organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o154-o155

Crystal structure of 3-[2-(thio­phen-3-yl)ethyn­yl]-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 January 2015; accepted 2 February 2015; online 7 February 2015)

In the title compound, C15H8O2S, the coumarin moiety is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.025 Å) and is slightly inclined with respect to the plane of the thio­phen-3-yl ring, forming a dihedral angle of 11.75 (8)°. In the crystal, the three-dimensional architecture features a combination of coumarin–thio­phene C—H⋯π and ππ [inter-centroid distance = 3.6612 (12) Å] inter­actions.

1. Related literature

For the wide range of different biological activities of coumarins, see: Wu et al. (2009[Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236-4260.]); Roussaki et al. (2014[Roussaki, M., Zelianaios, K., Kavetsou, E., Hamilakis, S., Hadjipavlou-Litina, D., Kontogiorgis, C., Liargkova, T. & Detsi, A. (2014). Bioorg. Med. Chem. 22, 6586-6594.]). For background to our ongoing inter­est in the synthesis and crystal structures of coumarin derivatives, see: Stefani et al. (2012[Stefani, H. A., Gueogjan, K., Manarin, F., Farsky, S. H. P., Zukerman-Schpector, J., Caracelli, I., Pizano Rodrigues, S. R., Muscará, M. N., Teixeira, S. A., Santin, J. R., Machado, I. D., Bolonheis, S. M., Curi, R. & Vinolo, M. A. (2012). Eur. J. Med. Chem. 58, 117-127.]); Caracelli et al. (2015[Caracelli, I., Maganhi, S. H., Stefani, H. A., Gueogjian, K. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o90-o91.]). For the synthesis of the title compound, see: Gueogjian (2011[Gueogjian, K. (2011). PhD thesis, University of São Paulo, Brazil.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H8O2S

  • Mr = 252.27

  • Monoclinic, P 21 /c

  • a = 10.7726 (6) Å

  • b = 9.7572 (3) Å

  • c = 12.2084 (5) Å

  • β = 115.547 (6)°

  • V = 1157.77 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.40 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

2.2. Data collection

  • Agilent CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.338, Tmax = 1.000

  • 4511 measured reflections

  • 2373 independent reflections

  • 2108 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.156

  • S = 1.06

  • 2373 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring S1,C1⋯C4.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.95 2.89 3.701 (2) 144
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The title compound was prepared as per Gueogjian (2011). 3-Bromo coumarin (112.5 mg, 0.5 mmol), potassium tri­fluoro­borate salt (0.55 mmol), PdCl2 (dppf).CH2Cl2 (41 mg, 10 mol%),i-Pr2NEt (0.3 mL, 1.5 mmol) and 1,4-dioxane/H2O (2/1, 3 mL), in aceto­nitrile (20 mL) were added to a two-necked round-bottomed flask equipped with a reflux condenser under N2. The reaction mixture was heated under reflux at 353 K, and was monitored by TLC and GC analysis. After the consumption of the 3-bromo­coumarin, the mixture was extracted twice with ethyl acetate (50 mL). The organic phase was separated, dried over MgSO4 and concentrated under vacuum. The residue was purified by flash chromatography (ethyl acetate/hexane 10:90). The title compound was obtained as a dark-yellow solid in 53% yield. Suitable crystals were obtained by slow evaporation from a mixture of ethyl acetate/hexane.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Comment top

Coumarins are heterocycles presenting a wide range of different biological activities (Wu et al., 2009; Roussaki et al., 2014). As part of our on-going interest in the synthesis and crystal structures of coumarin derivatives with biological activity (Stefani et al., 2012; Caracelli et al., 2015) the title compound was synthesized (Gueogjian, 2011).

Related literature top

For the wide range of different biological activities of coumarins, see: Wu et al. (2009); Roussaki et al. (2014). For background to our ongoing interest in the synthesis and crystal structures of coumarin derivatives, see: Stefani et al. (2012); Caracelli et al. (2015). For the synthesis of the title compound, see: Gueogjian (2011).

Experimental top

The title compound was prepared as per Gueogjian (2011). 3-Bromo coumarin (112.5 mg, 0.5 mmol), potassium trifluoroborate salt (0.55 mmol), PdCl2 (dppf)·CH2Cl2 (41 mg, 10 mol%),i-Pr2NEt (0.3 ml, 1.5 mmol) and 1,4-dioxane/H2O (2/1, 3 ml), in acetonitrile (20 ml) were added to a two-necked round-bottomed flask equipped with a reflux condenser under N2. The reaction mixture was heated under reflux at 353 K, and was monitored by TLC and GC analysis. After the consumption of the 3-bromocoumarin, the mixture was extracted twice with ethyl acetate (50 ml). The organic phase was separated, dried over MgSO4 and concentrated under vacuum. The residue was purified by flash chromatography (ethyl acetate/hexane 10:90). The title compound was obtained as a dark-yellow solid in 53% yield. Suitable crystals were obtained by slow evaporation from a mixture of ethyl acetate/hexane.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom labelling and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents. The ππ and C—H···π interactions are shown as purple and orange dashed lines, respectively.
3-[2-(Thiophen-3-yl)ethynyl]-2H-chromen-2-one top
Crystal data top
C15H8O2SF(000) = 520
Mr = 252.27Dx = 1.447 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.7726 (6) ÅCell parameters from 2362 reflections
b = 9.7572 (3) Åθ = 4.0–76.0°
c = 12.2084 (5) ŵ = 2.40 mm1
β = 115.547 (6)°T = 100 K
V = 1157.77 (11) Å3Prism, dark yellow
Z = 40.25 × 0.15 × 0.05 mm
Data collection top
Agilent CCD
diffractometer
2108 reflections with I > 2σ(I)
Radiation source: SuperNova (Cu) X-ray SourceRint = 0.023
ω scansθmax = 76.2°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1311
Tmin = 0.338, Tmax = 1.000k = 1210
4511 measured reflectionsl = 1514
2373 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1031P)2 + 0.5663P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.42 e Å3
163 parametersΔρmin = 0.57 e Å3
0 restraints
Crystal data top
C15H8O2SV = 1157.77 (11) Å3
Mr = 252.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.7726 (6) ŵ = 2.40 mm1
b = 9.7572 (3) ÅT = 100 K
c = 12.2084 (5) Å0.25 × 0.15 × 0.05 mm
β = 115.547 (6)°
Data collection top
Agilent CCD
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2108 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 1.000Rint = 0.023
4511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
2373 reflectionsΔρmin = 0.57 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.08150 (6)0.79946 (6)0.56811 (5)0.0338 (2)
O10.47823 (14)0.23152 (14)0.60599 (12)0.0194 (3)
O20.62583 (14)0.39103 (15)0.71228 (12)0.0236 (3)
C11.0505 (2)0.80962 (19)0.69506 (19)0.0225 (4)
H11.09760.86840.76240.027*
C20.9466 (2)0.7191 (2)0.68413 (19)0.0236 (4)
H20.91430.70810.74480.028*
C30.8928 (2)0.64361 (19)0.57262 (18)0.0204 (4)
C40.9581 (2)0.6785 (2)0.50099 (19)0.0274 (5)
H40.93680.63960.42360.033*
C50.7859 (2)0.5442 (2)0.54250 (17)0.0207 (4)
C60.69803 (19)0.4614 (2)0.52352 (16)0.0198 (4)
C110.57073 (19)0.3326 (2)0.61608 (17)0.0186 (4)
C70.59579 (19)0.35987 (19)0.50841 (17)0.0183 (4)
C80.5239 (2)0.29061 (19)0.40315 (18)0.0194 (4)
H80.53800.31150.33340.023*
C90.4272 (2)0.18649 (19)0.39642 (18)0.0183 (4)
C150.3539 (2)0.1072 (2)0.29190 (17)0.0211 (4)
H150.36420.12490.21980.025*
C140.2672 (2)0.00402 (19)0.29346 (18)0.0216 (4)
H140.21870.04970.22290.026*
C130.2510 (2)0.0214 (2)0.39989 (18)0.0224 (4)
H130.19050.09200.40040.027*
C120.3219 (2)0.0550 (2)0.50393 (18)0.0218 (4)
H120.31140.03710.57590.026*
C100.40856 (19)0.1581 (2)0.50072 (17)0.0185 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0356 (4)0.0357 (4)0.0303 (4)0.0118 (2)0.0144 (3)0.0005 (2)
O10.0231 (7)0.0234 (7)0.0148 (6)0.0009 (5)0.0109 (5)0.0002 (5)
O20.0262 (7)0.0299 (8)0.0159 (7)0.0019 (6)0.0102 (6)0.0023 (6)
C10.0212 (9)0.0219 (9)0.0222 (10)0.0033 (7)0.0072 (8)0.0011 (7)
C20.0254 (10)0.0257 (9)0.0209 (10)0.0022 (8)0.0112 (8)0.0019 (7)
C30.0221 (9)0.0205 (9)0.0182 (9)0.0010 (7)0.0082 (7)0.0021 (7)
C40.0334 (11)0.0304 (10)0.0194 (10)0.0080 (9)0.0122 (9)0.0008 (8)
C50.0244 (9)0.0241 (9)0.0154 (8)0.0034 (8)0.0104 (7)0.0018 (7)
C60.0246 (10)0.0218 (9)0.0142 (8)0.0040 (7)0.0096 (7)0.0005 (7)
C110.0211 (9)0.0202 (9)0.0159 (9)0.0030 (7)0.0092 (7)0.0009 (7)
C70.0208 (9)0.0197 (9)0.0164 (9)0.0016 (7)0.0099 (7)0.0016 (7)
C80.0228 (9)0.0226 (9)0.0160 (9)0.0000 (7)0.0113 (8)0.0006 (7)
C90.0207 (9)0.0183 (8)0.0174 (9)0.0011 (7)0.0098 (7)0.0002 (7)
C150.0245 (9)0.0255 (9)0.0146 (8)0.0006 (7)0.0097 (7)0.0003 (7)
C140.0238 (9)0.0213 (9)0.0194 (9)0.0002 (7)0.0092 (7)0.0020 (7)
C130.0227 (9)0.0230 (9)0.0224 (10)0.0020 (7)0.0105 (8)0.0014 (7)
C120.0255 (10)0.0235 (9)0.0198 (9)0.0026 (8)0.0130 (8)0.0048 (7)
C100.0210 (9)0.0200 (9)0.0148 (9)0.0019 (7)0.0081 (7)0.0008 (7)
Geometric parameters (Å, º) top
S1—C41.701 (2)C11—C71.476 (3)
S1—C11.723 (2)C7—C81.360 (3)
O1—C111.369 (2)C8—C91.432 (3)
O1—C101.377 (2)C8—H80.9500
O2—C111.206 (2)C9—C101.400 (3)
C1—C21.387 (3)C9—C151.408 (3)
C1—H10.9500C15—C141.378 (3)
C2—C31.432 (3)C15—H150.9500
C2—H20.9500C14—C131.406 (3)
C3—C41.381 (3)C14—H140.9500
C3—C51.426 (3)C13—C121.384 (3)
C4—H40.9500C13—H130.9500
C5—C61.189 (3)C12—C101.384 (3)
C6—C71.433 (3)C12—H120.9500
C4—S1—C193.39 (10)C7—C8—C9120.69 (18)
C11—O1—C10122.76 (15)C7—C8—H8119.7
C2—C1—S1109.76 (15)C9—C8—H8119.7
C2—C1—H1125.1C10—C9—C15118.13 (18)
S1—C1—H1125.1C10—C9—C8118.32 (18)
C1—C2—C3113.49 (19)C15—C9—C8123.50 (18)
C1—C2—H2123.3C14—C15—C9120.50 (17)
C3—C2—H2123.3C14—C15—H15119.8
C4—C3—C5125.39 (18)C9—C15—H15119.8
C4—C3—C2111.53 (18)C15—C14—C13119.78 (18)
C5—C3—C2123.08 (18)C15—C14—H14120.1
C3—C4—S1111.83 (16)C13—C14—H14120.1
C3—C4—H4124.1C12—C13—C14120.90 (18)
S1—C4—H4124.1C12—C13—H13119.6
C6—C5—C3176.60 (19)C14—C13—H13119.6
C5—C6—C7176.52 (19)C13—C12—C10118.53 (17)
O2—C11—O1117.48 (17)C13—C12—H12120.7
O2—C11—C7125.43 (18)C10—C12—H12120.7
O1—C11—C7117.09 (16)O1—C10—C12117.02 (16)
C8—C7—C6123.92 (17)O1—C10—C9120.80 (17)
C8—C7—C11120.25 (17)C12—C10—C9122.17 (18)
C6—C7—C11115.83 (16)
C4—S1—C1—C20.47 (17)C7—C8—C9—C100.1 (3)
S1—C1—C2—C30.5 (2)C7—C8—C9—C15177.24 (18)
C1—C2—C3—C40.3 (3)C10—C9—C15—C140.5 (3)
C1—C2—C3—C5179.59 (18)C8—C9—C15—C14176.84 (18)
C5—C3—C4—S1179.21 (16)C9—C15—C14—C130.6 (3)
C2—C3—C4—S10.1 (2)C15—C14—C13—C120.6 (3)
C1—S1—C4—C30.30 (18)C14—C13—C12—C100.5 (3)
C10—O1—C11—O2179.74 (16)C11—O1—C10—C12177.52 (16)
C10—O1—C11—C70.9 (3)C11—O1—C10—C91.6 (3)
O2—C11—C7—C8177.71 (19)C13—C12—C10—O1179.57 (16)
O1—C11—C7—C83.0 (3)C13—C12—C10—C90.5 (3)
O2—C11—C7—C62.3 (3)C15—C9—C10—O1179.50 (16)
O1—C11—C7—C6177.02 (15)C8—C9—C10—O12.0 (3)
C6—C7—C8—C9177.45 (17)C15—C9—C10—C120.5 (3)
C11—C7—C8—C92.6 (3)C8—C9—C10—C12177.01 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring S1,C1···C4.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.952.893.701 (2)144
Symmetry code: (i) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring S1,C1···C4.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.952.893.701 (2)144
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

The Brazilian agencies CNPq (306121/2013–2 to IC and 308320/2010–7 to HAS), FAPESP (2012/00424–2) and CAPES are acknowledged for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaracelli, I., Maganhi, S. H., Stefani, H. A., Gueogjian, K. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o90–o91.  CSD CrossRef IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGueogjian, K. (2011). PhD thesis, University of São Paulo, Brazil.  Google Scholar
First citationRoussaki, M., Zelianaios, K., Kavetsou, E., Hamilakis, S., Hadjipavlou-Litina, D., Kontogiorgis, C., Liargkova, T. & Detsi, A. (2014). Bioorg. Med. Chem. 22, 6586–6594.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStefani, H. A., Gueogjan, K., Manarin, F., Farsky, S. H. P., Zukerman-Schpector, J., Caracelli, I., Pizano Rodrigues, S. R., Muscará, M. N., Teixeira, S. A., Santin, J. R., Machado, I. D., Bolonheis, S. M., Curi, R. & Vinolo, M. A. (2012). Eur. J. Med. Chem. 58, 117–127.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o154-o155
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds