organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o148-o149

Crystal structure of ethyl 2′′,3-dioxo-7′,7a'-di­hydro-1′H,3H,3′H-di­spiro[benzo[b]thio­phene-2,6′-pyrrolo­[1,2-c]thia­zole-5′,3′′-indoline]-7′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 30 January 2015; online 7 February 2015)

In the title compound, C23H20N2O4S2, the central pyrrolidine ring adopts an envelope conformation with the spiro C atom, shared with the benzo­thio­phene ring system, as the flap. The thia­zole ring has a twisted conformation on the S—C bond, where the C atom is that closest to methine C atom. The mean planes of the benzo­thio­phene and indoline ring systems are inclined to the mean plane of the central pyrrolidine ring by 82.75 (8) and 80.03 (8)°, respectively, and to each other by 61.49 (6)°. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional structure. The eth­oxy­carbonyl group is disordered over two orientations, with an occupancy ratio of 0.717 (12):0.283 (12).

1. Related literature

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003[Obniska, J., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553-557.]); Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]); Zapf et al. (2011[Zapf, C. W., Bloom, J. D., Li, Z., Dushin, R. G., Nittoli, T., Otteng, M., Nikitenko, A., Golas, J. M., Liu, H., Lucas, J., Boschelli, F., Vogan, E., Olland, A., Johnson, M. & Levin, J. I. (2011). Bioorg. Med. Chem. Lett. 21, 4602-4607.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Huryn et al. (1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Curr. Org. Synth. 1, 64-74.]). For a related structure, see: Narayanan et al. (2013[Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o23-o24.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H20N2O4S2

  • Mr = 452.53

  • Monoclinic, P 21 /c

  • a = 11.8894 (5) Å

  • b = 10.2181 (4) Å

  • c = 17.5044 (8) Å

  • β = 97.991 (2)°

  • V = 2105.91 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.919

  • 19635 measured reflections

  • 3706 independent reflections

  • 3169 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 0.98

  • 3705 reflections

  • 312 parameters

  • 65 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.87 (2) 2.05 (2) 2.9029 (18) 169 (2)
C11—H11⋯O3ii 0.93 2.47 3.215 (2) 137
C13—H13⋯N1iii 0.93 2.60 3.505 (2) 165
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticancer (Zapf et al., 2011) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and in continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

The molecular structure of the title compound as illustrated in Fig. 1. The bond lengths and angles are within normal ranges and comparable to those found in a related structure (Narayanan et al., 2013). Terminal atoms C1, C2, O2 in the ethyl carboxylate group are disordered over two positions [C1/C1A, C2/C2A & O2/O2A] with a site-occupancy ratio of 0.716 (12) : 0.284 (12). The sum of the angles at N1 and N2 [340.95° and 359.96°, respectively] of the pyrrolidine and indole rings are in accordance with sp3 and sp2 hybridization.

The central pyrrolidine ring (N1/C4-C7) forms dihedral angles of 82.0 (1)° and 80.9 (1)°, respectively, with pyrrolidine ring (N2/C6/C15-C16/C21) of indole ring system and the benzene ring (C9-C16) of benzothiophene ring system. The central pyrrolidine ring has an envelope conformation with atom C7 as the flap [puckering parameters of q2 = 0.4574 (2)Å , ϕ2 = 293.2 (2)°]. The thiophene ring (S1/C7-C9/C14) adopts twisted conformation on bond S1-C7 [puckering parameters of q2 = 0.1294 (2)Å, ϕ2 = 16.8 (8)°]. The five membered thiozole ring (N1/S2/C5/C22,C23) adopts twisted conformation on C23-S2 [puckering parameters of q2 = 0.4675 (2) Å, ϕ2 = 164.4 (2)°].

In the crystal, molecules are linked via C-H···O, C-H···N, N-H···O intermolecular hydrogen bonds (Table 1 and Fig. 2). The C11-H11···O3 inter-molecular interactions form a dimer with graphset motif R22(12) and N2-H2···O4 hydrogen bonds connect molecules to form inversion dimers, with an R22(8) ring motif (Fig. 2). C13-H13···N1 hydrogen bonds form a linear chain along the a axis. This combination of C-H···O, C-H···N and N-H···O hydrogen bonds gives a three-dimensional structure.

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Zapf et al. (2011); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Narayanan et al. (2013).

Experimental top

A reaction mixture of (E)-ethyl 2-(3-oxobenzo[b]thiophen-2(3H)-ylidene) acetate (1.0 mmol), isatin (1.1 mmol) and thiazolidine-4-carboxylic acid (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction monitored by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration the organic solvent was evaporated under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as an eluent to give a colourless solid. The product was dissolved in chloroform (3 ml) and heated for two minutes. The solution was then subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for X-ray crystallographic studies.

Refinement top

Atoms C1, C2 and O2 are disordered over two positions (C1A/C1B, C2A/C2B & O2/O2A) with a refined occupancy ratio of 0.716 (12) : 0.284 (12). The O-C and C-C distances of the disordered atoms were restrained to be equal. The displacement parameters of the disordered atoms were restrained to be equal for bonded atoms. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and allowed to ride on their parent C atoms: C-H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines represent the bonds involving the minor component of the disordered ethyl carboxylate unit.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the b axis. Dashed lines show the C—H···N, C—H···O and C—H···N hydrogen bonds (Table 1).
2'',3-Dioxo-7',7a'-dihydro-1'H,3H,3'H-dispiro[benzo[b]thiophene-2,6'-pyrrolo[1,2-c]thiazole-5',3''-indoline]-7'-carboxylate top
Crystal data top
C23H20N2O4S2F(000) = 944
Mr = 452.53Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3706 reflections
a = 11.8894 (5) Åθ = 2.3–25.0°
b = 10.2181 (4) ŵ = 0.29 mm1
c = 17.5044 (8) ÅT = 293 K
β = 97.991 (2)°Block, colourless
V = 2105.91 (15) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3706 independent reflections
Radiation source: fine-focus sealed tube3169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.906, Tmax = 0.919k = 1211
19635 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0443P)2 + 1.0594P]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.26 e Å3
65 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H20N2O4S2V = 2105.91 (15) Å3
Mr = 452.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8894 (5) ŵ = 0.29 mm1
b = 10.2181 (4) ÅT = 293 K
c = 17.5044 (8) Å0.35 × 0.30 × 0.30 mm
β = 97.991 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3169 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.919Rint = 0.027
19635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03265 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.26 e Å3
3705 reflectionsΔρmin = 0.27 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.22511 (16)0.15734 (19)0.81332 (11)0.0408 (4)
C40.22481 (14)0.12481 (18)0.72929 (10)0.0342 (4)
H40.15000.14860.70190.041*
C50.31386 (14)0.19721 (18)0.69063 (10)0.0354 (4)
H50.38210.20980.72830.042*
C60.26623 (13)0.00729 (17)0.62479 (9)0.0298 (4)
C70.24619 (13)0.02012 (17)0.71114 (9)0.0314 (4)
C80.15041 (14)0.11732 (18)0.72277 (10)0.0343 (4)
C90.19513 (13)0.23396 (18)0.76473 (10)0.0336 (4)
C100.13286 (15)0.3444 (2)0.77968 (11)0.0437 (5)
H100.05490.34730.76400.052*
C110.18760 (17)0.4486 (2)0.81770 (13)0.0501 (5)
H110.14670.52230.82850.060*
C120.30442 (17)0.4440 (2)0.84011 (12)0.0475 (5)
H120.34110.51580.86500.057*
C130.36685 (15)0.33556 (19)0.82629 (11)0.0393 (4)
H130.44500.33380.84140.047*
C140.31142 (13)0.22884 (17)0.78951 (9)0.0319 (4)
C150.14879 (13)0.01360 (18)0.57169 (9)0.0334 (4)
C160.22851 (14)0.17108 (17)0.52915 (10)0.0331 (4)
C170.24522 (16)0.27754 (19)0.48425 (11)0.0415 (4)
H170.18920.30570.44530.050*
C180.34843 (18)0.34133 (19)0.49905 (12)0.0461 (5)
H180.36200.41400.46970.055*
C190.43177 (17)0.29921 (19)0.55657 (12)0.0451 (5)
H190.50040.34410.56580.054*
C200.41404 (15)0.19029 (18)0.60081 (11)0.0381 (4)
H200.47100.16060.63860.046*
C210.31061 (13)0.12661 (17)0.58786 (10)0.0309 (4)
C220.35408 (17)0.17203 (19)0.55696 (11)0.0422 (4)
H22A0.42060.13920.53680.051*
H22B0.28790.15710.51890.051*
N10.34078 (11)0.10643 (14)0.62958 (8)0.0313 (3)
N20.13369 (12)0.08759 (15)0.52250 (9)0.0373 (4)
O10.28776 (14)0.23233 (15)0.84987 (8)0.0601 (4)
O30.05293 (10)0.09693 (14)0.69704 (9)0.0510 (4)
O40.08550 (10)0.10764 (13)0.57322 (7)0.0430 (3)
S10.37513 (3)0.07922 (4)0.77110 (3)0.03457 (13)
S20.36970 (5)0.34399 (5)0.57908 (3)0.05123 (16)
C230.27897 (18)0.3280 (2)0.65305 (13)0.0504 (5)
H23A0.19950.32740.63080.061*
H23B0.29170.39890.69010.061*
C10.0015 (4)0.0975 (10)0.9230 (3)0.100 (2)0.717 (12)
H1A0.02350.12890.97040.149*0.717 (12)
H1B0.05220.13200.88030.149*0.717 (12)
H1C0.00500.00360.92200.149*0.717 (12)
C20.1165 (5)0.1407 (8)0.9171 (3)0.0663 (17)0.717 (12)
H2A0.12120.23540.91630.080*0.717 (12)
H2B0.16890.10800.96030.080*0.717 (12)
O20.1435 (9)0.0828 (9)0.8414 (5)0.059 (2)0.717 (12)
C1A0.0427 (18)0.1791 (17)0.9270 (6)0.085 (5)0.283 (12)
H1A10.02300.17670.97840.128*0.283 (12)
H1A20.06610.26610.91570.128*0.283 (12)
H1A30.02210.15460.89080.128*0.283 (12)
C2A0.1380 (12)0.0854 (14)0.9211 (8)0.053 (3)0.283 (12)
H2A10.11820.00520.92900.063*0.283 (12)
H2A20.20800.10850.95370.063*0.283 (12)
O2A0.1378 (19)0.120 (2)0.8381 (10)0.043 (3)0.283 (12)
H20.0730 (15)0.098 (2)0.4891 (11)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0357 (10)0.0462 (11)0.0390 (10)0.0027 (9)0.0008 (8)0.0047 (9)
C40.0275 (8)0.0386 (10)0.0346 (9)0.0026 (7)0.0020 (7)0.0035 (8)
C50.0308 (9)0.0369 (10)0.0369 (9)0.0002 (7)0.0010 (7)0.0034 (8)
C60.0220 (8)0.0339 (9)0.0318 (9)0.0008 (7)0.0020 (6)0.0000 (7)
C70.0209 (8)0.0383 (10)0.0330 (9)0.0002 (7)0.0032 (6)0.0002 (7)
C80.0235 (8)0.0453 (10)0.0335 (9)0.0022 (7)0.0016 (7)0.0056 (8)
C90.0252 (8)0.0411 (10)0.0342 (9)0.0037 (7)0.0031 (7)0.0033 (8)
C100.0270 (9)0.0511 (12)0.0526 (12)0.0096 (8)0.0035 (8)0.0030 (9)
C110.0440 (11)0.0426 (12)0.0634 (13)0.0125 (9)0.0062 (10)0.0036 (10)
C120.0441 (11)0.0392 (11)0.0577 (12)0.0006 (9)0.0015 (9)0.0070 (9)
C130.0291 (9)0.0442 (11)0.0432 (10)0.0019 (8)0.0003 (8)0.0012 (9)
C140.0261 (8)0.0375 (10)0.0317 (8)0.0034 (7)0.0029 (7)0.0027 (7)
C150.0257 (8)0.0401 (10)0.0325 (9)0.0000 (7)0.0026 (7)0.0007 (8)
C160.0326 (9)0.0353 (10)0.0314 (9)0.0011 (7)0.0041 (7)0.0025 (7)
C170.0473 (11)0.0392 (11)0.0377 (10)0.0032 (8)0.0049 (8)0.0039 (8)
C180.0599 (12)0.0340 (10)0.0472 (11)0.0048 (9)0.0168 (10)0.0008 (9)
C190.0435 (11)0.0407 (11)0.0533 (12)0.0121 (9)0.0148 (9)0.0078 (9)
C200.0298 (9)0.0409 (10)0.0433 (10)0.0028 (8)0.0044 (7)0.0043 (8)
C210.0273 (8)0.0317 (9)0.0336 (9)0.0007 (7)0.0041 (7)0.0029 (7)
C220.0456 (11)0.0405 (11)0.0394 (10)0.0036 (8)0.0019 (8)0.0043 (8)
N10.0280 (7)0.0332 (8)0.0317 (7)0.0019 (6)0.0004 (6)0.0010 (6)
N20.0284 (8)0.0437 (9)0.0362 (8)0.0021 (6)0.0078 (6)0.0061 (7)
O10.0696 (10)0.0639 (10)0.0447 (8)0.0189 (8)0.0010 (7)0.0148 (7)
O30.0220 (6)0.0628 (9)0.0652 (9)0.0014 (6)0.0046 (6)0.0071 (7)
O40.0315 (6)0.0463 (8)0.0463 (8)0.0113 (6)0.0115 (5)0.0067 (6)
S10.0218 (2)0.0417 (3)0.0377 (2)0.00479 (17)0.00465 (17)0.00587 (19)
S20.0606 (3)0.0380 (3)0.0542 (3)0.0045 (2)0.0047 (2)0.0082 (2)
C230.0546 (12)0.0383 (11)0.0580 (13)0.0051 (9)0.0065 (10)0.0005 (10)
C10.090 (3)0.137 (6)0.082 (3)0.018 (4)0.047 (3)0.029 (4)
C20.068 (3)0.093 (5)0.041 (2)0.007 (3)0.020 (2)0.013 (3)
O20.060 (3)0.076 (5)0.0464 (19)0.021 (3)0.0200 (16)0.014 (2)
C1A0.123 (13)0.102 (10)0.039 (5)0.060 (9)0.036 (6)0.012 (6)
C2A0.062 (6)0.050 (6)0.046 (5)0.012 (5)0.012 (4)0.008 (5)
O2A0.036 (4)0.060 (8)0.033 (4)0.015 (5)0.006 (3)0.017 (4)
Geometric parameters (Å, º) top
C3—O11.191 (2)C16—C211.392 (2)
C3—O2A1.24 (2)C16—N21.406 (2)
C3—O21.376 (10)C17—C181.382 (3)
C3—C41.508 (2)C17—H170.9300
C4—C51.525 (2)C18—C191.380 (3)
C4—C71.543 (2)C18—H180.9300
C4—H40.9800C19—C201.389 (3)
C5—N11.483 (2)C19—H190.9300
C5—C231.522 (3)C20—C211.382 (2)
C5—H50.9800C20—H200.9300
C6—N11.457 (2)C22—N11.465 (2)
C6—C211.509 (2)C22—S21.803 (2)
C6—C71.568 (2)C22—H22A0.9700
C6—C151.581 (2)C22—H22B0.9700
C7—C81.546 (2)N2—H20.869 (15)
C7—S11.8355 (16)S2—C231.804 (2)
C8—O31.202 (2)C23—H23A0.9700
C8—C91.461 (3)C23—H23B0.9700
C9—C141.391 (2)C1—C21.488 (6)
C9—C101.394 (3)C1—H1A0.9600
C10—C111.372 (3)C1—H1B0.9600
C10—H100.9300C1—H1C0.9600
C11—C121.391 (3)C2—O21.526 (9)
C11—H110.9300C2—H2A0.9700
C12—C131.373 (3)C2—H2B0.9700
C12—H120.9300C1A—C2A1.499 (9)
C13—C141.386 (3)C1A—H1A10.9600
C13—H130.9300C1A—H1A20.9600
C14—S11.7558 (17)C1A—H1A30.9600
C15—O41.223 (2)C2A—O2A1.497 (17)
C15—N21.342 (2)C2A—H2A10.9700
C16—C171.373 (3)C2A—H2A20.9700
O1—C3—O2A120.0 (9)C18—C17—H17121.2
O1—C3—O2125.7 (4)C19—C18—C17121.24 (18)
O2A—C3—O216.2 (13)C19—C18—H18119.4
O1—C3—C4125.62 (18)C17—C18—H18119.4
O2A—C3—C4112.7 (8)C18—C19—C20120.51 (17)
O2—C3—C4108.7 (4)C18—C19—H19119.7
C3—C4—C5114.74 (15)C20—C19—H19119.7
C3—C4—C7115.75 (15)C21—C20—C19119.12 (17)
C5—C4—C7103.29 (13)C21—C20—H20120.4
C3—C4—H4107.5C19—C20—H20120.4
C5—C4—H4107.5C20—C21—C16118.96 (17)
C7—C4—H4107.5C20—C21—C6131.79 (16)
N1—C5—C23108.13 (15)C16—C21—C6109.21 (14)
N1—C5—C4104.42 (14)N1—C22—S2106.25 (13)
C23—C5—C4116.98 (15)N1—C22—H22A110.5
N1—C5—H5109.0S2—C22—H22A110.5
C23—C5—H5109.0N1—C22—H22B110.5
C4—C5—H5109.0S2—C22—H22B110.5
N1—C6—C21115.02 (13)H22A—C22—H22B108.7
N1—C6—C7100.60 (12)C6—N1—C22116.95 (13)
C21—C6—C7117.02 (14)C6—N1—C5110.48 (13)
N1—C6—C15114.01 (13)C22—N1—C5113.52 (14)
C21—C6—C15100.96 (13)C15—N2—C16112.36 (14)
C7—C6—C15109.75 (12)C15—N2—H2123.3 (14)
C4—C7—C8116.36 (14)C16—N2—H2124.3 (14)
C4—C7—C699.77 (13)C14—S1—C792.53 (8)
C8—C7—C6113.21 (13)C22—S2—C2390.69 (9)
C4—C7—S1110.27 (11)C5—C23—S2103.62 (13)
C8—C7—S1106.58 (12)C5—C23—H23A111.0
C6—C7—S1110.61 (11)S2—C23—H23A111.0
O3—C8—C9126.48 (17)C5—C23—H23B111.0
O3—C8—C7121.94 (17)S2—C23—H23B111.0
C9—C8—C7111.54 (13)H23A—C23—H23B109.0
C14—C9—C10120.18 (17)C2—C1—H1A109.5
C14—C9—C8113.73 (15)C2—C1—H1B109.6
C10—C9—C8126.09 (15)H1A—C1—H1B109.5
C11—C10—C9119.42 (17)C2—C1—H1C109.3
C11—C10—H10120.3H1A—C1—H1C109.5
C9—C10—H10120.3H1B—C1—H1C109.5
C10—C11—C12119.88 (18)C1—C2—O2105.0 (7)
C10—C11—H11120.1C1—C2—H2A110.6
C12—C11—H11120.1O2—C2—H2A110.7
C13—C12—C11121.40 (19)C1—C2—H2B110.8
C13—C12—H12119.3O2—C2—H2B110.8
C11—C12—H12119.3H2A—C2—H2B108.8
C12—C13—C14118.87 (16)C3—O2—C2109.9 (7)
C12—C13—H13120.6C2A—C1A—H1A1109.5
C14—C13—H13120.6C2A—C1A—H1A2109.8
C13—C14—C9120.21 (16)H1A1—C1A—H1A2109.5
C13—C14—S1125.52 (13)C2A—C1A—H1A3109.1
C9—C14—S1114.26 (13)H1A1—C1A—H1A3109.5
O4—C15—N2126.28 (15)H1A2—C1A—H1A3109.5
O4—C15—C6126.10 (15)O2A—C2A—C1A90.8 (14)
N2—C15—C6107.56 (14)O2A—C2A—H2A1113.6
C17—C16—C21122.63 (16)C1A—C2A—H2A1113.9
C17—C16—N2127.72 (16)O2A—C2A—H2A2113.4
C21—C16—N2109.58 (15)C1A—C2A—H2A2113.1
C16—C17—C18117.51 (17)H2A1—C2A—H2A2110.8
C16—C17—H17121.2C3—O2A—C2A121.6 (16)
O1—C3—C4—C50.2 (3)C7—C6—C15—N2118.46 (16)
O2A—C3—C4—C5165.0 (11)C21—C16—C17—C180.1 (3)
O2—C3—C4—C5178.2 (5)N2—C16—C17—C18176.61 (17)
O1—C3—C4—C7120.0 (2)C16—C17—C18—C190.3 (3)
O2A—C3—C4—C774.8 (11)C17—C18—C19—C200.5 (3)
O2—C3—C4—C758.0 (5)C18—C19—C20—C211.7 (3)
C3—C4—C5—N1150.45 (14)C19—C20—C21—C162.0 (3)
C7—C4—C5—N123.56 (16)C19—C20—C21—C6179.27 (17)
C3—C4—C5—C2390.12 (19)C17—C16—C21—C201.2 (3)
C7—C4—C5—C23142.99 (16)N2—C16—C21—C20175.96 (15)
C3—C4—C7—C869.85 (19)C17—C16—C21—C6179.05 (16)
C5—C4—C7—C8163.90 (14)N2—C16—C21—C61.86 (19)
C3—C4—C7—C6168.03 (14)N1—C6—C21—C2049.8 (2)
C5—C4—C7—C641.78 (14)C7—C6—C21—C2068.0 (2)
C3—C4—C7—S151.64 (17)C15—C6—C21—C20173.01 (18)
C5—C4—C7—S174.60 (14)N1—C6—C21—C16127.64 (15)
N1—C6—C7—C444.39 (14)C7—C6—C21—C16114.60 (15)
C21—C6—C7—C4169.73 (13)C15—C6—C21—C164.43 (17)
C15—C6—C7—C476.07 (15)C21—C6—N1—C2269.72 (19)
N1—C6—C7—C8168.73 (13)C7—C6—N1—C22163.60 (14)
C21—C6—C7—C865.93 (18)C15—C6—N1—C2246.2 (2)
C15—C6—C7—C848.27 (18)C21—C6—N1—C5158.38 (13)
N1—C6—C7—S171.74 (13)C7—C6—N1—C531.70 (15)
C21—C6—C7—S153.60 (16)C15—C6—N1—C585.67 (16)
C15—C6—C7—S1167.80 (11)S2—C22—N1—C6145.63 (12)
C4—C7—C8—O348.7 (2)S2—C22—N1—C515.15 (17)
C6—C7—C8—O366.1 (2)C23—C5—N1—C6119.60 (16)
S1—C7—C8—O3172.12 (15)C4—C5—N1—C65.64 (17)
C4—C7—C8—C9133.65 (15)C23—C5—N1—C2214.04 (19)
C6—C7—C8—C9111.60 (16)C4—C5—N1—C22139.28 (14)
S1—C7—C8—C910.22 (17)O4—C15—N2—C16172.24 (17)
O3—C8—C9—C14178.35 (18)C6—C15—N2—C165.08 (19)
C7—C8—C9—C144.1 (2)C17—C16—N2—C15174.80 (18)
O3—C8—C9—C102.6 (3)C21—C16—N2—C152.2 (2)
C7—C8—C9—C10174.91 (17)C13—C14—S1—C7171.66 (16)
C14—C9—C10—C111.2 (3)C9—C14—S1—C79.31 (14)
C8—C9—C10—C11177.76 (18)C4—C7—S1—C14137.86 (12)
C9—C10—C11—C120.7 (3)C8—C7—S1—C1410.72 (12)
C10—C11—C12—C131.2 (3)C6—C7—S1—C14112.74 (12)
C11—C12—C13—C140.3 (3)N1—C22—S2—C2331.91 (14)
C12—C13—C14—C92.3 (3)N1—C5—C23—S236.32 (17)
C12—C13—C14—S1176.71 (15)C4—C5—C23—S2153.75 (13)
C10—C9—C14—C132.7 (3)C22—S2—C23—C539.29 (14)
C8—C9—C14—C13176.35 (16)O1—C3—O2—C219.0 (10)
C10—C9—C14—S1176.34 (14)O2A—C3—O2—C256 (4)
C8—C9—C14—S14.56 (19)C4—C3—O2—C2163.0 (6)
N1—C6—C15—O447.7 (2)C1—C2—O2—C3154.3 (7)
C21—C6—C15—O4171.64 (17)O1—C3—O2A—C2A42 (2)
C7—C6—C15—O464.2 (2)O2—C3—O2A—C2A73 (4)
N1—C6—C15—N2129.59 (15)C4—C3—O2A—C2A151.8 (15)
C21—C6—C15—N25.69 (17)C1A—C2A—O2A—C3126.0 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.87 (2)2.05 (2)2.9029 (18)169 (2)
C11—H11···O3ii0.932.473.215 (2)137
C13—H13···N1iii0.932.603.505 (2)165
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.869 (15)2.045 (16)2.9029 (18)169 (2)
C11—H11···O3ii0.932.473.215 (2)137
C13—H13···N1iii0.932.603.505 (2)165
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). Curr. Org. Synth. 1, 64–74.  Google Scholar
First citationNarayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o23–o24.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationObniska, J., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.  Web of Science PubMed CAS Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar
First citationZapf, C. W., Bloom, J. D., Li, Z., Dushin, R. G., Nittoli, T., Otteng, M., Nikitenko, A., Golas, J. M., Liu, H., Lucas, J., Boschelli, F., Vogan, E., Olland, A., Johnson, M. & Levin, J. I. (2011). Bioorg. Med. Chem. Lett. 21, 4602–4607.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o148-o149
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds