organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o171-o172

Crystal structure of N-[4-amino-5-cyano-6-(methyl­sulfan­yl)pyridin-2-yl]acetamide hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 February 2015; accepted 6 February 2015; online 13 February 2015)

The title compound, C9H10N4OS·0.5H2O, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, together with a water mol­ecule of crystallization. The acetamide moiety, which has an extended conformation, is inclined to the pyridine ring by 7.95 (16)° in mol­ecule A and by 1.77 (16)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked by two N—H⋯Ocarbon­yl hydrogen bonds, forming a dimer. The dimers are linked via N—H⋯N hydrogen bonds, forming ribbons that are linked by N—H⋯Owater hydrogen bonds to form sheets parallel to (110). The sheets are linked by O—H⋯N hydrogen bonds, forming slabs, and between the slabs there are weak slipped parallel ππ inter­actions [inter-centroid distance = 3.734 (2) Å, inter­planar distance = 3.3505 (11) Å and slippage = 1.648 Å], forming a three-dimensional structure.

1. Related literature

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996[Knyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim. 32, 1097-1103.]); Kurfurst et al. (1989[Kurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462-472.]); Enyedy et al. (2003[Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513-517.]); Arora & Knaus (1999[Arora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201-203.]); Kim et al. 2004[Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433-447.]); Pillai et al. (2003[Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). Biochem. Biophys. Res. Commun. 301, 183-186.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N4OS·0.5H2O

  • Mr = 231.28

  • Triclinic, [P \overline 1]

  • a = 8.229 (3) Å

  • b = 10.181 (4) Å

  • c = 13.198 (5) Å

  • α = 84.221 (10)°

  • β = 80.036 (10)°

  • γ = 82.136 (11)°

  • V = 1075.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 200 K

  • 0.40 × 0.40 × 0.40 mm

2.2. Data collection

  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 1.000

  • 19554 measured reflections

  • 3775 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.03

  • 3775 reflections

  • 305 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3AN⋯O2 0.88 2.00 2.870 (3) 169
N7—H7BN⋯O1 0.88 1.99 2.860 (3) 170
N3—H3BN⋯N8i 0.88 2.33 3.080 (4) 143
N7—H7AN⋯N4ii 0.88 2.38 3.116 (4) 142
N2—H2N⋯O3A 0.88 2.12 2.984 (10) 166
N2—H2N⋯O3B 0.88 2.21 3.079 (9) 172
N6—H6N⋯O3Aiii 0.88 2.26 3.138 (10) 173
N6—H6N⋯O3Biii 0.88 2.19 3.051 (9) 166
O3A—H3A2⋯N7iv 0.85 (2) 2.36 (6) 3.083 (12) 143 (9)
O3B—H3B1⋯N5v 0.85 (2) 2.57 (6) 3.239 (8) 137 (8)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z; (iii) x, y, z+1; (iv) -x+1, -y+1, -z; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comment top

Poly-functional pyridines are an interesting class of compounds due to their optical properties (Knyazhanskii et al., 1996; Kurfurst et al., 1989), and their biological activities (Enyedy et al., 2003), such as anticonvulsants (Arora et al., 1999), antihistaminic reagents (Kim et al., 2004), and cardivascular disorder treatments (Pillai et al., 2003). In view of such facts we herein report on the synthesis and crystal structure of the new title poly-functional pyridine compound.

The asymmetric unit of the title compound, Fig. 1, contains two independent title molecules (A and B) and one water molecule. In molecule A the dihedral angle between the pyridine ring (N1/C1–C5) and the acetamide moiety (O1/N2(C7/C8) is 7.95 (16)°, while in molecule B the corresponding angle, involving the pyridine ring (N5/C10-C14) and actemide moiety (O2/N2/C7/C8), is 1.77 (16)°.

In the crystal, the A and B molecules are linked by two N-H···Ocarbonyl hydrogen bonds forming a dimer (Table 1 and Fig. 1). The dimers are linked via N-H···N hydrogen bonds forming ribbons that are linked by N-H···Owater hydrogen bonds to form sheets parallel to (110); see Table 1. The sheets are linked by O-H···N hydrogen bonds forming slabs (Table 1). Between the slabs there are weak slipped parallel π-π interactions forming a three-dimensional structure, Fig. 2 [inter-centroid distance Cg1···Cg1i = 3.734 (2) Å, inter-planar distance = 3.351 (1) Å, slippage = 1.648 Å; Cg1 is the centroid of ring N5/C10-C14 (molecule B); symmetry code: (i) -x, -y+1, -z+1].

Related literature top

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996); Kurfurst et al. (1989); Enyedy et al. (2003); Arora & Knaus (1999); Kim et al. 2004); Pillai et al. (2003).

Experimental top

A solution of 0.5 g (2.7 mmol) of 4,6-diamino-3-cyano-2-methylthiopyridine-2(1H)-thione in 30 ml glacial acetic acid was refluxed for 3 h. The reaction mixture was allowed to cool and it was then poured into 100 ml of ice cold water. The formed precipitate was collected and dried under vacuum. Yellow crystals, suitable for X-ray analysis, were obtained by recrystallization of the solid product from ethanol (yield: 92%; m.p.: 523–525 K).

Refinement top

The water molecule O3 is disordered over two positions (O3A/O3B) and was refined with an occupancy ratio of 0.5:0.5. The H atoms were included in calculated positions (calc-OH in WinGX; Farrugia, 2012 and refined with distance restraints: O—H = 0.84 (2) Å and H···H = 1.35 (2) Å with Uiso(H) = 1.5Ueq(O). The C and N-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å and N—H = 0.88 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. View along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
N-[4-Amino-5-cyano-6-(methylsulfanyl)pyridin-2-yl]acetamide hemihydrate top
Crystal data top
C9H10N4OS·0.5H2OZ = 4
Mr = 231.28F(000) = 484
Triclinic, P1Dx = 1.428 Mg m3
a = 8.229 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.181 (4) ÅCell parameters from 4579 reflections
c = 13.198 (5) Åθ = 2.5–25.1°
α = 84.221 (10)°µ = 0.29 mm1
β = 80.036 (10)°T = 200 K
γ = 82.136 (11)°Block, yellow
V = 1075.4 (7) Å30.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3775 independent reflections
Radiation source: XOS X-beam microfocus source2517 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.066
ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.813, Tmax = 1.000k = 1212
19554 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.1759P]
where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.63 e Å3
9 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H10N4OS·0.5H2Oγ = 82.136 (11)°
Mr = 231.28V = 1075.4 (7) Å3
Triclinic, P1Z = 4
a = 8.229 (3) ÅMo Kα radiation
b = 10.181 (4) ŵ = 0.29 mm1
c = 13.198 (5) ÅT = 200 K
α = 84.221 (10)°0.40 × 0.40 × 0.40 mm
β = 80.036 (10)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2517 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.066
19554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.63 e Å3
3775 reflectionsΔρmin = 0.31 e Å3
305 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.84898 (9)0.09268 (8)0.11814 (5)0.0324 (2)
O10.3621 (3)0.3985 (2)0.14350 (16)0.0444 (6)
N10.6422 (3)0.1137 (2)0.04595 (17)0.0243 (5)
N20.4586 (3)0.2943 (2)0.00302 (17)0.0263 (6)
H2N0.45390.30150.06950.032*
N30.7191 (3)0.0201 (3)0.25778 (18)0.0369 (7)
H3AN0.66760.07230.30560.044*
H3BN0.78580.05100.27440.044*
N40.9584 (4)0.2438 (3)0.1290 (2)0.0453 (7)
C10.5671 (3)0.1876 (3)0.0309 (2)0.0234 (6)
C20.5899 (3)0.1621 (3)0.1320 (2)0.0267 (7)
H20.53480.22000.18270.032*
C30.6957 (3)0.0492 (3)0.1588 (2)0.0263 (7)
C40.7727 (3)0.0312 (3)0.0799 (2)0.0224 (6)
C50.7434 (3)0.0062 (3)0.0213 (2)0.0229 (6)
C60.7793 (4)0.0068 (3)0.2309 (2)0.0440 (9)
H6A0.81230.08310.24030.066*
H6B0.65790.00130.22270.066*
H6C0.82950.05530.29140.066*
C70.3596 (3)0.3882 (3)0.0525 (2)0.0286 (7)
C80.2446 (4)0.4802 (3)0.0064 (2)0.0359 (8)
H8A0.18730.55070.03680.054*
H8B0.16260.43020.02580.054*
H8C0.30880.51990.06880.054*
C90.8785 (4)0.1495 (3)0.1042 (2)0.0290 (7)
S20.05057 (10)0.70420 (8)0.65341 (6)0.0356 (3)
O20.5272 (3)0.2080 (2)0.39329 (15)0.0378 (5)
N50.2537 (3)0.4955 (2)0.58226 (16)0.0215 (5)
N60.4339 (3)0.3125 (2)0.53944 (17)0.0255 (5)
H6N0.44200.30770.60530.031*
N70.1738 (3)0.5867 (3)0.27873 (18)0.0362 (7)
H7AN0.10790.65830.26200.043*
H7BN0.22600.53490.23080.043*
N80.0881 (3)0.8386 (3)0.4093 (2)0.0424 (7)
C100.3278 (3)0.4203 (3)0.5052 (2)0.0236 (6)
C110.3036 (3)0.4451 (3)0.4037 (2)0.0256 (6)
H110.35970.38810.35260.031*
C120.1947 (3)0.5562 (3)0.3782 (2)0.0240 (6)
C130.1145 (3)0.6354 (3)0.4567 (2)0.0251 (7)
C140.1495 (3)0.6013 (3)0.5577 (2)0.0251 (6)
C150.1416 (4)0.6296 (3)0.7623 (2)0.0427 (9)
H15C0.09140.67700.82330.064*
H15B0.26150.63480.74860.064*
H15A0.12160.53620.77470.064*
C160.5260 (3)0.2144 (3)0.4854 (2)0.0262 (7)
C170.6252 (4)0.1123 (3)0.5476 (2)0.0337 (7)
H17A0.55290.04870.58540.051*
H17B0.67190.15640.59670.051*
H17C0.71570.06520.50140.051*
C180.0001 (4)0.7485 (3)0.4338 (2)0.0298 (7)
O3A0.4983 (13)0.2878 (10)0.2316 (7)0.066 (3)0.5
H3A10.541 (6)0.223 (3)0.2637 (16)0.099*0.5
H3A20.555 (10)0.352 (5)0.254 (6)0.099*0.5
O3B0.4470 (11)0.3490 (9)0.2356 (7)0.052 (2)0.5
H3B10.383 (8)0.416 (5)0.255 (7)0.077*0.5
H3B20.386 (8)0.289 (6)0.214 (2)0.077*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0361 (5)0.0342 (5)0.0234 (4)0.0139 (4)0.0053 (3)0.0092 (3)
O10.0625 (15)0.0445 (15)0.0215 (12)0.0279 (12)0.0163 (10)0.0105 (10)
N10.0268 (12)0.0269 (14)0.0176 (12)0.0047 (11)0.0036 (10)0.0051 (10)
N20.0342 (13)0.0255 (14)0.0165 (12)0.0124 (11)0.0094 (10)0.0014 (10)
N30.0503 (16)0.0343 (16)0.0206 (13)0.0244 (13)0.0121 (11)0.0046 (11)
N40.0523 (17)0.0385 (18)0.0426 (17)0.0174 (15)0.0188 (14)0.0031 (14)
C10.0246 (14)0.0214 (15)0.0222 (14)0.0048 (12)0.0043 (11)0.0014 (12)
C20.0325 (15)0.0264 (17)0.0194 (14)0.0093 (13)0.0059 (12)0.0069 (12)
C30.0306 (15)0.0257 (17)0.0226 (15)0.0035 (13)0.0098 (12)0.0014 (12)
C40.0235 (14)0.0223 (15)0.0199 (14)0.0059 (12)0.0051 (11)0.0040 (11)
C50.0217 (14)0.0245 (16)0.0226 (15)0.0017 (12)0.0060 (11)0.0042 (12)
C60.054 (2)0.049 (2)0.0224 (16)0.0151 (17)0.0047 (15)0.0050 (15)
C70.0321 (16)0.0274 (17)0.0244 (16)0.0072 (13)0.0079 (13)0.0014 (13)
C80.0411 (18)0.0340 (19)0.0298 (17)0.0164 (15)0.0111 (14)0.0085 (14)
C90.0347 (16)0.0286 (18)0.0233 (15)0.0044 (15)0.0085 (13)0.0046 (13)
S20.0450 (5)0.0339 (5)0.0249 (4)0.0171 (4)0.0098 (3)0.0110 (3)
O20.0507 (13)0.0362 (13)0.0234 (11)0.0194 (10)0.0134 (10)0.0081 (9)
N50.0245 (12)0.0211 (13)0.0185 (12)0.0055 (10)0.0059 (9)0.0061 (10)
N60.0319 (13)0.0292 (14)0.0139 (11)0.0102 (11)0.0090 (10)0.0042 (10)
N70.0516 (16)0.0314 (15)0.0213 (13)0.0178 (13)0.0114 (12)0.0028 (11)
N80.0465 (16)0.0372 (17)0.0392 (16)0.0147 (14)0.0137 (13)0.0030 (13)
C100.0263 (15)0.0249 (16)0.0189 (14)0.0021 (13)0.0042 (11)0.0042 (12)
C110.0324 (15)0.0262 (16)0.0174 (14)0.0078 (13)0.0071 (12)0.0072 (12)
C120.0286 (15)0.0252 (16)0.0184 (14)0.0013 (13)0.0078 (11)0.0016 (12)
C130.0284 (15)0.0213 (16)0.0241 (15)0.0080 (13)0.0084 (12)0.0030 (12)
C140.0279 (15)0.0246 (16)0.0222 (15)0.0042 (13)0.0072 (12)0.0041 (12)
C150.056 (2)0.046 (2)0.0249 (16)0.0141 (17)0.0152 (15)0.0120 (15)
C160.0281 (15)0.0284 (17)0.0219 (15)0.0018 (13)0.0066 (12)0.0028 (13)
C170.0413 (18)0.0279 (17)0.0300 (17)0.0108 (14)0.0107 (14)0.0044 (13)
C180.0358 (17)0.0283 (18)0.0238 (15)0.0029 (15)0.0052 (13)0.0039 (13)
O3A0.077 (7)0.086 (8)0.031 (3)0.003 (5)0.002 (4)0.017 (5)
O3B0.050 (5)0.072 (6)0.029 (3)0.004 (4)0.006 (3)0.005 (4)
Geometric parameters (Å, º) top
S1—C51.743 (3)O2—C161.222 (3)
S1—C61.790 (3)N5—C141.332 (3)
O1—C71.219 (3)N5—C101.345 (3)
N1—C51.330 (4)N6—C161.353 (3)
N1—C11.336 (4)N6—C101.394 (3)
N2—C71.356 (4)N6—H6N0.8800
N2—C11.398 (3)N7—C121.353 (3)
N2—H2N0.8800N7—H7AN0.8800
N3—C31.350 (3)N7—H7BN0.8800
N3—H3AN0.8800N8—C181.145 (4)
N3—H3BN0.8800C10—C111.381 (4)
N4—C91.140 (4)C11—C121.395 (4)
C1—C21.374 (4)C11—H110.9500
C2—C31.399 (4)C12—C131.395 (4)
C2—H20.9500C13—C141.411 (4)
C3—C41.399 (4)C13—C181.427 (4)
C4—C51.403 (4)C15—H15C0.9800
C4—C91.430 (4)C15—H15B0.9800
C6—H6A0.9800C15—H15A0.9800
C6—H6B0.9800C16—C171.500 (4)
C6—H6C0.9800C17—H17A0.9800
C7—C81.497 (4)C17—H17B0.9800
C8—H8A0.9800C17—H17C0.9800
C8—H8B0.9800O3A—H3A10.823 (18)
C8—H8C0.9800O3A—H3A20.85 (2)
S2—C141.742 (3)O3B—H3B10.85 (2)
S2—C151.789 (3)O3B—H3B20.84 (2)
C5—S1—C6102.00 (14)C14—N5—C10116.8 (2)
C5—N1—C1116.9 (2)C16—N6—C10129.0 (2)
C7—N2—C1128.8 (2)C16—N6—H6N115.5
C7—N2—H2N115.6C10—N6—H6N115.5
C1—N2—H2N115.6C12—N7—H7AN120.0
C3—N3—H3AN120.0C12—N7—H7BN120.0
C3—N3—H3BN120.0H7AN—N7—H7BN120.0
H3AN—N3—H3BN120.0N5—C10—C11124.8 (3)
N1—C1—C2124.8 (3)N5—C10—N6111.9 (2)
N1—C1—N2112.0 (2)C11—C10—N6123.2 (2)
C2—C1—N2123.2 (3)C10—C11—C12118.2 (2)
C1—C2—C3118.7 (3)C10—C11—H11120.9
C1—C2—H2120.6C12—C11—H11120.9
C3—C2—H2120.6N7—C12—C13122.0 (3)
N3—C3—C2120.2 (3)N7—C12—C11119.7 (3)
N3—C3—C4122.4 (3)C13—C12—C11118.3 (2)
C2—C3—C4117.3 (2)C12—C13—C14118.7 (2)
C3—C4—C5119.1 (2)C12—C13—C18119.8 (2)
C3—C4—C9119.3 (2)C14—C13—C18121.5 (2)
C5—C4—C9121.6 (2)N5—C14—C13123.2 (2)
N1—C5—C4123.1 (2)N5—C14—S2119.3 (2)
N1—C5—S1119.3 (2)C13—C14—S2117.6 (2)
C4—C5—S1117.6 (2)S2—C15—H15C109.5
S1—C6—H6A109.5S2—C15—H15B109.5
S1—C6—H6B109.5H15C—C15—H15B109.5
H6A—C6—H6B109.5S2—C15—H15A109.5
S1—C6—H6C109.5H15C—C15—H15A109.5
H6A—C6—H6C109.5H15B—C15—H15A109.5
H6B—C6—H6C109.5O2—C16—N6122.9 (2)
O1—C7—N2123.4 (2)O2—C16—C17122.4 (3)
O1—C7—C8121.8 (3)N6—C16—C17114.8 (2)
N2—C7—C8114.8 (2)C16—C17—H17A109.5
C7—C8—H8A109.5C16—C17—H17B109.5
C7—C8—H8B109.5H17A—C17—H17B109.5
H8A—C8—H8B109.5C16—C17—H17C109.5
C7—C8—H8C109.5H17A—C17—H17C109.5
H8A—C8—H8C109.5H17B—C17—H17C109.5
H8B—C8—H8C109.5N8—C18—C13176.0 (3)
N4—C9—C4176.3 (3)H3A1—O3A—H3A2108 (3)
C14—S2—C15101.47 (14)H3B1—O3B—H3B2106 (3)
C5—N1—C1—C21.5 (4)C14—N5—C10—C110.1 (4)
C5—N1—C1—N2177.4 (2)C14—N5—C10—N6180.0 (2)
C7—N2—C1—N1178.7 (3)C16—N6—C10—N5178.3 (3)
C7—N2—C1—C20.2 (5)C16—N6—C10—C111.7 (4)
N1—C1—C2—C31.7 (4)N5—C10—C11—C120.0 (4)
N2—C1—C2—C3177.1 (3)N6—C10—C11—C12179.9 (2)
C1—C2—C3—N3179.1 (3)C10—C11—C12—N7177.1 (3)
C1—C2—C3—C40.1 (4)C10—C11—C12—C130.8 (4)
N3—C3—C4—C5179.5 (3)N7—C12—C13—C14176.5 (3)
C2—C3—C4—C51.4 (4)C11—C12—C13—C141.3 (4)
N3—C3—C4—C90.8 (4)N7—C12—C13—C183.2 (4)
C2—C3—C4—C9178.4 (2)C11—C12—C13—C18179.0 (3)
C1—N1—C5—C40.1 (4)C10—N5—C14—C130.5 (4)
C1—N1—C5—S1178.62 (19)C10—N5—C14—S2179.4 (2)
C3—C4—C5—N11.6 (4)C12—C13—C14—N51.2 (4)
C9—C4—C5—N1178.2 (3)C18—C13—C14—N5179.1 (3)
C3—C4—C5—S1177.2 (2)C12—C13—C14—S2178.7 (2)
C9—C4—C5—S13.1 (4)C18—C13—C14—S21.1 (4)
C6—S1—C5—N10.3 (3)C15—S2—C14—N53.4 (3)
C6—S1—C5—C4178.5 (2)C15—S2—C14—C13176.4 (2)
C1—N2—C7—O16.3 (5)C10—N6—C16—O20.0 (5)
C1—N2—C7—C8173.6 (3)C10—N6—C16—C17179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3AN···O20.882.002.870 (3)169
N7—H7BN···O10.881.992.860 (3)170
N3—H3BN···N8i0.882.333.080 (4)143
N7—H7AN···N4ii0.882.383.116 (4)142
N2—H2N···O3A0.882.122.984 (10)166
N2—H2N···O3B0.882.213.079 (9)172
N6—H6N···O3Aiii0.882.263.138 (10)173
N6—H6N···O3Biii0.882.193.051 (9)166
O3A—H3A2···N7iv0.85 (2)2.36 (6)3.083 (12)143 (9)
O3B—H3B1···N5v0.85 (2)2.57 (6)3.239 (8)137 (8)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3AN···O20.882.002.870 (3)169
N7—H7BN···O10.881.992.860 (3)170
N3—H3BN···N8i0.882.333.080 (4)143
N7—H7AN···N4ii0.882.383.116 (4)142
N2—H2N···O3A0.882.122.984 (10)166
N2—H2N···O3B0.882.213.079 (9)172
N6—H6N···O3Aiii0.882.263.138 (10)173
N6—H6N···O3Biii0.882.193.051 (9)166
O3A—H3A2···N7iv0.85 (2)2.36 (6)3.083 (12)143 (9)
O3B—H3B1···N5v0.85 (2)2.57 (6)3.239 (8)137 (8)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y, z1.
 

Acknowledgements

We are grateful to the University of Tennessee and Sohag University for supporting this study.

References

First citationArora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201–203.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513–517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim. 32, 1097–1103.  CAS Google Scholar
First citationKurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462–472.  Google Scholar
First citationPillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). Biochem. Biophys. Res. Commun. 301, 183–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o171-o172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds