organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o143-o144

Crystal structure of rac-3-hy­dr­oxy-2-(p-tol­yl)-2,3,3a,4,7,7a-hexa­hydro-1H-4,7-methano­isoindol-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences and Arts, University of Kahramanmaras Sutcuimam, Avsar Campus 46100, Kahramanmaras, Turkey, bYalova Community Collage, University of Yalova, 77200 Yalova, Turkey, cScience and Technology Application and Research Center, Dicle University, 21280 Diyarbakır, Turkey, dDepartment of Physics, Faculty of Sciences and Arts, Hitit University, 19030 Çorum, Turkey, and eDepartment of Physics, Bilkent University, 06800 Ankara, Turkey
*Correspondence e-mail: aslantasmehmet@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 January 2015; accepted 29 January 2015; online 4 February 2015)

In the title compound, C16H17NO2, the cyclo­hexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The mol­ecular structure is stabilized by a short intra­molecular C—H⋯O contact. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds forming chains propagating along [100]. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

1. Related literature

For medical and pharmaceutical applications of chiral tricyclic compounds, see: Abel et al. (1996[Abel, M. D., Luu, H. T., Micetich, R. G., Nguyen, D. Q., Oreski, A. B., Tempest, M. L. & Daneshtalab, M. (1996). J. Heterocycl. Chem. 33, 415-420.]); Salvati et al. (2005[Salvati, M. E., Balog, A., Wei, D. D., Pickering, D., Attar, R. M., Geng, J., Rizzo, C. A., Hunt, J. T., Gottardis, M. M., Weinmann, R. & Martinez, R. (2005). Bioorg. Med. Chem. Lett. 15, 389-393.]). For the synthesis of the starting reagent, 2-(p-tol­yl)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione, see: Andrade & Evilazio (2004[Andrade, D. S. & Evilazio, E. (2004). Synth. Commun. 34, 3078-3081.]). For the reduction reaction used to synthesise the title compound, see: Hubert et al. (1975[Hubert, J. C., Wijnberg, J. B. P. A. & Speckamp, N. W. (1975). Tetrahedron, 31, 1437-1441.]). For the crystal structure of a similar compound, see: Takebayashi et al. (2010[Takebayashi, S., John, J. M. & Bergens, S. H. (2010). J. Am. Chem. Soc. 132, 12832-12834.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17NO2

  • Mr = 255.31

  • Monoclinic, P 21 /c

  • a = 6.5067 (2) Å

  • b = 9.7385 (2) Å

  • c = 21.0780 (5) Å

  • β = 97.154 (1)°

  • V = 1325.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.25 × 0.15 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.963, Tmax = 0.988

  • 28760 measured reflections

  • 5019 independent reflections

  • 3930 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.180

  • S = 1.09

  • 5019 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the N1/C8–C11 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2 0.93 2.33 2.860 (2) 116
O1—H2⋯O2i 0.82 2.14 2.7194 (15) 128
C13—H13⋯Cg1ii 0.93 2.94 3.6903 (18) 139
C16—H16ACg4iii 0.99 (2) 2.86 (2) 3.692 (2) 143.4 (15)
Symmetry codes: (i) x+1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Chiral tricyclic compounds in heterocyclic chemistry are important in medicinal and pharmaceutical fields (Abel et al., 1996; Salvati et al., 2005). We report herein on the synthesis and crystal structure of the title compound, prepared by reduction of 2-(p-tolyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione, using NaBH4.

The bond lengths and angles in the title compound, Fig. 1, are close to those reported for two similar chiral structures (Takebayashi et al., 2010). The cyclohexene ring (C9/C190/C12-C15) has a normal boat conformation [puckering parameters: θ2 = 0.9587 (3) Å and ϕ2 = 169.02 (14)°]. The main bridge angle, C12—C16—C15, which connects the two bridgeheads on the cyclohexene ring, is 93.78 (12) °. The two five-membered rings, A(C9/C10/C15/C16/C12) and B(C12-C16) have envelope conformations with the flap atom C16 deviating from their mean planes by 0.5131 (2) and 0.4027 (2) Å, respectively. The dihedral angle between their mean planes, [A/B], is 86.51 (7)°. The whole molecule is non-planar with the dihedral angle between the benzene (C2-C7) and imide (N1/C8-C11) rings being 26.12 (5)°. This is much smaller than the same dihedral angle of ca.57.22 ° in the 2-phenyl derivative (Takebayashi et al., 2010) or ca. 61.37 ° in the 2-(4-fluorophenyl) derivative (Takebayashi et al., 2010). In the molecule there is a strong C—H···O intra-molecular contact present (Table 1).

In the crystal, molecules are linked by O—H···O hydrogen bonds forming chains along [100]; see Table 1 and Fig. 2. The chains are linked by C-H···π interactions forming slabs parallel to (001); see Table 1.

Related literature top

For medical and pharmaceutical applications of chiral tricyclic compounds, see: Abel et al. (1996); Salvati et al. (2005). For the synthesis of the starting reagent, 2-(p-tolyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione, see: Andrade & Evilazio (2004). For the reduction reaction used to synthesise the title compound, see: Hubert et al. (1975). For the crystal structure of a similar compound, see: Takebayashi et al. (2010).

Experimental top

The starting reagent, 2-(p-tolyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (L), is a known compound and was prepared from nadic anhydride and 4-toluidine (Andrade & Evilazio, 2004). The title compound was prepared by a reduction reaction following a modification of a literature procedure (Hubert et al., 1975). NaBH4 (0.94 g) was added in small portions at 298 K over a period of 2 h to L (0.72 g, 2.84 mmol) dissolved in ethanol (250 ml). The excess of NaBH4 was consumed in 15 min at 278 K by adding aqueous HCl (2 mol dm-3) until the pH reached 3. The mixture was stirred for an additional 1 h at the same temperature then poured into water and extracted with dichloromethane. The organic layer was separated, dried over Na2SO4, filtered and evaporated to yield a white solid that was purified by silica gel chromatography [ethyl acetate/n-hexane (3:2 v/v)] which on slow evaporation of the solvent gave colourless crystals (yield: 65%; m.p.: 475–477 K). NMR (DMSO): δ(H) 1.38–1.42 (dd, 2H, CH2), 2.24 (s, 3H, CH3), 2.59–2.60 (d, H, CH), 2.61–2.62 (d, H, CH), 3.11–3.13 (m, H, CH), 3.18–3.21 (dd, H, CH), 4.81 (s, H, CH—OH), 6.03–6.05 (dd, H, CH), 6.16–6.18 (dd, H, CH), 7.09–7.11 (d, 2H, aromatic), 7.25–7.27 (d, 2H, aromatic); δ(C) 20.96 (CH3), 45.08 (CH), 45.62 (CH), 46.56 (CH), 49.58 (CH), 51.06 (CH2), 86.17 (CH—OH), 124.07 (Cm), 129.33 (Co), 134.37 (CHCH), 134.93 (Cq—N), 135.87 (C—CH3), 174.39 (CO) p.p.m.. FT—IR (ATR): 3211 (OH), 2972, 2943, 1646 (CO), 1613 and 1515 (aromatic, CC), 1422, 1403, 1065 (C—N), 819 cm-1.

Refinement top

H atoms attached to bridging atom C16 were located in a difference Fourier map and freely refined. The other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å and O—H= 0.82 Å) and treated as riding, with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. Dashed lines indicate the O—H···O hydrogen bonds (see Table 1 for details).
rac-3-Hydroxy-2-(p-tolyl)-2,3,3a,4,7,7a-hexahydro-1H-4,7-methanoisoindol-1-one top
Crystal data top
C16H17NO2F(000) = 544
Mr = 255.31Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5019 reflections
a = 6.5067 (2) Åθ = 3.6–33.2°
b = 9.7385 (2) ŵ = 0.08 mm1
c = 21.0780 (5) ÅT = 296 K
β = 97.154 (1)°Prism, colourless
V = 1325.22 (6) Å30.45 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed tube3930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 33.2°, θmin = 3.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 59
Tmin = 0.963, Tmax = 0.988k = 1415
28760 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.4345P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H17NO2V = 1325.22 (6) Å3
Mr = 255.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5067 (2) ŵ = 0.08 mm1
b = 9.7385 (2) ÅT = 296 K
c = 21.0780 (5) Å0.45 × 0.25 × 0.15 mm
β = 97.154 (1)°
Data collection top
Bruker APEXII
diffractometer
5019 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3930 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.988Rint = 0.023
28760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.40 e Å3
5019 reflectionsΔρmin = 0.38 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45122 (14)1.12217 (12)0.27036 (6)0.0443 (3)
H20.52561.09050.30110.066*
O20.18121 (15)0.99108 (14)0.30186 (6)0.0498 (3)
C160.0698 (3)1.0387 (2)0.09543 (8)0.0528 (4)
C10.4966 (4)0.7713 (3)0.53749 (9)0.0695 (6)
H1A0.40640.79430.56860.104*
H1B0.63070.81100.54980.104*
H1C0.50940.67330.53500.104*
H16A0.073 (3)1.138 (2)0.0867 (10)0.057 (6)*
H16B0.110 (4)0.990 (2)0.0570 (12)0.066 (6)*
N10.16608 (15)0.98524 (11)0.29178 (5)0.0303 (2)
C110.30916 (17)1.02207 (13)0.24528 (6)0.0323 (2)
H110.38250.94020.23300.039*
C50.24201 (17)0.92979 (12)0.35282 (6)0.0303 (2)
C80.03527 (18)1.01463 (13)0.27142 (7)0.0337 (2)
C90.05367 (19)1.07927 (14)0.20645 (7)0.0363 (3)
H90.10681.17330.20750.044*
C100.16740 (19)1.07774 (14)0.18773 (6)0.0351 (3)
H100.20961.17100.17770.042*
C60.4272 (2)0.85725 (15)0.36000 (7)0.0387 (3)
H60.49730.84190.32480.046*
C20.4079 (2)0.82658 (16)0.47322 (7)0.0440 (3)
C70.5078 (2)0.80753 (17)0.41974 (7)0.0455 (3)
H70.63270.76000.42390.055*
C120.1801 (2)0.99380 (17)0.15201 (8)0.0470 (3)
H120.33071.00660.14700.056*
C150.1436 (3)0.98780 (17)0.12617 (7)0.0448 (3)
H150.25630.99440.09950.054*
C40.1392 (2)0.94992 (18)0.40597 (7)0.0459 (3)
H40.01480.99810.40210.055*
C130.1047 (3)0.84754 (17)0.16019 (8)0.0530 (4)
H130.17910.77340.17330.064*
C30.2228 (3)0.8979 (2)0.46493 (8)0.0534 (4)
H30.15170.91150.50010.064*
C140.0870 (3)0.84423 (17)0.14533 (8)0.0520 (4)
H140.17200.76720.14650.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (4)0.0503 (6)0.0575 (6)0.0066 (4)0.0005 (4)0.0026 (5)
O20.0203 (4)0.0751 (8)0.0549 (6)0.0010 (4)0.0079 (4)0.0096 (5)
C160.0568 (9)0.0558 (9)0.0421 (8)0.0040 (8)0.0091 (7)0.0114 (7)
C10.0762 (14)0.0834 (14)0.0453 (9)0.0020 (11)0.0064 (9)0.0202 (9)
N10.0193 (4)0.0366 (5)0.0347 (5)0.0025 (3)0.0030 (3)0.0021 (4)
C110.0218 (4)0.0375 (6)0.0380 (6)0.0015 (4)0.0058 (4)0.0020 (5)
C50.0244 (5)0.0332 (5)0.0328 (5)0.0007 (4)0.0022 (4)0.0013 (4)
C80.0204 (4)0.0377 (6)0.0424 (6)0.0021 (4)0.0019 (4)0.0008 (5)
C90.0254 (5)0.0377 (6)0.0444 (7)0.0034 (4)0.0011 (4)0.0061 (5)
C100.0300 (5)0.0356 (6)0.0395 (6)0.0011 (4)0.0037 (4)0.0071 (5)
C60.0287 (5)0.0496 (7)0.0379 (6)0.0092 (5)0.0050 (5)0.0037 (5)
C20.0466 (7)0.0473 (8)0.0361 (6)0.0043 (6)0.0026 (5)0.0045 (5)
C70.0358 (6)0.0540 (8)0.0450 (7)0.0090 (6)0.0013 (5)0.0087 (6)
C120.0351 (6)0.0562 (9)0.0464 (8)0.0055 (6)0.0089 (6)0.0091 (6)
C150.0477 (8)0.0496 (8)0.0372 (7)0.0010 (6)0.0063 (6)0.0052 (6)
C40.0422 (7)0.0590 (9)0.0377 (7)0.0157 (6)0.0093 (5)0.0018 (6)
C130.0641 (10)0.0452 (8)0.0459 (8)0.0178 (7)0.0079 (7)0.0030 (6)
C30.0587 (9)0.0672 (10)0.0358 (7)0.0103 (8)0.0121 (6)0.0004 (7)
C140.0711 (11)0.0396 (7)0.0436 (8)0.0024 (7)0.0003 (7)0.0026 (6)
Geometric parameters (Å, º) top
O1—C111.4008 (16)C9—C121.566 (2)
O1—H20.8200C9—H90.9800
O2—C81.2320 (16)C10—C151.557 (2)
C16—C121.531 (2)C10—H100.9800
C16—C151.539 (2)C6—C71.3893 (19)
C16—H16A0.99 (2)C6—H60.9300
C16—H16B0.95 (2)C2—C71.382 (2)
C1—C21.505 (2)C2—C31.383 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C12—C131.509 (3)
C1—H1C0.9600C12—H120.9800
N1—C81.3574 (14)C15—C141.513 (2)
N1—C51.4256 (16)C15—H150.9800
N1—C111.4776 (15)C4—C31.389 (2)
C11—C101.5290 (18)C4—H40.9300
C11—H110.9800C13—C141.324 (3)
C5—C41.3884 (18)C13—H130.9300
C5—C61.3885 (17)C3—H30.9300
C8—C91.4984 (19)C14—H140.9300
C9—C101.5383 (18)
C11—O1—H2109.5C11—C10—H10110.0
C12—C16—C1593.78 (12)C9—C10—H10110.0
C12—C16—H16A115.2 (12)C15—C10—H10110.0
C15—C16—H16A113.0 (13)C5—C6—C7120.04 (13)
C12—C16—H16B114.7 (15)C5—C6—H6120.0
C15—C16—H16B109.9 (15)C7—C6—H6120.0
H16A—C16—H16B109.4 (19)C7—C2—C3117.07 (13)
C2—C1—H1A109.5C7—C2—C1121.32 (16)
C2—C1—H1B109.5C3—C2—C1121.61 (16)
H1A—C1—H1B109.5C2—C7—C6121.98 (13)
C2—C1—H1C109.5C2—C7—H7119.0
H1A—C1—H1C109.5C6—C7—H7119.0
H1B—C1—H1C109.5C13—C12—C16100.44 (15)
C8—N1—C5125.28 (10)C13—C12—C9106.51 (11)
C8—N1—C11113.71 (10)C16—C12—C999.46 (12)
C5—N1—C11120.96 (9)C13—C12—H12116.0
O1—C11—N1111.06 (11)C16—C12—H12116.0
O1—C11—C10110.93 (11)C9—C12—H12116.0
N1—C11—C10104.17 (9)C14—C15—C1699.98 (14)
O1—C11—H11110.2C14—C15—C10107.43 (12)
N1—C11—H11110.2C16—C15—C1099.24 (13)
C10—C11—H11110.2C14—C15—H15115.9
C4—C5—C6118.85 (12)C16—C15—H15115.9
C4—C5—N1121.80 (11)C10—C15—H15115.9
C6—C5—N1119.32 (11)C5—C4—C3119.75 (14)
O2—C8—N1124.90 (13)C5—C4—H4120.1
O2—C8—C9125.12 (11)C3—C4—H4120.1
N1—C8—C9109.98 (11)C14—C13—C12107.37 (14)
C8—C9—C10105.05 (10)C14—C13—H13126.3
C8—C9—C12114.92 (11)C12—C13—H13126.3
C10—C9—C12103.28 (12)C2—C3—C4122.30 (14)
C8—C9—H9111.0C2—C3—H3118.9
C10—C9—H9111.0C4—C3—H3118.9
C12—C9—H9111.0C13—C14—C15107.95 (15)
C11—C10—C9106.91 (10)C13—C14—H14126.0
C11—C10—C15116.70 (11)C15—C14—H14126.0
C9—C10—C15102.71 (11)
C8—N1—C11—O1117.43 (12)C3—C2—C7—C60.1 (3)
C5—N1—C11—O160.01 (14)C1—C2—C7—C6179.60 (17)
C8—N1—C11—C102.04 (14)C5—C6—C7—C20.7 (2)
C5—N1—C11—C10179.48 (11)C15—C16—C12—C1350.25 (14)
C8—N1—C5—C426.3 (2)C15—C16—C12—C958.64 (14)
C11—N1—C5—C4150.86 (14)C8—C9—C12—C1345.60 (17)
C8—N1—C5—C6155.78 (13)C10—C9—C12—C1368.21 (15)
C11—N1—C5—C627.09 (17)C8—C9—C12—C16149.55 (12)
C5—N1—C8—O23.7 (2)C10—C9—C12—C1635.73 (14)
C11—N1—C8—O2178.96 (13)C12—C16—C15—C1449.62 (15)
C5—N1—C8—C9176.52 (11)C12—C16—C15—C1060.06 (14)
C11—N1—C8—C90.79 (15)C11—C10—C15—C1451.45 (17)
O2—C8—C9—C10176.50 (14)C9—C10—C15—C1465.11 (15)
N1—C8—C9—C103.26 (15)C11—C10—C15—C16155.05 (12)
O2—C8—C9—C1263.72 (19)C9—C10—C15—C1638.49 (13)
N1—C8—C9—C12116.04 (13)C6—C5—C4—C30.1 (2)
O1—C11—C10—C9115.65 (11)N1—C5—C4—C3177.82 (15)
N1—C11—C10—C93.91 (13)C16—C12—C13—C1433.93 (16)
O1—C11—C10—C15130.13 (12)C9—C12—C13—C1469.31 (17)
N1—C11—C10—C15110.31 (12)C7—C2—C3—C40.6 (3)
C8—C9—C10—C114.38 (14)C1—C2—C3—C4179.80 (19)
C12—C9—C10—C11125.16 (11)C5—C4—C3—C20.5 (3)
C8—C9—C10—C15118.98 (12)C12—C13—C14—C150.61 (18)
C12—C9—C10—C151.79 (13)C16—C15—C14—C1332.66 (17)
C4—C5—C6—C70.7 (2)C10—C15—C14—C1370.41 (17)
N1—C5—C6—C7177.28 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the N1/C8–C11 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.932.332.860 (2)116
O1—H2···O2i0.822.142.7194 (15)128
C13—H13···Cg1ii0.932.943.6903 (18)139
C16—H16A···Cg4iii0.99 (2)2.86 (2)3.692 (2)143.4 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the N1/C8–C11 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.932.332.860 (2)116
O1—H2···O2i0.822.142.7194 (15)128
C13—H13···Cg1ii0.932.943.6903 (18)139
C16—H16A···Cg4iii0.99 (2)2.86 (2)3.692 (2)143.4 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by Yalova University Scientific Research Projects Coordination Department (project No. 210–07). We would also like to thank DUPTAM, Dicle University, Turkey, for the use of the X-ray diffractometer.

References

First citationAbel, M. D., Luu, H. T., Micetich, R. G., Nguyen, D. Q., Oreski, A. B., Tempest, M. L. & Daneshtalab, M. (1996). J. Heterocycl. Chem. 33, 415–420.  CrossRef CAS Google Scholar
First citationAndrade, D. S. & Evilazio, E. (2004). Synth. Commun. 34, 3078–3081.  Web of Science CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHubert, J. C., Wijnberg, J. B. P. A. & Speckamp, N. W. (1975). Tetrahedron, 31, 1437–1441.  CrossRef CAS Web of Science Google Scholar
First citationSalvati, M. E., Balog, A., Wei, D. D., Pickering, D., Attar, R. M., Geng, J., Rizzo, C. A., Hunt, J. T., Gottardis, M. M., Weinmann, R. & Martinez, R. (2005). Bioorg. Med. Chem. Lett. 15, 389–393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakebayashi, S., John, J. M. & Bergens, S. H. (2010). J. Am. Chem. Soc. 132, 12832–12834.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o143-o144
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds