research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 261-263

Crystal structure of N1-phenyl-N4-[(E)-(pyren-1-yl)methyl­­idene]benzene-1,4-di­amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: eprisyazhnaya@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 January 2015; accepted 27 January 2015; online 7 February 2015)

In the title compound, C29H20N2, the dihedral angles subtended by the central p-phenyl­enedi­amine ring with respect to the mean plane of the terminal pyrenyl ring system (r.m.s. deviation = 0.027 Å) and the terminal N-phenyl ring are 29.34 (4) and 43.43 (7)°, respectively. The conformation about the C=N bond is E. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯π inter­actions forming chains propagating along the [10-2] direction. These chains are linked via ππ inter­actions [inter-centroid distances are in the range 3.5569 (11)–3.708 (1) Å], forming slabs lying parallel to (30-4).

1. Chemical context

Schiff bases often exhibit various biological activities, and in many cases have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536-540.]), as non-linear optical compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). The pyrene unit is one of the most commonly used fluoro­phores due to its strong luminescence and chemical stability (Aoki et al., 1991[Aoki, I., Kawabata, H., Nakashima, K. & Shinkai, S. (1991). J. Chem. Soc. Chem. Commun. pp. 1771-1773.]; Nishizawa et al., 1999[Nishizawa, S., Kato, Y. & Teramae, N. (1999). J. Am. Chem. Soc. 121, 9463-9464.]; van der Veen et al., 2000[Veen, N. J. van der, Flink, S., Deij, M. A., Egberink, R. J. M., van Veggel, F. C. J. M. & Reinhoudt, D. N. (2000). J. Am. Chem. Soc. 122, 6112-6113.]). Another inter­esting feature of the pyrene unit is the ππ inter­action between pyrene aromatic rings in the crystal packing, which can permit the formation of highly ordered mol­ecular aggregates in the solid state by architecturally controlled self-assembly (Desiraju et al., 1989[Desiraju, G. R. & Gavezzotti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621-623.]; Munakata et al., 1994[Munakata, M., Dai, J., Maekawa, M., Kuroda-Sowa, T. & Fukui, J. (1994). J. Chem. Soc. Chem. Commun. pp. 2331-2332.]). Pyrene is a commonly used fluoro­phore due to its unusual fluorescent properties: intense fluorescence signals, vibronic band dependence with the media (Karpovich & Blanchard, 1995[Karpovich, D. S. & Blanchard, G. J. (1995). J. Phys. Chem. 99, 3951-3958.]), and use in fluorescence sensors (Bell & Hext, 2004[Bell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589-598.]) and excimer formation (Lodeiro et al., 2006[Lodeiro, C., Lima, J. C., Parola, A. J., Seixas de Melo, J. S., Capelo, J. L., Covelo, B., Tamayo, A. & Pedras, B. (2006). Sens. Actuators B Chem. 115, 276-286.]). As a result of these particular properties and because of its chemical stability, it is also employed as a probe for solid-state studies (Corma et al., 2002[Corma, A., Galletero, M. S., Garćia, H., Palomares, E. & Rey, F. (2002). Chem. Commun. pp. 1100-1101.]) and polymer association (Seixas de Melo et al., 2003[Seixas de Melo, J., Costa, T., Miguel, M. da G., Lindman, B. & Schillén, K. (2003). J. Phys. Chem. B, 107, 12605-12621.]). We report herein on the crystal structure of the title compound, synthesized by the condensation reaction of 1-pyrenecarboxaldehyde and N-phenyl-p-phenyl­enedi­amine.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The compound is non-planar, the dihedral angles between the central benzene ring (C7–C12) and the terminal phenyl ring (C1–C6) and the mean plane of the pyrenyl ring system (C14–C29; r.m.s. deviation = 0.027 Å) being 43.43 (9) and 29.33 (7)°, respectively. The conformation about the C13=N2 bond is E with a C10—N2—C13—C14 torsion angle of 178.13 (15)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected via N—H⋯π and C—H⋯π inter­actions forming zigzag chains propagating along [10[\overline{2}]]; see Table 1[link] and Fig. 2[link]. These chains are linked via ππ inter­actions involving inversion-related pyrenyl rings, forming two-dimensional networks lying parallel to (30[\overline{4}]); see Fig. 3[link]. The inter-centroid distances are 3.7051 (11), 3.708 (1), 3.6905 (11) and 3.5569 (11) Å for ππ inter­actions involving Cg3⋯Cg5ii, Cg3⋯Cg6ii, Cg4⋯Cg6ii and Cg6⋯Cg6ii, respectively, where Cg3, Cg4, Cg5 and Cg6 are the centroids of the C14–C17/C28–C27, C17–C20/C28–C29, C20–C24/C29 and C24–C29 rings, respectively [symmetry code: (ii) = −x + 1, −y, −z]. Inter­action Cg6⋯Cg6ii is a slipped parallel ππ inter­action with an inter­planar distance of 3.3614 (7) Å and a slippage of 1.163 Å.

Table 1
N—H⋯π and C—H⋯π inter­actions (Å, °)

Cg5 and Cg6 are the centroids of the C20–C24/C29 and C24–C29 rings, respectively, in the pyrenyl ring system.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACg5i 0.89 (2) 2.80 (2) 3.6524 (19) 163 (2)
C6—H6⋯Cg6i 0.99 (2) 2.76 (2) 3.631 (2) 147 (1)
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the zigzag chain in the crystal of the title compound. The C—H⋯π and N—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The C—H⋯π, N—H⋯π and ππ inter­actions are shown as dashed lines (see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 20 hits for Schiff bases derived from pyrene-1-carbaldehyde. A search for Schiff base compounds involving N-phenyl-p-phenyl­enedi­amine gave three hits. Of these three compounds, N1-phenyl-N4-(quinolin-2-yl­methyl­ene)benzene-1,4-di­amine {synonym: N-phenyl-4-[(quinolin-2-yl­methyl­ene)amino]aniline; WOJJIQ; Faizi et al., 2014[Faizi, M. S. H., Mashrai, A., Garandal, S. & Shahid, M. (2014). Acta Cryst. E70, o905-o906.]} is the most similar to the title compound. Here the dihedral angles between the central benzene ring and the terminal phenyl ring and the quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively. In the title compound, the dihedral angles between the central benzene ring and the terminal phenyl ring and the pyrenyl ring system (r.m.s. deviation = 0.027 Å) are 43.43 (9) and 29.33 (7)°, respectively.

5. Synthesis and crystallization

80 mg (0.435 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 100 mg (0.435 mmol) of pyrene-1-carbaldehyde in 5 ml of absolute ethanol was added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold ethanol and then with diethyl ether to give 150 mg (87%) of the title compound. Yellow block-like crystals suitable for X-ray analysis were obtained within 3 days by slow evaporation of a solution in MeOH.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH and C-bound H atoms were located from difference Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C29H20N2
Mr 396.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.0433 (6), 12.2700 (5), 13.4981 (7)
β (°) 114.269 (2)
V3) 1969.34 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.986, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 19561, 4882, 3015
Rint 0.058
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.136, 1.02
No. of reflections 4882
No. of parameters 360
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.27, −0.31
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Schiff bases often exhibit various biological activities, and in many cases have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011), as non-linear optical compounds (Sun et al., 2012) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012). The pyrene unit is one of the most commonly used fluoro­phores due to its strong luminescence and chemical stability (Aoki et al., 1991; Nishizawa et al., 1999; van der Veen et al., 2000). Another inter­esting feature of the pyrene unit is the ππ inter­action between pyrene aromatic rings in the crystal packing, which can permit the formation of highly ordered molecular aggregates in the solid state by architecturally controlled self-assembly (Desiraju et al., 1989; Munakata et al., 1994). Pyrene is a commonly used fluoro­phore due to its unusual fluorescent properties: intense fluorescence signals, vibronic band dependence with the media (Karpovich & Blanchard, 1995), and use in fluorescence sensors (Bell & Hext, 2004) and excimer formation (Lodeiro et al., 2006). As a result of these particular properties and because of its chemical stability, it is also employed as a probe for solid-state studies (Corma et al., 2002) and polymer association (Seixas de Melo et al., 2003). We report herein on the crystal structure of the title compound, synthesized by the condensation reaction of 1-pyrenecarboxaldehyde and N-phenyl-p-phenyl­enedi­amine.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The compound is non-planar, the dihedral angles between the central benzene ring (C7–C12) and the terminal phenyl ring (C1–C6) and the mean plane of the pyrenyl ring system (C14–C29; r.m.s. deviation = 0.027 Å) being 43.43 (9) and 29.33 (7)°, respectively. The conformation about the C13N2 bond is E with a C10—N2—C13—C14 torsion angle of 178.13 (15)°.

Supra­molecular features top

In the crystal, molecules are connected via N—H···π and C—H···π inter­actions forming zigzag chains propagating along [102]; see Table 1 and Fig 2. These chains are linked via ππ inter­actions involving inversion-related pyrenyl rings, forming two-dimensional networks lying parallel to (304); see Fig. 3. The inter-centroid distances are 3.7051 (11), 3.708 (1), 3.6905 (11) and 3.5569 (11) Å for ππ inter­actions involving Cg3···Cg5i, Cg3···Cg6i, Cg4···Cg6i and Cg6···Cg6i, respectively, where Cg3, Cg4, Cg5 and Cg6 are the centroids of the C14–C17/C28–C27, C17–C20/C28–C29, C20–C24/C29 and C24–C29 rings, respectively [symmetry code: (i) = -x + 1, -y, -z]. Inter­action Cg6···Cg6i is a slipped parallel ππ inter­action with an inter­planar distance of 3.3614 (7) Å and a slippage of 1.163 Å.

Database survey top

A search of the Cambridge Structural Database (Version 5.36; last update November 2014; Groom & Allen, 2014) gave 20 hits for Schiff bases derived from pyrene-1-carbaldehyde. A search for Schiff base compounds involving N-phenyl-p-phenyl­enedi­amine gave three hits. Of these three compounds, N1-phenyl-N4 -(quinolin-2-yl­methyl­ene)benzene-1,4-di­amine {synonym: N-phenyl-4-[(quinolin-2-yl­methyl­ene)amino]­aniline; WOJJIQ; Faizi et al., 2014} is the most similar to the title compound. Here the dihedral angles between the central benzene ring and the terminal phenyl ring and the quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively. In the title compound, the dihedral angles between the central benzene ring and the terminal phenyl ring and the pyrenyl ring system (r.m.s. deviation = 0.027 Å) are 43.43 (9) and 29.33 (7)°, respectively.

Synthesis and crystallization top

80 mg (0.435 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 100 mg (0.435 mmol) of pyrene-1-carbaldehyde in 5 ml of absolute ethanol was added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold ethanol and then with di­ethyl ether to give 150 mg (87%) of the title compound. Yellow block-like crystals suitable for X-ray analysis was obtained within 3 days by slow evaporation of a solution in MeOH.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were located from difference Fourier maps and freely refined.

Related literature top

For related literature, see: Aoki et al. (1991); Bell & Hext (2004); Corma et al. (2002); Dalapati et al. (2011); Desiraju & Gavezzotti (1989); Faizi et al. (2014); Groom & Allen (2014); Karpovich & Blanchard (1995); Lodeiro et al. (2006); Lozier et al. (1975); Moroz et al. (2012); Munakata et al. (1994); Nishizawa et al. (1999); Seixas de Melo, Costa, Miguel, Lindman & Schillén (2003); Sun et al. (2012); van der Veen et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view along the b axis of the zigzag chain in the crystal of the title compound. The C—H···π and N—H···π interactions are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound. The C—H···π, N—H···π and ππ interactions are shown as dashed lines (see Table 1 for details).
N1-Phenyl-N4-[(E)-(pyren-1-yl)methylidene]benzene-1,4-diamine top
Crystal data top
C29H20N2F(000) = 832
Mr = 396.47Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4765 reflections
a = 13.0433 (6) Åθ = 2.5–28.1°
b = 12.2700 (5) ŵ = 0.08 mm1
c = 13.4981 (7) ÅT = 100 K
β = 114.269 (2)°Block, yellow
V = 1969.34 (16) Å30.18 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube3015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1317
Tmin = 0.986, Tmax = 0.991k = 1516
19561 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.3614P]
where P = (Fo2 + 2Fc2)/3
4882 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C29H20N2V = 1969.34 (16) Å3
Mr = 396.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0433 (6) ŵ = 0.08 mm1
b = 12.2700 (5) ÅT = 100 K
c = 13.4981 (7) Å0.18 × 0.14 × 0.12 mm
β = 114.269 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3015 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.058
19561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 1.02Δρmax = 0.27 e Å3
4882 reflectionsΔρmin = 0.31 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.81481 (12)0.07101 (12)0.38507 (11)0.0234 (4)
C270.53428 (14)0.02897 (14)0.16435 (13)0.0185 (4)
C170.49949 (14)0.16939 (14)0.13951 (13)0.0209 (4)
C290.35640 (14)0.04116 (14)0.02242 (13)0.0185 (4)
C140.64048 (14)0.00667 (14)0.24975 (13)0.0192 (4)
C200.28576 (14)0.13001 (14)0.03213 (13)0.0209 (4)
C150.67242 (15)0.10188 (15)0.27839 (14)0.0223 (4)
C100.89081 (14)0.15581 (14)0.43730 (13)0.0216 (4)
C130.71978 (14)0.09325 (15)0.30778 (13)0.0211 (4)
N11.12616 (13)0.39778 (14)0.60829 (12)0.0289 (4)
C61.28287 (16)0.47750 (15)0.75618 (15)0.0262 (4)
C180.42695 (15)0.25720 (15)0.08151 (15)0.0237 (4)
C280.46352 (13)0.06019 (14)0.10921 (12)0.0177 (4)
C230.21349 (15)0.08409 (15)0.09503 (13)0.0223 (4)
C250.39177 (15)0.15502 (15)0.04656 (13)0.0207 (4)
C240.31949 (14)0.06726 (14)0.00974 (13)0.0186 (4)
C11.18326 (14)0.41717 (14)0.71999 (13)0.0218 (4)
C160.60457 (15)0.18739 (15)0.22482 (14)0.0227 (4)
C210.18068 (15)0.10853 (15)0.11566 (14)0.0227 (4)
C190.32537 (15)0.23874 (15)0.00075 (15)0.0248 (4)
C81.04477 (14)0.21599 (15)0.60259 (14)0.0225 (4)
C21.14291 (15)0.38326 (15)0.79601 (14)0.0218 (4)
C260.49341 (14)0.13708 (15)0.12909 (13)0.0205 (4)
C31.20224 (16)0.40741 (15)0.90521 (14)0.0243 (4)
C220.14500 (15)0.00301 (15)0.14681 (14)0.0242 (4)
C90.96797 (14)0.13737 (16)0.54378 (14)0.0224 (4)
C41.30180 (16)0.46528 (15)0.94087 (15)0.0277 (4)
C71.04841 (14)0.31582 (15)0.55524 (14)0.0230 (4)
C120.97321 (15)0.33348 (16)0.44705 (14)0.0255 (4)
C51.34123 (17)0.50082 (16)0.86574 (15)0.0288 (5)
C110.89664 (15)0.25524 (16)0.38926 (14)0.0251 (4)
H1A1.1460 (18)0.4403 (18)0.5660 (18)0.047 (7)*
H110.8478 (13)0.2685 (13)0.3158 (14)0.018 (4)*
H150.7446 (15)0.1160 (14)0.3384 (14)0.023 (5)*
H90.9661 (14)0.0706 (15)0.5772 (14)0.021 (5)*
H81.0955 (14)0.2013 (14)0.6739 (14)0.021 (5)*
H160.6282 (14)0.2600 (15)0.2463 (14)0.021 (5)*
H61.3112 (15)0.5027 (15)0.7024 (15)0.030 (5)*
H21.0753 (15)0.3456 (14)0.7734 (13)0.020 (5)*
H120.9774 (15)0.4012 (16)0.4143 (14)0.028 (5)*
H31.1711 (16)0.3855 (15)0.9576 (16)0.034 (5)*
H260.5406 (14)0.1991 (15)0.1644 (14)0.021 (5)*
H220.0715 (15)0.0126 (14)0.2071 (14)0.020 (5)*
H180.4536 (14)0.3307 (15)0.1048 (13)0.022 (5)*
H41.3450 (15)0.4810 (14)1.0175 (15)0.029 (5)*
H230.1887 (15)0.1603 (15)0.1163 (14)0.026 (5)*
H51.4111 (17)0.5434 (16)0.8905 (16)0.041 (6)*
H210.1325 (14)0.1709 (14)0.1498 (13)0.018 (4)*
H190.2740 (15)0.2977 (15)0.0384 (15)0.030 (5)*
H130.6979 (14)0.1714 (15)0.2880 (14)0.024 (5)*
H250.3679 (14)0.2288 (15)0.0244 (14)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0218 (8)0.0270 (9)0.0196 (7)0.0022 (7)0.0067 (6)0.0027 (6)
C270.0209 (9)0.0220 (10)0.0159 (8)0.0004 (7)0.0110 (7)0.0008 (7)
C170.0223 (9)0.0228 (10)0.0225 (9)0.0006 (8)0.0142 (8)0.0022 (7)
C290.0200 (9)0.0212 (10)0.0184 (8)0.0007 (7)0.0119 (7)0.0010 (7)
C140.0199 (9)0.0241 (10)0.0161 (8)0.0012 (7)0.0099 (7)0.0009 (7)
C200.0212 (9)0.0233 (10)0.0222 (9)0.0035 (8)0.0131 (7)0.0016 (7)
C150.0207 (9)0.0289 (11)0.0177 (9)0.0035 (8)0.0084 (7)0.0027 (8)
C100.0176 (9)0.0247 (10)0.0227 (9)0.0010 (8)0.0087 (7)0.0021 (7)
C130.0223 (9)0.0237 (10)0.0191 (8)0.0021 (8)0.0103 (7)0.0016 (7)
N10.0320 (9)0.0360 (10)0.0192 (8)0.0125 (8)0.0109 (7)0.0018 (7)
C60.0296 (10)0.0274 (11)0.0268 (9)0.0048 (9)0.0170 (8)0.0038 (8)
C180.0284 (10)0.0182 (10)0.0294 (9)0.0011 (8)0.0168 (8)0.0022 (8)
C280.0198 (9)0.0203 (10)0.0164 (8)0.0002 (7)0.0111 (7)0.0004 (7)
C230.0236 (9)0.0247 (10)0.0194 (9)0.0042 (8)0.0095 (7)0.0025 (8)
C250.0252 (9)0.0185 (10)0.0205 (9)0.0038 (8)0.0115 (8)0.0006 (7)
C240.0201 (9)0.0223 (10)0.0166 (8)0.0005 (8)0.0108 (7)0.0016 (7)
C10.0224 (9)0.0218 (10)0.0206 (8)0.0015 (8)0.0081 (7)0.0006 (7)
C160.0259 (10)0.0198 (10)0.0242 (9)0.0032 (8)0.0122 (8)0.0055 (8)
C210.0210 (9)0.0273 (11)0.0221 (9)0.0059 (8)0.0112 (8)0.0052 (8)
C190.0267 (10)0.0217 (10)0.0304 (10)0.0070 (9)0.0163 (8)0.0041 (8)
C80.0186 (9)0.0290 (11)0.0181 (9)0.0043 (8)0.0057 (7)0.0007 (8)
C20.0192 (9)0.0209 (10)0.0243 (9)0.0017 (8)0.0080 (8)0.0002 (7)
C260.0235 (9)0.0191 (10)0.0199 (9)0.0018 (8)0.0100 (8)0.0027 (7)
C30.0295 (10)0.0214 (10)0.0240 (9)0.0037 (8)0.0131 (8)0.0007 (8)
C220.0194 (9)0.0331 (11)0.0190 (9)0.0004 (8)0.0069 (7)0.0008 (8)
C90.0216 (9)0.0223 (10)0.0228 (9)0.0027 (8)0.0086 (8)0.0005 (8)
C40.0317 (11)0.0263 (11)0.0201 (9)0.0004 (9)0.0057 (8)0.0055 (8)
C70.0214 (9)0.0294 (11)0.0206 (8)0.0029 (8)0.0109 (7)0.0051 (8)
C120.0264 (10)0.0286 (11)0.0227 (9)0.0009 (9)0.0113 (8)0.0024 (8)
C50.0262 (10)0.0277 (11)0.0306 (10)0.0054 (9)0.0097 (9)0.0091 (8)
C110.0212 (9)0.0345 (11)0.0169 (8)0.0004 (9)0.0052 (7)0.0002 (8)
Geometric parameters (Å, º) top
N2—C131.279 (2)C23—C221.384 (3)
N2—C101.410 (2)C23—C241.404 (2)
C27—C141.418 (2)C23—H230.992 (18)
C27—C281.428 (2)C25—C261.354 (2)
C27—C261.436 (2)C25—C241.427 (2)
C17—C161.399 (2)C25—H250.964 (18)
C17—C281.423 (2)C1—C21.395 (2)
C17—C181.435 (2)C16—H160.949 (18)
C29—C241.421 (2)C21—C221.382 (3)
C29—C201.422 (2)C21—H210.977 (17)
C29—C281.426 (2)C19—H190.980 (19)
C14—C151.402 (2)C8—C91.382 (2)
C14—C131.465 (2)C8—C71.391 (3)
C20—C211.396 (2)C8—H80.934 (17)
C20—C191.434 (3)C2—C31.386 (2)
C15—C161.371 (3)C2—H20.928 (18)
C15—H150.972 (17)C26—H260.972 (18)
C10—C91.393 (2)C3—C41.381 (3)
C10—C111.398 (3)C3—H30.99 (2)
C13—H131.004 (18)C22—H220.988 (17)
N1—C71.398 (2)C9—H90.941 (18)
N1—C11.401 (2)C4—C51.383 (3)
N1—H1A0.89 (2)C4—H40.972 (18)
C6—C51.387 (3)C7—C121.401 (2)
C6—C11.397 (2)C12—C111.374 (3)
C6—H60.990 (19)C12—H120.954 (19)
C18—C191.344 (2)C5—H50.98 (2)
C18—H180.971 (18)C11—H110.947 (16)
C13—N2—C10119.79 (15)C2—C1—C6118.58 (16)
C14—C27—C28118.84 (15)C2—C1—N1123.14 (16)
C14—C27—C26123.60 (16)C6—C1—N1118.22 (16)
C28—C27—C26117.57 (15)C15—C16—C17120.99 (17)
C16—C17—C28118.76 (16)C15—C16—H16120.0 (10)
C16—C17—C18122.26 (16)C17—C16—H16119.0 (10)
C28—C17—C18118.98 (15)C22—C21—C20121.25 (17)
C24—C29—C20119.58 (15)C22—C21—H21121.3 (9)
C24—C29—C28119.93 (15)C20—C21—H21117.5 (10)
C20—C29—C28120.49 (16)C18—C19—C20121.16 (17)
C15—C14—C27119.20 (16)C18—C19—H19122.7 (11)
C15—C14—C13118.50 (15)C20—C19—H19116.2 (11)
C27—C14—C13122.28 (16)C9—C8—C7120.27 (16)
C21—C20—C29119.05 (16)C9—C8—H8119.8 (11)
C21—C20—C19122.34 (16)C7—C8—H8120.0 (11)
C29—C20—C19118.61 (16)C3—C2—C1120.25 (18)
C16—C15—C14121.83 (16)C3—C2—H2119.7 (11)
C16—C15—H15119.8 (10)C1—C2—H2120.0 (11)
C14—C15—H15118.4 (10)C25—C26—C27121.84 (17)
C9—C10—C11117.78 (16)C25—C26—H26119.0 (10)
C9—C10—N2117.22 (16)C27—C26—H26119.1 (10)
C11—C10—N2124.96 (15)C4—C3—C2120.95 (18)
N2—C13—C14121.06 (17)C4—C3—H3119.7 (11)
N2—C13—H13119.6 (10)C2—C3—H3119.3 (11)
C14—C13—H13119.3 (10)C21—C22—C23120.21 (16)
C7—N1—C1128.77 (17)C21—C22—H22121.6 (10)
C7—N1—H1A115.8 (14)C23—C22—H22118.2 (10)
C1—N1—H1A115.2 (14)C8—C9—C10121.67 (18)
C5—C6—C1120.40 (18)C8—C9—H9119.2 (10)
C5—C6—H6120.7 (11)C10—C9—H9119.1 (11)
C1—C6—H6118.9 (11)C3—C4—C5119.10 (17)
C19—C18—C17121.66 (18)C3—C4—H4121.5 (11)
C19—C18—H18121.4 (10)C5—C4—H4119.4 (11)
C17—C18—H18116.9 (10)C8—C7—N1123.53 (16)
C17—C28—C27120.37 (15)C8—C7—C12118.25 (16)
C17—C28—C29119.10 (15)N1—C7—C12118.16 (17)
C27—C28—C29120.53 (15)C11—C12—C7121.18 (18)
C22—C23—C24120.94 (17)C11—C12—H12120.8 (11)
C22—C23—H23121.0 (10)C7—C12—H12118.0 (11)
C24—C23—H23118.0 (10)C4—C5—C6120.69 (18)
C26—C25—C24121.64 (17)C4—C5—H5119.4 (12)
C26—C25—H25119.3 (10)C6—C5—H5119.9 (12)
C24—C25—H25119.0 (10)C12—C11—C10120.79 (16)
C23—C24—C29118.96 (16)C12—C11—H11119.6 (10)
C23—C24—C25122.55 (16)C10—C11—H11119.6 (10)
C29—C24—C25118.50 (15)
C28—C27—C14—C150.7 (2)C26—C25—C24—C290.1 (2)
C26—C27—C14—C15179.71 (15)C5—C6—C1—C21.4 (3)
C28—C27—C14—C13177.73 (15)C5—C6—C1—N1178.65 (17)
C26—C27—C14—C131.9 (3)C7—N1—C1—C224.6 (3)
C24—C29—C20—C210.7 (2)C7—N1—C1—C6158.27 (18)
C28—C29—C20—C21179.03 (15)C14—C15—C16—C170.7 (3)
C24—C29—C20—C19179.20 (15)C28—C17—C16—C150.3 (3)
C28—C29—C20—C191.1 (2)C18—C17—C16—C15179.62 (17)
C27—C14—C15—C161.2 (3)C29—C20—C21—C220.8 (3)
C13—C14—C15—C16177.34 (16)C19—C20—C21—C22179.15 (16)
C13—N2—C10—C9154.37 (16)C17—C18—C19—C201.0 (3)
C13—N2—C10—C1127.7 (3)C21—C20—C19—C18179.97 (17)
C10—N2—C13—C14178.13 (15)C29—C20—C19—C180.1 (3)
C15—C14—C13—N22.0 (2)C6—C1—C2—C31.3 (3)
C27—C14—C13—N2179.52 (16)N1—C1—C2—C3178.42 (17)
C16—C17—C18—C19178.95 (17)C24—C25—C26—C270.2 (3)
C28—C17—C18—C191.2 (3)C14—C27—C26—C25179.47 (16)
C16—C17—C28—C270.7 (2)C28—C27—C26—C250.1 (2)
C18—C17—C28—C27179.21 (15)C1—C2—C3—C40.1 (3)
C16—C17—C28—C29179.90 (15)C20—C21—C22—C230.1 (3)
C18—C17—C28—C290.2 (2)C24—C23—C22—C210.6 (3)
C14—C27—C28—C170.2 (2)C7—C8—C9—C101.4 (3)
C26—C27—C28—C17179.41 (15)C11—C10—C9—C82.9 (3)
C14—C27—C28—C29179.59 (15)N2—C10—C9—C8178.95 (15)
C26—C27—C28—C290.0 (2)C2—C3—C4—C51.1 (3)
C24—C29—C28—C17179.38 (15)C9—C8—C7—N1177.74 (17)
C20—C29—C28—C170.9 (2)C9—C8—C7—C120.5 (3)
C24—C29—C28—C270.0 (2)C1—N1—C7—C825.3 (3)
C20—C29—C28—C27179.71 (15)C1—N1—C7—C12157.42 (18)
C22—C23—C24—C290.6 (2)C8—C7—C12—C110.9 (3)
C22—C23—C24—C25179.12 (16)N1—C7—C12—C11178.29 (17)
C20—C29—C24—C230.1 (2)C3—C4—C5—C61.0 (3)
C28—C29—C24—C23179.69 (15)C1—C6—C5—C40.3 (3)
C20—C29—C24—C25179.77 (15)C7—C12—C11—C100.6 (3)
C28—C29—C24—C250.0 (2)C9—C10—C11—C122.5 (3)
C26—C25—C24—C23179.57 (16)N2—C10—C11—C12179.53 (17)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C20–C24/C29 and C24–C29 rings, respectively, in the pyrenyl ring system.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg5i0.89 (2)2.80 (2)3.6524 (19)163 (2)
C6—H6···Cg6i0.99 (2)2.76 (2)3.631 (2)147 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C20–C24/C29 and C24–C29 rings, respectively, in the pyrenyl ring system.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg5i0.89 (2)2.80 (2)3.6524 (19)163 (2)
C6—H6···Cg6i0.99 (2)2.76 (2)3.631 (2)147 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H20N2
Mr396.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0433 (6), 12.2700 (5), 13.4981 (7)
β (°) 114.269 (2)
V3)1969.34 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19561, 4882, 3015
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.136, 1.02
No. of reflections4882
No. of parameters360
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAoki, I., Kawabata, H., Nakashima, K. & Shinkai, S. (1991). J. Chem. Soc. Chem. Commun. pp. 1771–1773.  CrossRef Web of Science Google Scholar
First citationBell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589–598.  PubMed CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorma, A., Galletero, M. S., Garćia, H., Palomares, E. & Rey, F. (2002). Chem. Commun. pp. 1100–1101.  Web of Science CrossRef Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Gavezzotti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621–623.  CrossRef Web of Science Google Scholar
First citationFaizi, M. S. H., Mashrai, A., Garandal, S. & Shahid, M. (2014). Acta Cryst. E70, o905–o906.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKarpovich, D. S. & Blanchard, G. J. (1995). J. Phys. Chem. 99, 3951–3958.  CrossRef CAS Web of Science Google Scholar
First citationLodeiro, C., Lima, J. C., Parola, A. J., Seixas de Melo, J. S., Capelo, J. L., Covelo, B., Tamayo, A. & Pedras, B. (2006). Sens. Actuators B Chem. 115, 276–286.  Web of Science CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMunakata, M., Dai, J., Maekawa, M., Kuroda-Sowa, T. & Fukui, J. (1994). J. Chem. Soc. Chem. Commun. pp. 2331–2332.  CrossRef Web of Science Google Scholar
First citationNishizawa, S., Kato, Y. & Teramae, N. (1999). J. Am. Chem. Soc. 121, 9463–9464.  Web of Science CrossRef CAS Google Scholar
First citationSeixas de Melo, J., Costa, T., Miguel, M. da G., Lindman, B. & Schillén, K. (2003). J. Phys. Chem. B, 107, 12605–12621.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationVeen, N. J. van der, Flink, S., Deij, M. A., Egberink, R. J. M., van Veggel, F. C. J. M. & Reinhoudt, D. N. (2000). J. Am. Chem. Soc. 122, 6112–6113.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 261-263
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds