organic compounds
H-chromen-2-one
of 3-[2-(thiophen-3-yl)ethynyl]-2aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br
In the title compound, C15H8O2S, the coumarin moiety is approximately planar (r.m.s. deviation of the 11 non-H atoms = 0.025 Å) and is slightly inclined with respect to the plane of the thiophen-3-yl ring, forming a dihedral angle of 11.75 (8)°. In the crystal, the three-dimensional architecture features a combination of coumarin–thiophene C—H⋯π and π–π [inter-centroid distance = 3.6612 (12) Å] interactions.
CCDC reference: 1046686
1. Related literature
For the wide range of different biological activities of et al. (2009); Roussaki et al. (2014). For background to our ongoing interest in the synthesis and crystal structures of coumarin derivatives, see: Stefani et al. (2012); Caracelli et al. (2015). For the synthesis of the title compound, see: Gueogjian (2011).
see: Wu2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1046686
10.1107/S2056989015002157/su5073sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015002157/su5073Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015002157/su5073Isup3.cml
The title compound was prepared as per Gueogjian (2011). 3-Bromo coumarin (112.5 mg, 0.5 mmol), potassium trifluoroborate salt (0.55 mmol), PdCl2 (dppf).CH2Cl2 (41 mg, 10 mol%),i-Pr2NEt (0.3 mL, 1.5 mmol) and 1,4-dioxane/H2O (2/1, 3 mL), in acetonitrile (20 mL) were added to a two-necked round-bottomed flask equipped with a reflux condenser under N2. The reaction mixture was heated under reflux at 353 K, and was monitored by TLC and GC analysis. After the consumption of the 3-bromocoumarin, the mixture was extracted twice with ethyl acetate (50 mL). The organic phase was separated, dried over MgSO4 and concentrated under vacuum. The residue was purified by flash
(ethyl acetate/hexane 10:90). The title compound was obtained as a dark-yellow solid in 53% yield. Suitable crystals were obtained by slow evaporation from a mixture of ethyl acetate/hexane.The title compound was prepared as per Gueogjian (2011). 3-Bromo coumarin (112.5 mg, 0.5 mmol), potassium trifluoroborate salt (0.55 mmol), PdCl2 (dppf)·CH2Cl2 (41 mg, 10 mol%),i-Pr2NEt (0.3 ml, 1.5 mmol) and 1,4-dioxane/H2O (2/1, 3 ml), in acetonitrile (20 ml) were added to a two-necked round-bottomed flask equipped with a reflux condenser under N2. The reaction mixture was heated under reflux at 353 K, and was monitored by TLC and GC analysis. After the consumption of the 3-bromocoumarin, the mixture was extracted twice with ethyl acetate (50 ml). The organic phase was separated, dried over MgSO4 and concentrated under vacuum. The residue was purified by flash
(ethyl acetate/hexane 10:90). The title compound was obtained as a dark-yellow solid in 53% yield. Suitable crystals were obtained by slow evaporation from a mixture of ethyl acetate/hexane.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).C15H8O2S | F(000) = 520 |
Mr = 252.27 | Dx = 1.447 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 10.7726 (6) Å | Cell parameters from 2362 reflections |
b = 9.7572 (3) Å | θ = 4.0–76.0° |
c = 12.2084 (5) Å | µ = 2.40 mm−1 |
β = 115.547 (6)° | T = 100 K |
V = 1157.77 (11) Å3 | Prism, dark yellow |
Z = 4 | 0.25 × 0.15 × 0.05 mm |
Agilent CCD diffractometer | 2108 reflections with I > 2σ(I) |
Radiation source: SuperNova (Cu) X-ray Source | Rint = 0.023 |
ω scans | θmax = 76.2°, θmin = 4.6° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −13→11 |
Tmin = 0.338, Tmax = 1.000 | k = −12→10 |
4511 measured reflections | l = −15→14 |
2373 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.1031P)2 + 0.5663P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2373 reflections | Δρmax = 0.42 e Å−3 |
163 parameters | Δρmin = −0.57 e Å−3 |
0 restraints |
C15H8O2S | V = 1157.77 (11) Å3 |
Mr = 252.27 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 10.7726 (6) Å | µ = 2.40 mm−1 |
b = 9.7572 (3) Å | T = 100 K |
c = 12.2084 (5) Å | 0.25 × 0.15 × 0.05 mm |
β = 115.547 (6)° |
Agilent CCD diffractometer | 2373 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2108 reflections with I > 2σ(I) |
Tmin = 0.338, Tmax = 1.000 | Rint = 0.023 |
4511 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.42 e Å−3 |
2373 reflections | Δρmin = −0.57 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.08150 (6) | 0.79946 (6) | 0.56811 (5) | 0.0338 (2) | |
O1 | 0.47823 (14) | 0.23152 (14) | 0.60599 (12) | 0.0194 (3) | |
O2 | 0.62583 (14) | 0.39103 (15) | 0.71228 (12) | 0.0236 (3) | |
C1 | 1.0505 (2) | 0.80962 (19) | 0.69506 (19) | 0.0225 (4) | |
H1 | 1.0976 | 0.8684 | 0.7624 | 0.027* | |
C2 | 0.9466 (2) | 0.7191 (2) | 0.68413 (19) | 0.0236 (4) | |
H2 | 0.9143 | 0.7081 | 0.7448 | 0.028* | |
C3 | 0.8928 (2) | 0.64361 (19) | 0.57262 (18) | 0.0204 (4) | |
C4 | 0.9581 (2) | 0.6785 (2) | 0.50099 (19) | 0.0274 (5) | |
H4 | 0.9368 | 0.6396 | 0.4236 | 0.033* | |
C5 | 0.7859 (2) | 0.5442 (2) | 0.54250 (17) | 0.0207 (4) | |
C6 | 0.69803 (19) | 0.4614 (2) | 0.52352 (16) | 0.0198 (4) | |
C11 | 0.57073 (19) | 0.3326 (2) | 0.61608 (17) | 0.0186 (4) | |
C7 | 0.59579 (19) | 0.35987 (19) | 0.50841 (17) | 0.0183 (4) | |
C8 | 0.5239 (2) | 0.29061 (19) | 0.40315 (18) | 0.0194 (4) | |
H8 | 0.5380 | 0.3115 | 0.3334 | 0.023* | |
C9 | 0.4272 (2) | 0.18649 (19) | 0.39642 (18) | 0.0183 (4) | |
C15 | 0.3539 (2) | 0.1072 (2) | 0.29190 (17) | 0.0211 (4) | |
H15 | 0.3642 | 0.1249 | 0.2198 | 0.025* | |
C14 | 0.2672 (2) | 0.00402 (19) | 0.29346 (18) | 0.0216 (4) | |
H14 | 0.2187 | −0.0497 | 0.2229 | 0.026* | |
C13 | 0.2510 (2) | −0.0214 (2) | 0.39989 (18) | 0.0224 (4) | |
H13 | 0.1905 | −0.0920 | 0.4004 | 0.027* | |
C12 | 0.3219 (2) | 0.0550 (2) | 0.50393 (18) | 0.0218 (4) | |
H12 | 0.3114 | 0.0371 | 0.5759 | 0.026* | |
C10 | 0.40856 (19) | 0.1581 (2) | 0.50072 (17) | 0.0185 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0356 (4) | 0.0357 (4) | 0.0303 (4) | −0.0118 (2) | 0.0144 (3) | 0.0005 (2) |
O1 | 0.0231 (7) | 0.0234 (7) | 0.0148 (6) | −0.0009 (5) | 0.0109 (5) | 0.0002 (5) |
O2 | 0.0262 (7) | 0.0299 (8) | 0.0159 (7) | −0.0019 (6) | 0.0102 (6) | −0.0023 (6) |
C1 | 0.0212 (9) | 0.0219 (9) | 0.0222 (10) | 0.0033 (7) | 0.0072 (8) | −0.0011 (7) |
C2 | 0.0254 (10) | 0.0257 (9) | 0.0209 (10) | 0.0022 (8) | 0.0112 (8) | −0.0019 (7) |
C3 | 0.0221 (9) | 0.0205 (9) | 0.0182 (9) | 0.0010 (7) | 0.0082 (7) | 0.0021 (7) |
C4 | 0.0334 (11) | 0.0304 (10) | 0.0194 (10) | −0.0080 (9) | 0.0122 (9) | −0.0008 (8) |
C5 | 0.0244 (9) | 0.0241 (9) | 0.0154 (8) | 0.0034 (8) | 0.0104 (7) | 0.0018 (7) |
C6 | 0.0246 (10) | 0.0218 (9) | 0.0142 (8) | 0.0040 (7) | 0.0096 (7) | 0.0005 (7) |
C11 | 0.0211 (9) | 0.0202 (9) | 0.0159 (9) | 0.0030 (7) | 0.0092 (7) | 0.0009 (7) |
C7 | 0.0208 (9) | 0.0197 (9) | 0.0164 (9) | 0.0016 (7) | 0.0099 (7) | 0.0016 (7) |
C8 | 0.0228 (9) | 0.0226 (9) | 0.0160 (9) | 0.0000 (7) | 0.0113 (8) | 0.0006 (7) |
C9 | 0.0207 (9) | 0.0183 (8) | 0.0174 (9) | 0.0011 (7) | 0.0098 (7) | 0.0002 (7) |
C15 | 0.0245 (9) | 0.0255 (9) | 0.0146 (8) | 0.0006 (7) | 0.0097 (7) | −0.0003 (7) |
C14 | 0.0238 (9) | 0.0213 (9) | 0.0194 (9) | 0.0002 (7) | 0.0092 (7) | −0.0020 (7) |
C13 | 0.0227 (9) | 0.0230 (9) | 0.0224 (10) | −0.0020 (7) | 0.0105 (8) | 0.0014 (7) |
C12 | 0.0255 (10) | 0.0235 (9) | 0.0198 (9) | 0.0026 (8) | 0.0130 (8) | 0.0048 (7) |
C10 | 0.0210 (9) | 0.0200 (9) | 0.0148 (9) | 0.0019 (7) | 0.0081 (7) | −0.0008 (7) |
S1—C4 | 1.701 (2) | C11—C7 | 1.476 (3) |
S1—C1 | 1.723 (2) | C7—C8 | 1.360 (3) |
O1—C11 | 1.369 (2) | C8—C9 | 1.432 (3) |
O1—C10 | 1.377 (2) | C8—H8 | 0.9500 |
O2—C11 | 1.206 (2) | C9—C10 | 1.400 (3) |
C1—C2 | 1.387 (3) | C9—C15 | 1.408 (3) |
C1—H1 | 0.9500 | C15—C14 | 1.378 (3) |
C2—C3 | 1.432 (3) | C15—H15 | 0.9500 |
C2—H2 | 0.9500 | C14—C13 | 1.406 (3) |
C3—C4 | 1.381 (3) | C14—H14 | 0.9500 |
C3—C5 | 1.426 (3) | C13—C12 | 1.384 (3) |
C4—H4 | 0.9500 | C13—H13 | 0.9500 |
C5—C6 | 1.189 (3) | C12—C10 | 1.384 (3) |
C6—C7 | 1.433 (3) | C12—H12 | 0.9500 |
C4—S1—C1 | 93.39 (10) | C7—C8—C9 | 120.69 (18) |
C11—O1—C10 | 122.76 (15) | C7—C8—H8 | 119.7 |
C2—C1—S1 | 109.76 (15) | C9—C8—H8 | 119.7 |
C2—C1—H1 | 125.1 | C10—C9—C15 | 118.13 (18) |
S1—C1—H1 | 125.1 | C10—C9—C8 | 118.32 (18) |
C1—C2—C3 | 113.49 (19) | C15—C9—C8 | 123.50 (18) |
C1—C2—H2 | 123.3 | C14—C15—C9 | 120.50 (17) |
C3—C2—H2 | 123.3 | C14—C15—H15 | 119.8 |
C4—C3—C5 | 125.39 (18) | C9—C15—H15 | 119.8 |
C4—C3—C2 | 111.53 (18) | C15—C14—C13 | 119.78 (18) |
C5—C3—C2 | 123.08 (18) | C15—C14—H14 | 120.1 |
C3—C4—S1 | 111.83 (16) | C13—C14—H14 | 120.1 |
C3—C4—H4 | 124.1 | C12—C13—C14 | 120.90 (18) |
S1—C4—H4 | 124.1 | C12—C13—H13 | 119.6 |
C6—C5—C3 | 176.60 (19) | C14—C13—H13 | 119.6 |
C5—C6—C7 | 176.52 (19) | C13—C12—C10 | 118.53 (17) |
O2—C11—O1 | 117.48 (17) | C13—C12—H12 | 120.7 |
O2—C11—C7 | 125.43 (18) | C10—C12—H12 | 120.7 |
O1—C11—C7 | 117.09 (16) | O1—C10—C12 | 117.02 (16) |
C8—C7—C6 | 123.92 (17) | O1—C10—C9 | 120.80 (17) |
C8—C7—C11 | 120.25 (17) | C12—C10—C9 | 122.17 (18) |
C6—C7—C11 | 115.83 (16) | ||
C4—S1—C1—C2 | 0.47 (17) | C7—C8—C9—C10 | 0.1 (3) |
S1—C1—C2—C3 | −0.5 (2) | C7—C8—C9—C15 | −177.24 (18) |
C1—C2—C3—C4 | 0.3 (3) | C10—C9—C15—C14 | −0.5 (3) |
C1—C2—C3—C5 | 179.59 (18) | C8—C9—C15—C14 | 176.84 (18) |
C5—C3—C4—S1 | −179.21 (16) | C9—C15—C14—C13 | 0.6 (3) |
C2—C3—C4—S1 | 0.1 (2) | C15—C14—C13—C12 | −0.6 (3) |
C1—S1—C4—C3 | −0.30 (18) | C14—C13—C12—C10 | 0.5 (3) |
C10—O1—C11—O2 | 179.74 (16) | C11—O1—C10—C12 | 177.52 (16) |
C10—O1—C11—C7 | −0.9 (3) | C11—O1—C10—C9 | −1.6 (3) |
O2—C11—C7—C8 | −177.71 (19) | C13—C12—C10—O1 | −179.57 (16) |
O1—C11—C7—C8 | 3.0 (3) | C13—C12—C10—C9 | −0.5 (3) |
O2—C11—C7—C6 | 2.3 (3) | C15—C9—C10—O1 | 179.50 (16) |
O1—C11—C7—C6 | −177.02 (15) | C8—C9—C10—O1 | 2.0 (3) |
C6—C7—C8—C9 | 177.45 (17) | C15—C9—C10—C12 | 0.5 (3) |
C11—C7—C8—C9 | −2.6 (3) | C8—C9—C10—C12 | −177.01 (17) |
Cg1 is the centroid of ring S1,C1···C4. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Cg1i | 0.95 | 2.89 | 3.701 (2) | 144 |
Symmetry code: (i) x−1, −y+1/2, z−1/2. |
Cg1 is the centroid of ring S1,C1···C4. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Cg1i | 0.95 | 2.89 | 3.701 (2) | 144 |
Symmetry code: (i) x−1, −y+1/2, z−1/2. |
Acknowledgements
The Brazilian agencies CNPq (306121/2013–2 to IC and 308320/2010–7 to HAS), FAPESP (2012/00424–2) and CAPES are acknowledged for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Caracelli, I., Maganhi, S. H., Stefani, H. A., Gueogjian, K. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o90–o91. CSD CrossRef IUCr Journals Google Scholar
ChemAxon (2010). Marvinsketch. https://www.chemaxon.com. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gueogjian, K. (2011). PhD thesis, University of São Paulo, Brazil. Google Scholar
Roussaki, M., Zelianaios, K., Kavetsou, E., Hamilakis, S., Hadjipavlou-Litina, D., Kontogiorgis, C., Liargkova, T. & Detsi, A. (2014). Bioorg. Med. Chem. 22, 6586–6594. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stefani, H. A., Gueogjan, K., Manarin, F., Farsky, S. H. P., Zukerman-Schpector, J., Caracelli, I., Pizano Rodrigues, S. R., Muscará, M. N., Teixeira, S. A., Santin, J. R., Machado, I. D., Bolonheis, S. M., Curi, R. & Vinolo, M. A. (2012). Eur. J. Med. Chem. 58, 117–127. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins are heterocycles presenting a wide range of different biological activities (Wu et al., 2009; Roussaki et al., 2014). As part of our on-going interest in the synthesis and crystal structures of coumarin derivatives with biological activity (Stefani et al., 2012; Caracelli et al., 2015) the title compound was synthesized (Gueogjian, 2011).