17177.33 (18)
C19—N1—C7—C8178.12 (15)C22—O4—C21—O33.3 (3)
N2—C8—C7—O142.9 (2)C22—O4—C21—C10177.97 (16)
C1—C8—C7—O1169.17 (15)C9—C10—C21—O315.2 (3)
C11—C8—C7—O168.47 (19)C11—C10—C21—O3135.47 (19)
N2—C8—C7—N1134.66 (13)C9—C10—C21—O4166.10 (14)
C1—C8—C7—N18.42 (15)C11—C10—C21—O445.81 (19)
C11—C8—C7—N1113.95 (13)C1—C6—C5—C41.6 (2)
C1—C8—N2—C2063.90 (18)N1—C6—C5—C4174.69 (15)
C11—C8—N2—C20171.35 (14)C1—C2—C3—C40.5 (2)
C7—C8—N2—C2054.10 (18)C2—C3—C4—C51.8 (3)
C1—C8—N2—C9164.88 (13)C6—C5—C4—C31.2 (3)
C11—C8—N2—C940.13 (14)C14—C15—C16—C170.5 (3)
C7—C8—N2—C977.11 (16)C13—C18—C17—C160.2 (3)
C15—C14—C13—C180.1 (2)C15—C16—C17—C180.4 (4)
S1—C14—C13—C18179.19 (13)C21—O4—C22—C23165.63 (18)
C15—C14—C13—C12177.72 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.463.212 (2)138
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.463.212 (2)138
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

MPS and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc , Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds