organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o163-o164

Crystal structure of 4-bromo­anilinium 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, M. N. M. Jain Engineering College, Chennai 600 097, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, srkanagadurai@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 February 2015; accepted 8 February 2015; online 13 February 2015)

In the crystal of the title mol­ecular salt, C6H7BrN+·C7H7O3S, the anions and cations are linked via N—H⋯O hydrogen bonds forming layers, enclosing R22(4) ring motifs, lying parallel to (001). Within the layers there are short O⋯O contacts of 2.843 (2) Å.

1. Related literature

For the crystal structure of 4-chloro­anilinium 4-methyl­benzene­sulfonate, isostructural with the title salt, see: Jasinski et al. (2011[Jasinski, J. P., Golen, J. A., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o3288-o3289.]). For the crystal structure of other 4-methyl­benzene­sulfonate salts, see, for example: Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H7BrN+·C7H7O3S

  • Mr = 344.22

  • Triclinic, [P \overline 1]

  • a = 5.7908 (3) Å

  • b = 7.6004 (4) Å

  • c = 15.9073 (7) Å

  • α = 94.716 (2)°

  • β = 96.520 (3)°

  • γ = 92.732 (2)°

  • V = 692.09 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.521, Tmax = 0.603

  • 11503 measured reflections

  • 3001 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 3001 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 2.07 2.879 (2) 151
N1—H1C⋯O1i 0.89 2.46 2.971 (2) 117
N1—H1A⋯O2i 0.89 2.46 3.096 (2) 129
N1—H1B⋯O3ii 0.89 1.91 2.794 (2) 172
N1—H1C⋯O1iii 0.89 2.04 2.904 (2) 165
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

The molecular structure of the title salt is illustrated in Fig. 1. The bond lengths and angles are similar to those reported for the 4-chloro­anilinium analogue (Jasinski et al., 2011), and for other similar 4-methyl­benzene­sulfonate salts (Krishnakumar et al., 2012; Sudhahar et al., 2013).

In the crystal, the benzene rings (C1—C6) and (C8—C13) make a dihedral angle of 50.89 (11) °. The cations and anions are linked via N—H···O hydrogen bonds which generates R22(4) ring motifs, and form layers parallel to (001); see Table 1 and Fig. 2. Within the layers there are short O1···O1i contacts of 2.843 (2) Å [symmetry code: (i) -x+2, -y+2, -z+1].

Synthesis and crystallization top

The title compound was synthesized in ethanol by mixing 4-bromo­aniline (2.37 g) and p-toluene­sulfonic­acid (2.62 g) in an equimolar ratio. The saturated solution was allowed to evaporating slowly at room temperature. After a period of three weeks colourless block-like crystals appeared.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using a riding model: N—H = 0.89 Å, C—H = 0.93 - 96 Å with Uiso(H) = 1.5Ueq(N,C) for the ammonium and methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For the crystal structure of 4-chloroanilinium 4-methylbenzenesulfonate, isostructural with the title salt, see: Jasinski et al. (2011). For the crystal structure of other 4-methylbenzenesulfonate salts, see, for example: Krishnakumar et al. (2012); Sudhahar et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecular salt, with atom labelling. Displacement ellipsoids ae drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title molecular salt, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
4-Bromoanilinium 4-methylbenzenesulfonate top
Crystal data top
C6H7BrN+·C7H7O3SZ = 2
Mr = 344.22F(000) = 3048
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7908 (3) ÅCell parameters from 348 reflections
b = 7.6004 (4) Åθ = 1.3–27.1°
c = 15.9073 (7) ŵ = 3.12 mm1
α = 94.716 (2)°T = 295 K
β = 96.520 (3)°Block, colourless
γ = 92.732 (2)°0.24 × 0.20 × 0.18 mm
V = 692.09 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3001 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 27.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.521, Tmax = 0.603k = 99
11503 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3371P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3001 reflectionsΔρmax = 0.45 e Å3
175 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (2)
Crystal data top
C6H7BrN+·C7H7O3Sγ = 92.732 (2)°
Mr = 344.22V = 692.09 (6) Å3
Triclinic, P1Z = 2
a = 5.7908 (3) ÅMo Kα radiation
b = 7.6004 (4) ŵ = 3.12 mm1
c = 15.9073 (7) ÅT = 295 K
α = 94.716 (2)°0.24 × 0.20 × 0.18 mm
β = 96.520 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2526 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.603Rint = 0.030
11503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3001 reflectionsΔρmin = 0.56 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0889 (4)0.8014 (3)0.89050 (15)0.0401 (6)
C21.2329 (4)0.8603 (4)0.83410 (17)0.0428 (6)
H21.38200.90680.85460.051*
C31.1611 (4)0.8518 (3)0.74779 (15)0.0353 (5)
H31.26130.89090.71060.042*
C40.9385 (3)0.7845 (3)0.71760 (12)0.0233 (4)
C50.7913 (4)0.7260 (3)0.77291 (15)0.0351 (5)
H50.64160.68070.75250.042*
C60.8673 (4)0.7348 (4)0.85901 (15)0.0439 (6)
H60.76740.69520.89620.053*
C71.1741 (6)0.8053 (5)0.98404 (18)0.0686 (9)
H7A1.23770.69440.99580.103*
H7B1.04640.82511.01660.103*
H7C1.29220.89910.99920.103*
C80.4302 (4)0.3193 (3)0.77075 (14)0.0317 (5)
C90.6357 (4)0.2352 (3)0.77106 (15)0.0342 (5)
H90.70660.19580.82090.041*
C100.7353 (4)0.2102 (3)0.69649 (14)0.0296 (5)
H100.87490.15480.69580.036*
C110.6259 (3)0.2681 (3)0.62306 (13)0.0253 (4)
C120.4203 (4)0.3529 (3)0.62302 (14)0.0309 (5)
H120.34920.39200.57310.037*
C130.3209 (4)0.3792 (3)0.69759 (15)0.0329 (5)
H130.18260.43630.69860.039*
N10.7352 (3)0.2443 (2)0.54491 (11)0.0301 (4)
H1A0.82640.33970.54010.045*
H1B0.62560.22870.50060.045*
H1C0.82040.14990.54640.045*
O10.9616 (3)0.9187 (2)0.57494 (10)0.0387 (4)
O20.9290 (3)0.6031 (2)0.57251 (10)0.0372 (4)
O30.5965 (3)0.7733 (3)0.59796 (10)0.0460 (4)
Br10.29548 (5)0.35751 (4)0.873294 (18)0.05714 (14)
S10.84823 (9)0.76863 (7)0.60718 (3)0.02575 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (14)0.0480 (14)0.0238 (12)0.0154 (11)0.0024 (10)0.0011 (10)
C20.0341 (12)0.0518 (15)0.0382 (14)0.0012 (11)0.0083 (10)0.0035 (11)
C30.0298 (11)0.0428 (13)0.0327 (12)0.0022 (9)0.0030 (9)0.0032 (10)
C40.0287 (10)0.0214 (9)0.0200 (10)0.0048 (8)0.0029 (7)0.0010 (8)
C50.0315 (11)0.0463 (14)0.0273 (12)0.0034 (10)0.0038 (9)0.0050 (10)
C60.0460 (14)0.0625 (17)0.0261 (12)0.0034 (12)0.0111 (10)0.0106 (11)
C70.077 (2)0.098 (3)0.0278 (14)0.0243 (19)0.0093 (14)0.0014 (16)
C80.0353 (11)0.0310 (11)0.0287 (12)0.0018 (9)0.0061 (9)0.0007 (9)
C90.0399 (12)0.0358 (12)0.0267 (11)0.0083 (10)0.0007 (9)0.0055 (9)
C100.0289 (10)0.0283 (11)0.0315 (12)0.0075 (8)0.0003 (8)0.0034 (9)
C110.0263 (10)0.0220 (10)0.0262 (11)0.0013 (8)0.0009 (8)0.0012 (8)
C120.0300 (11)0.0321 (11)0.0299 (12)0.0054 (9)0.0020 (9)0.0046 (9)
C130.0273 (11)0.0333 (12)0.0379 (13)0.0070 (9)0.0020 (9)0.0015 (10)
N10.0298 (9)0.0316 (9)0.0286 (10)0.0032 (7)0.0019 (7)0.0029 (8)
O10.0566 (10)0.0325 (8)0.0315 (9)0.0091 (7)0.0160 (7)0.0109 (7)
O20.0531 (10)0.0281 (8)0.0297 (9)0.0057 (7)0.0065 (7)0.0053 (7)
O30.0321 (9)0.0787 (13)0.0263 (9)0.0106 (8)0.0017 (7)0.0025 (8)
Br10.0649 (2)0.0722 (2)0.03948 (19)0.02182 (15)0.02132 (13)0.00502 (14)
S10.0313 (3)0.0287 (3)0.0179 (3)0.0066 (2)0.00382 (19)0.0019 (2)
Geometric parameters (Å, º) top
C1—C21.379 (4)C8—Br11.894 (2)
C1—C61.380 (4)C9—C101.380 (3)
C1—C71.511 (3)C9—H90.9300
C2—C31.384 (3)C10—C111.379 (3)
C2—H20.9300C10—H100.9300
C3—C41.382 (3)C11—C121.381 (3)
C3—H30.9300C11—N11.460 (3)
C4—C51.377 (3)C12—C131.380 (3)
C4—S11.767 (2)C12—H120.9300
C5—C61.385 (3)C13—H130.9300
C5—H50.9300N1—H1A0.8900
C6—H60.9300N1—H1B0.8900
C7—H7A0.9600N1—H1C0.8900
C7—H7B0.9600O1—S11.4480 (16)
C7—H7C0.9600O2—S11.4513 (16)
C8—C91.377 (3)O3—S11.4509 (17)
C8—C131.382 (3)
C2—C1—C6118.3 (2)C8—C9—C10119.2 (2)
C2—C1—C7120.7 (3)C8—C9—H9120.4
C6—C1—C7120.9 (3)C10—C9—H9120.4
C1—C2—C3121.6 (2)C11—C10—C9119.39 (19)
C1—C2—H2119.2C11—C10—H10120.3
C3—C2—H2119.2C9—C10—H10120.3
C4—C3—C2119.1 (2)C10—C11—C12121.2 (2)
C4—C3—H3120.5C10—C11—N1118.94 (18)
C2—C3—H3120.5C12—C11—N1119.80 (18)
C5—C4—C3120.20 (19)C13—C12—C11119.56 (19)
C5—C4—S1120.52 (16)C13—C12—H12120.2
C3—C4—S1119.26 (16)C11—C12—H12120.2
C4—C5—C6119.7 (2)C12—C13—C8118.9 (2)
C4—C5—H5120.1C12—C13—H13120.5
C6—C5—H5120.1C8—C13—H13120.5
C1—C6—C5121.0 (2)C11—N1—H1A109.5
C1—C6—H6119.5C11—N1—H1B109.5
C5—C6—H6119.5H1A—N1—H1B109.5
C1—C7—H7A109.5C11—N1—H1C109.5
C1—C7—H7B109.5H1A—N1—H1C109.5
H7A—C7—H7B109.5H1B—N1—H1C109.5
C1—C7—H7C109.5O1—S1—O3113.04 (11)
H7A—C7—H7C109.5O1—S1—O2111.33 (10)
H7B—C7—H7C109.5O3—S1—O2113.23 (11)
C9—C8—C13121.7 (2)O1—S1—C4106.17 (10)
C9—C8—Br1119.41 (16)O3—S1—C4106.11 (10)
C13—C8—Br1118.93 (17)O2—S1—C4106.31 (9)
C6—C1—C2—C30.8 (4)C9—C10—C11—C120.9 (3)
C7—C1—C2—C3177.6 (3)C9—C10—C11—N1178.73 (19)
C1—C2—C3—C40.7 (4)C10—C11—C12—C130.5 (3)
C2—C3—C4—C50.3 (3)N1—C11—C12—C13178.31 (19)
C2—C3—C4—S1178.54 (19)C11—C12—C13—C80.1 (3)
C3—C4—C5—C60.0 (3)C9—C8—C13—C120.4 (3)
S1—C4—C5—C6178.18 (19)Br1—C8—C13—C12179.35 (16)
C2—C1—C6—C50.4 (4)C5—C4—S1—O1147.56 (18)
C7—C1—C6—C5178.0 (3)C3—C4—S1—O134.23 (19)
C4—C5—C6—C10.0 (4)C5—C4—S1—O327.0 (2)
C13—C8—C9—C100.0 (3)C3—C4—S1—O3154.76 (18)
Br1—C8—C9—C10178.95 (17)C5—C4—S1—O293.79 (19)
C8—C9—C10—C110.7 (3)C3—C4—S1—O284.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.072.879 (2)151
N1—H1C···O1i0.892.462.971 (2)117
N1—H1A···O2i0.892.463.096 (2)129
N1—H1B···O3ii0.891.912.794 (2)172
N1—H1C···O1iii0.892.042.904 (2)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.892.072.879 (2)151
N1—H1C···O1i0.892.462.971 (2)117
N1—H1A···O2i0.892.463.096 (2)129
N1—H1B···O3ii0.891.912.794 (2)172
N1—H1C···O1iii0.892.042.904 (2)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Golen, J. A., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o3288–o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o163-o164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds