organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o184-o185

Crystal structure of 2-[(3S,4S)-4-(anthracen-9-yl)-1-(4-meth­­oxy­phen­yl)-2-oxoazetidin-3-yl]-2-aza-2H-phenalene-1,3-dione unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 06532 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, dDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakir, Turkey, and eScience and Technology Application and Research Center, Dicle University, 21280, Diyarbakir, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 February 2015; accepted 11 February 2015; online 13 February 2015)

The central β-lactam ring of the title compound, C36H24N2O4, is almost planar (r.m.s. deviation = 0.003 Å) and makes dihedral angles of 17.17 (19), 89.76 (17) and 78.44 (17)° with the benzene ring, the anthracene ring (r.m.s. deviation = 0.003 Å) and the 1H-benzo[de]iso­quinoline-1,3(2H)-dione moiety, which is nearly planar [maximum deviation = 0.098 (2) Å], respectively. The mol­ecular structure is stabilized by an intra­molecular C—H⋯N hydrogen bond. In the crystal, mol­ecules are linked via C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.5270 (19) and 3.779 (2) Å], forming a three-dimensional structure. A region of disordered electron density, probably disordered solvent mol­ecules, was treated with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18], which indicated a solvent cavity of 322 Å3 containing approximately 91 electrons. Their formula mass and unit-cell characteristics were not taken into account during the refinement.

1. Related literature

For general background to β-lactams and their biological properties, see: Fischbach & Walsh (2009[Fischbach, M. A. & Walsh, C. T. (2009). Science, 325, 1089-1093.]); Georg (1992[Georg, G. I. (1992). In The Organic Chemistry of β-Lactams. New York, Cambridge: VCH Publishers.]); Kim et al. (2014[Kim, I., Roh, S. W., Lee, D. G. & Lee, C. (2014). Org. Lett. 16, 2482-2485.]); Ocampo & Dolbier (2004[Ocampo, R. & Dolbier, W. R. (2004). Tetrahedron, 60, 9325-9374.]); Palomo et al. (2004[Palomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2004). Curr. Med. Chem. 11, 1837-1872.]); Smith et al. (2014[Smith, R. S., Douglas, J., Prevet, H., Shapland, P., Slawin, A. M. Z. & Smith, A. D. (2014). J. Org. Chem. 79, 1626-1639.]); Soengas et al. (2011[Soengas, G. R., Segade, Y., Jiménez, C. & Rodríguez, J. (2011). Tetrahedron, 67, 2617-2622.]); von Nussbaum et al. (2006[Nussbaum, F. von, Brands, M., Hinzen, B., Weigand, S. & Häbich, D. (2006). Angew. Chem. Int. Ed. 45, 5072-5129.]); Walsh & Wencewicz (2014[Walsh, C. T. & Wencewicz, T. A. (2014). J. Antibiot. 67, 7-22.]). For related structures, see: Çelik et al. (2015[Çelik, Í., Akkurt, M., Jarrahpour, A., Rad, J. A. & Çelik, Ö. (2015). Acta Cryst. E71, o129-o130.]); Atioğlu et al. (2014[Atioğlu, Z., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o835-o836.]); Butcher et al. (2011[Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101-o1102.]); Jarrahpour et al. (2012[Jarrahpour, A., Ebrahimi, E., Khalifeh, R., Sharghi, H., Sahraei, M., Sinou, V., Latour, C. & Brunel, J. M. (2012). Tetrahedron, 68, 4740-4744.]); Jarrahpoor & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Jarrahpour & Ebrahimi (2010[Jarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515-531.]). For details of the SQUEEZE procedure in PLATON, see: Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C36H24N2O4

  • Mr = 548.57

  • Monoclinic, P 21 /c

  • a = 9.9880 (1) Å

  • b = 29.1281 (4) Å

  • c = 11.0751 (2) Å

  • β = 101.367 (1)°

  • V = 3158.89 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 33697 measured reflections

  • 6431 independent reflections

  • 3502 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.242

  • S = 1.10

  • 6431 reflections

  • 349 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C16/C17/C22–C24/C29 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯N1 0.93 2.35 3.022 (4) 129
C13—H13⋯Cg5i 0.93 2.84 3.713 (4) 158
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

β-Lactams are a very important class of heterocyclic compounds due to their obvious biological activity (Von Nussbaum, et al., 2006). Because the β-lactam ring forms the main part of the penicillin structure, the β-lactam antibiotics have been the subject of much discussion and investigation (Soengas, et al., 2011). However, due to their extensive use common infections are once again becoming deadly (Fischbach & Walsh, 2009) and there is still a significant need for new research on β-lactams (Walsh & Wencewicz, 2014). Furthermore, β-lactams have been used in the synthesis of a wide variety of compounds which contain a nitrogen atom in their structures (Kim et al., 2014). In the past decades, a growing interest has been shown in the development of the various methods for the synthesis of β-lactams (Georg, 1992; Palomo et al., 2004; Ocampo & Dolbier, 2004). It has been observed that the most direct synthetic way to access β-lactam rings remains the formal [2 + 2] cycloaddition of ketenes and imines (Staudinger reaction) [Smith et al., 2014].

The β-lactam ring (N1/C1–C3) of the title compound, Fig. 1, is nearly planar [maximum deviation for atom N1 = 0.051 (2) Å]. It makes dihedral angles of 17.17 (19), 89.76 (17) and 78.44 (17)° with the benzene ring (C30–C35), the anthracene ring system (C16–C29) and the 1H-benzo[de]isoquinoline-1,3(2H)-dione (N2/O2/O3/C4–C15) moiety, respectively. The maximum deviations in the latter two ring systems are 0.050 (2) and 0.098 (2) Å, respectively.

All bond lengths and bond angles are normal and comparable with those reported for related compounds (Çelik et al., 2015; Butcher et al., 2011; Atioğlu et al., 2014; Jarrahpour et al., 2012; Jarrahpoor & Khalili, 2007; Jarrahpour & Ebrahimi, 2010). An intramolecular C—H···N hydrogen bond (Table 1) stabilizes the molecular conformation.

In the crystal, molecules are connected by C—H···π and π-π stacking interactions forming a three-dimensional structure; see Table 1 and Fig. 2 [Cg2···Cg3i = 3.5270 (19) and Cg6···Cg7ii = 3.779 (2) Å; where Cg2, Cg3, Cg6 and Cg7 are centroids of the N2/C4/C5/C10/C11/C15, C5–C10, C17–C22 and C24–C29 rings, respectively; symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y +1/2, z+1/2].

Related literature top

For general background to β-lactams and their biological properties, see: Fischbach & Walsh (2009); Georg (1992); Kim et al. (2014); Ocampo & Dolbier (2004); Palomo et al. (2004); Smith et al. (2014); Soengas et al. (2011); von Nussbaum et al. (2006); Walsh & Wencewicz (2014). For related structures, see: Çelik et al. (2015); Atioğlu et al. (2014); Butcher et al. (2011); Jarrahpour et al. (2012); Jarrahpoor & Khalili (2007); Jarrahpour & Ebrahimi (2010). For details of the SQUEEZE procedure in PLATON, see: Spek (2015).

Experimental top

1-(anthracen-9-yl)-N-(4-methoxyphenyl) methanimine (1 mmol), triethylamine (5 mmol), 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) acetic acid (1.50 mmol) and tosyl chloride (1.50 mmol) were added to anhydrous CH2Cl2 (5 ml) and the mixture was stirred at room temperature for 24 h. The mixture was then washed with HCl 1N (2 × 20 ml), saturated aqueous NaHCO3 solution (50 ml) and brine (20 ml). The organic layer was dried (Na2SO4) and the solvent was removed in vacuo to give the product as a yellow solid. It was then purified by recrystallization from DMSO to afford yellow crystals (yield: 80%; m.p.: 458–460 K; IR (KBr, cm-1): 1751 (CO β-lactam),1704 (CO Naph), 1666 (CO Naph); 1H-NMR (250 MHz, DMSO-d6) δ: 3.57 (CH3 s, 3H), 6.73–6.79 (m, 4H), 6.97 (d, 2H, J = 2.5), 7.09 (aromatic d, 2H, J = 8.75), 7.49–7.57 (aromatic, m, 4H), 7.81–7.90 (aromatic, m, 2H), 8.16 (aromatic d, 2H, J = 7.75), 8.42–8.51 (aromatic, m, 6H), 8.51(aromatic s, 1H); 13C-NMR (62 MHz, DMSO-d6) δ 163.81 (CO β-lactam), 162.18 (CO Naph), 155.77, 134.93, 131.30, 131.18, 131.07, 130.96, 130.01, 129.84, 129.78, 127.52, 127.44, 127.25, 125.17, 124.14, 122.57, 121.41, 117.75, 114.55(aromatic carbons), 62.10 (C β-lactam), 55.58 (C β-lactam), 55.05 (CH3—O); GC—MS m/z = 548 [M+]; Analysis calculated for C36H24N2O4: C, 78.82; H, 4.41; N, 5.11%. Found: C, 76.53; H, 4.45; N, 5.81%.

Refinement top

H atoms attached to C atoms were positioned geometrically (C—H = 0.93 - 0.98 Å), and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) fro other H atoms. The crystal was of poor quality and did not diffract significantly at high 2θ angles, probably due to the presence of the disordered solvent molecules. 23 reflections were omitted owing to bad disagreement. A region of disordered electron density, most probably disordered solvent molecules, occupying voids of ca 322 Å3 for an electron count of 91, was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18] following unsuccessful attempts to model it as plausible solvent molecules. Their formula mass and unit-cell characteristics were not taken into account during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View along a-axis of the crystal packing of the title compound.
2-[(3S,4S)-4-(Anthracen-9-yl)-1-(4-methoxyphenyl)-2-oxoazetidin-3-yl]-2-aza-2H-phenalene-1,3-dione top
Crystal data top
C36H24N2O4F(000) = 1144
Mr = 548.57Dx = 1.153 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4703 reflections
a = 9.9880 (1) Åθ = 2.5–21.8°
b = 29.1281 (4) ŵ = 0.08 mm1
c = 11.0751 (2) ÅT = 296 K
β = 101.367 (1)°Prism, yellow
V = 3158.89 (8) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3502 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.4°, θmin = 1.4°
ϕ and ω scansh = 1212
33697 measured reflectionsk = 3636
6431 independent reflectionsl = 1313
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.242 w = 1/[σ2(Fo2) + (0.1309P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6431 reflectionsΔρmax = 0.39 e Å3
349 parametersΔρmin = 0.30 e Å3
Crystal data top
C36H24N2O4V = 3158.89 (8) Å3
Mr = 548.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9880 (1) ŵ = 0.08 mm1
b = 29.1281 (4) ÅT = 296 K
c = 11.0751 (2) Å0.35 × 0.20 × 0.15 mm
β = 101.367 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3502 reflections with I > 2σ(I)
33697 measured reflectionsRint = 0.045
6431 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0722 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
6431 reflectionsΔρmin = 0.30 e Å3
349 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4190 (2)0.35039 (7)0.24633 (19)0.0692 (8)
O20.46467 (19)0.36965 (7)0.52700 (19)0.0693 (8)
O30.0898 (2)0.45145 (8)0.3595 (3)0.1045 (10)
O40.4750 (3)0.12563 (9)0.3656 (3)0.1069 (11)
N10.2807 (2)0.30426 (7)0.3470 (2)0.0543 (8)
N20.2815 (2)0.41138 (7)0.4404 (2)0.0572 (8)
C10.3327 (3)0.34368 (9)0.3064 (3)0.0563 (9)
C20.2321 (3)0.37334 (9)0.3612 (3)0.0554 (9)
C30.1920 (2)0.32787 (9)0.4197 (3)0.0526 (9)
C40.4052 (3)0.40621 (10)0.5227 (3)0.0588 (10)
C50.4560 (3)0.44602 (11)0.5995 (3)0.0728 (6)
C60.5807 (3)0.44420 (11)0.6764 (3)0.0728 (6)
C70.6296 (4)0.48285 (15)0.7508 (4)0.0961 (17)
C80.5545 (5)0.52161 (15)0.7453 (4)0.0965 (17)
C90.4259 (4)0.52484 (12)0.6675 (3)0.0839 (14)
C100.3769 (3)0.48620 (11)0.5934 (3)0.0728 (6)
C110.2496 (3)0.48927 (11)0.5132 (3)0.0728 (6)
C120.1705 (4)0.52855 (12)0.5103 (5)0.1133 (13)
C130.2184 (4)0.56608 (13)0.5837 (5)0.1133 (13)
C140.3441 (5)0.56448 (13)0.6599 (4)0.1056 (18)
C150.1979 (3)0.45068 (10)0.4311 (3)0.0724 (13)
C160.0415 (2)0.31708 (8)0.4028 (2)0.0495 (9)
C170.0176 (3)0.31832 (10)0.5074 (3)0.0564 (9)
C180.0568 (3)0.32229 (14)0.6311 (3)0.0874 (13)
C190.0069 (4)0.3238 (2)0.7281 (4)0.1318 (16)
C200.1489 (4)0.3223 (2)0.7123 (4)0.1318 (16)
C210.2248 (3)0.31779 (16)0.5989 (4)0.0983 (18)
C220.1647 (3)0.31528 (10)0.4932 (3)0.0639 (11)
C230.2446 (3)0.31168 (10)0.3770 (3)0.0657 (11)
C240.1887 (3)0.30945 (10)0.2726 (3)0.0591 (10)
C250.2736 (3)0.30603 (14)0.1548 (3)0.0866 (13)
C260.2207 (4)0.30221 (16)0.0529 (4)0.1054 (18)
C270.0786 (4)0.30242 (15)0.0617 (3)0.0986 (16)
C280.0072 (3)0.30741 (13)0.1722 (3)0.0786 (13)
C290.0427 (3)0.31138 (9)0.2845 (3)0.0562 (10)
C300.3253 (2)0.25829 (9)0.3516 (2)0.0479 (8)
C310.2942 (3)0.22912 (10)0.4384 (3)0.0611 (10)
C320.3417 (3)0.18386 (11)0.4453 (3)0.0708 (11)
C330.4222 (3)0.16891 (11)0.3658 (3)0.0694 (11)
C340.4512 (3)0.19801 (11)0.2776 (3)0.0669 (11)
C350.4034 (3)0.24258 (10)0.2700 (3)0.0589 (10)
C360.4632 (7)0.09623 (15)0.4623 (5)0.140 (3)
H20.157000.383400.295700.0660*
H30.234200.326900.507400.0630*
H60.633600.417800.680200.0870*
H70.714200.481400.803900.1150*
H80.588700.546600.794000.1160*
H120.084800.529800.458900.1360*
H130.164900.592300.581000.1360*
H140.375900.590000.707500.1270*
H180.151600.323900.645400.1050*
H190.045300.325800.807300.1580*
H200.190600.324500.780100.1580*
H210.319300.316300.589300.1180*
H230.339100.310700.368700.0790*
H250.367900.306400.147700.1040*
H260.278200.299400.023700.1270*
H270.042800.299100.009200.1180*
H280.100900.308300.175200.0940*
H310.241100.239400.493200.0730*
H320.318800.163900.503600.0850*
H340.503600.187700.222400.0800*
H350.423800.262100.209700.0710*
H36A0.504300.067200.450600.2110*
H36B0.508600.109500.538800.2110*
H36C0.368400.091700.464100.2110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0567 (11)0.0759 (14)0.0813 (14)0.0105 (10)0.0287 (11)0.0031 (11)
O20.0529 (11)0.0635 (13)0.0879 (15)0.0010 (9)0.0048 (10)0.0021 (10)
O30.0591 (14)0.0813 (16)0.162 (2)0.0163 (12)0.0051 (16)0.0168 (16)
O40.146 (2)0.0762 (16)0.1096 (19)0.0450 (15)0.0521 (18)0.0099 (15)
N10.0392 (11)0.0551 (14)0.0709 (15)0.0010 (9)0.0166 (11)0.0024 (11)
N20.0437 (12)0.0479 (13)0.0800 (16)0.0018 (9)0.0120 (11)0.0019 (11)
C10.0409 (14)0.0601 (17)0.0673 (18)0.0064 (12)0.0093 (13)0.0001 (14)
C20.0407 (13)0.0516 (15)0.0742 (18)0.0021 (11)0.0121 (13)0.0030 (13)
C30.0440 (14)0.0528 (15)0.0634 (17)0.0015 (11)0.0162 (13)0.0020 (12)
C40.0447 (15)0.0578 (18)0.0767 (19)0.0046 (13)0.0185 (14)0.0030 (14)
C50.0643 (9)0.0668 (10)0.0908 (12)0.0112 (8)0.0237 (8)0.0039 (9)
C60.0643 (9)0.0668 (10)0.0908 (12)0.0112 (8)0.0237 (8)0.0039 (9)
C70.092 (3)0.105 (3)0.086 (3)0.034 (2)0.005 (2)0.002 (2)
C80.109 (3)0.090 (3)0.096 (3)0.035 (2)0.034 (3)0.020 (2)
C90.083 (2)0.078 (2)0.099 (3)0.0250 (19)0.038 (2)0.0199 (19)
C100.0643 (9)0.0668 (10)0.0908 (12)0.0112 (8)0.0237 (8)0.0039 (9)
C110.0643 (9)0.0668 (10)0.0908 (12)0.0112 (8)0.0237 (8)0.0039 (9)
C120.0867 (19)0.0623 (16)0.197 (3)0.0013 (14)0.043 (2)0.0180 (18)
C130.0867 (19)0.0623 (16)0.197 (3)0.0013 (14)0.043 (2)0.0180 (18)
C140.114 (3)0.066 (2)0.153 (4)0.019 (2)0.066 (3)0.032 (2)
C150.0497 (17)0.0564 (18)0.112 (3)0.0007 (13)0.0181 (18)0.0051 (17)
C160.0392 (13)0.0479 (14)0.0624 (17)0.0054 (10)0.0124 (13)0.0035 (12)
C170.0415 (14)0.0648 (17)0.0644 (18)0.0123 (12)0.0138 (13)0.0084 (13)
C180.0500 (17)0.143 (3)0.070 (2)0.0187 (19)0.0141 (17)0.006 (2)
C190.0717 (16)0.255 (4)0.0734 (18)0.042 (2)0.0260 (16)0.025 (2)
C200.0717 (16)0.255 (4)0.0734 (18)0.042 (2)0.0260 (16)0.025 (2)
C210.0488 (18)0.162 (4)0.092 (3)0.023 (2)0.0334 (19)0.029 (2)
C220.0419 (15)0.080 (2)0.073 (2)0.0101 (13)0.0193 (15)0.0148 (15)
C230.0366 (14)0.077 (2)0.085 (2)0.0002 (13)0.0157 (15)0.0066 (16)
C240.0407 (14)0.0654 (17)0.0695 (19)0.0064 (12)0.0071 (14)0.0018 (14)
C250.0479 (17)0.125 (3)0.084 (2)0.0092 (18)0.0056 (18)0.001 (2)
C260.069 (2)0.163 (4)0.076 (3)0.009 (2)0.006 (2)0.007 (2)
C270.074 (2)0.156 (4)0.064 (2)0.003 (2)0.0090 (19)0.013 (2)
C280.0540 (18)0.110 (3)0.073 (2)0.0051 (17)0.0155 (17)0.0026 (18)
C290.0432 (14)0.0580 (16)0.0682 (19)0.0004 (12)0.0133 (14)0.0002 (13)
C300.0343 (12)0.0510 (15)0.0572 (15)0.0027 (10)0.0062 (11)0.0019 (12)
C310.0573 (16)0.0622 (18)0.0669 (18)0.0035 (13)0.0201 (14)0.0074 (14)
C320.083 (2)0.0640 (19)0.068 (2)0.0059 (16)0.0216 (17)0.0058 (15)
C330.078 (2)0.0605 (19)0.070 (2)0.0130 (15)0.0157 (17)0.0077 (16)
C340.0632 (18)0.073 (2)0.069 (2)0.0064 (15)0.0242 (15)0.0094 (16)
C350.0480 (15)0.0676 (19)0.0627 (17)0.0014 (13)0.0146 (13)0.0012 (14)
C360.208 (6)0.084 (3)0.144 (4)0.060 (3)0.071 (4)0.033 (3)
Geometric parameters (Å, º) top
O1—C11.204 (4)C24—C251.412 (5)
O2—C41.216 (4)C24—C291.439 (4)
O3—C151.207 (4)C25—C261.342 (5)
O4—C331.367 (4)C26—C271.403 (6)
O4—C361.394 (6)C27—C281.356 (5)
N1—C11.372 (3)C28—C291.433 (5)
N1—C31.479 (3)C30—C311.364 (4)
N1—C301.409 (3)C30—C351.383 (4)
N2—C21.439 (4)C31—C321.398 (4)
N2—C41.391 (4)C32—C331.375 (4)
N2—C151.409 (4)C33—C341.367 (5)
C1—C21.538 (4)C34—C351.380 (4)
C2—C31.561 (4)C2—H20.9800
C3—C161.511 (3)C3—H30.9800
C4—C51.468 (4)C6—H60.9300
C5—C61.364 (4)C7—H70.9300
C5—C101.406 (4)C8—H80.9300
C6—C71.424 (5)C12—H120.9300
C7—C81.350 (6)C13—H130.9300
C8—C91.402 (6)C14—H140.9300
C9—C101.422 (5)C18—H180.9300
C9—C141.407 (6)C19—H190.9300
C10—C111.403 (4)C20—H200.9300
C11—C121.387 (5)C21—H210.9300
C11—C151.474 (4)C23—H230.9300
C12—C131.390 (6)C25—H250.9300
C13—C141.369 (7)C26—H260.9300
C16—C171.401 (4)C27—H270.9300
C16—C291.420 (4)C28—H280.9300
C17—C181.429 (5)C31—H310.9300
C17—C221.449 (4)C32—H320.9300
C18—C191.353 (5)C34—H340.9300
C19—C201.395 (6)C35—H350.9300
C20—C211.339 (6)C36—H36A0.9600
C21—C221.419 (5)C36—H36B0.9600
C22—C231.378 (5)C36—H36C0.9600
C23—C241.381 (5)
C33—O4—C36118.3 (3)C16—C29—C28124.5 (3)
C1—N1—C395.5 (2)C24—C29—C28115.9 (3)
C1—N1—C30132.1 (2)N1—C30—C31120.2 (2)
C3—N1—C30129.9 (2)N1—C30—C35120.4 (2)
C2—N2—C4118.0 (2)C31—C30—C35119.4 (3)
C2—N2—C15117.0 (2)C30—C31—C32120.3 (3)
C4—N2—C15125.0 (2)C31—C32—C33119.9 (3)
O1—C1—N1132.5 (3)O4—C33—C32124.6 (3)
O1—C1—C2136.2 (3)O4—C33—C34115.8 (3)
N1—C1—C291.3 (2)C32—C33—C34119.6 (3)
N2—C2—C1120.1 (2)C33—C34—C35120.5 (3)
N2—C2—C3119.1 (3)C30—C35—C34120.3 (3)
C1—C2—C385.88 (19)N2—C2—H2110.00
N1—C3—C286.47 (19)C1—C2—H2110.00
N1—C3—C16121.6 (2)C3—C2—H2110.00
C2—C3—C16117.1 (2)N1—C3—H3110.00
O2—C4—N2119.0 (3)C2—C3—H3110.00
O2—C4—C5124.0 (3)C16—C3—H3110.00
N2—C4—C5117.1 (3)C5—C6—H6120.00
C4—C5—C6120.0 (3)C7—C6—H6120.00
C4—C5—C10120.2 (3)C6—C7—H7120.00
C6—C5—C10119.8 (3)C8—C7—H7120.00
C5—C6—C7119.8 (3)C7—C8—H8119.00
C6—C7—C8120.7 (4)C9—C8—H8119.00
C7—C8—C9121.2 (4)C11—C12—H12120.00
C8—C9—C10118.1 (3)C13—C12—H12120.00
C8—C9—C14122.9 (4)C12—C13—H13120.00
C10—C9—C14119.0 (3)C14—C13—H13120.00
C5—C10—C9120.3 (3)C9—C14—H14119.00
C5—C10—C11120.9 (3)C13—C14—H14119.00
C9—C10—C11118.7 (3)C17—C18—H18119.00
C10—C11—C12120.5 (3)C19—C18—H18119.00
C10—C11—C15120.4 (3)C18—C19—H19119.00
C12—C11—C15119.1 (3)C20—C19—H19119.00
C11—C12—C13120.4 (4)C19—C20—H20120.00
C12—C13—C14120.1 (4)C21—C20—H20120.00
C9—C14—C13121.1 (4)C20—C21—H21119.00
O3—C15—N2120.2 (3)C22—C21—H21119.00
O3—C15—C11123.4 (3)C22—C23—H23119.00
N2—C15—C11116.4 (3)C24—C23—H23119.00
C3—C16—C17117.6 (2)C24—C25—H25119.00
C3—C16—C29122.2 (2)C26—C25—H25119.00
C17—C16—C29119.8 (2)C25—C26—H26120.00
C16—C17—C18124.8 (3)C27—C26—H26120.00
C16—C17—C22119.5 (3)C26—C27—H27120.00
C18—C17—C22115.7 (3)C28—C27—H27120.00
C17—C18—C19121.8 (3)C27—C28—H28119.00
C18—C19—C20121.7 (4)C29—C28—H28119.00
C19—C20—C21119.6 (4)C30—C31—H31120.00
C20—C21—C22121.7 (3)C32—C31—H31120.00
C17—C22—C21119.5 (3)C31—C32—H32120.00
C17—C22—C23119.6 (3)C33—C32—H32120.00
C21—C22—C23120.9 (3)C33—C34—H34120.00
C22—C23—C24122.0 (3)C35—C34—H34120.00
C23—C24—C25120.6 (3)C30—C35—H35120.00
C23—C24—C29119.4 (3)C34—C35—H35120.00
C25—C24—C29120.0 (3)O4—C36—H36A110.00
C24—C25—C26121.2 (3)O4—C36—H36B110.00
C25—C26—C27120.1 (4)O4—C36—H36C109.00
C26—C27—C28120.9 (3)H36A—C36—H36B109.00
C27—C28—C29121.7 (3)H36A—C36—H36C109.00
C16—C29—C24119.6 (3)H36B—C36—H36C109.00
C36—O4—C33—C329.3 (6)C10—C9—C14—C130.7 (6)
C36—O4—C33—C34172.3 (4)C9—C10—C11—C15177.4 (3)
C3—N1—C1—C27.7 (2)C5—C10—C11—C151.6 (5)
C30—N1—C1—C2170.2 (3)C9—C10—C11—C122.8 (5)
C1—N1—C30—C31152.4 (3)C5—C10—C11—C12178.2 (3)
C3—N1—C30—C314.7 (4)C15—C11—C12—C13177.9 (4)
C1—N1—C30—C3526.2 (4)C12—C11—C15—O30.8 (5)
C3—N1—C30—C35176.7 (3)C10—C11—C12—C132.3 (6)
C3—N1—C1—O1175.5 (4)C12—C11—C15—N2178.6 (3)
C30—N1—C1—O112.9 (6)C10—C11—C15—O3179.4 (3)
C30—N1—C3—C2170.7 (2)C10—C11—C15—N21.2 (4)
C1—N1—C3—C16127.4 (3)C11—C12—C13—C140.2 (7)
C30—N1—C3—C1669.4 (4)C12—C13—C14—C91.3 (7)
C1—N1—C3—C27.6 (2)C29—C16—C17—C18177.7 (3)
C15—N2—C2—C1144.1 (3)C3—C16—C17—C22170.5 (2)
C2—N2—C15—O30.3 (4)C3—C16—C17—C189.8 (4)
C15—N2—C4—C54.3 (4)C29—C16—C17—C222.0 (4)
C4—N2—C2—C365.2 (3)C3—C16—C29—C24168.8 (2)
C4—N2—C2—C138.0 (4)C17—C16—C29—C28176.8 (3)
C15—N2—C2—C3112.9 (3)C17—C16—C29—C243.4 (4)
C4—N2—C15—O3177.5 (3)C3—C16—C29—C2811.0 (4)
C2—N2—C4—O22.0 (4)C16—C17—C22—C21178.3 (3)
C2—N2—C15—C11179.7 (3)C16—C17—C22—C230.7 (4)
C2—N2—C4—C5177.9 (3)C18—C17—C22—C211.9 (5)
C4—N2—C15—C111.9 (4)C18—C17—C22—C23179.6 (3)
C15—N2—C4—O2175.9 (3)C22—C17—C18—C191.0 (6)
O1—C1—C2—N254.7 (5)C16—C17—C18—C19179.3 (4)
O1—C1—C2—C3176.1 (4)C17—C18—C19—C201.1 (8)
N1—C1—C2—N2128.6 (3)C18—C19—C20—C212.2 (9)
N1—C1—C2—C37.3 (2)C19—C20—C21—C221.1 (8)
N2—C2—C3—C16107.0 (3)C20—C21—C22—C23178.5 (4)
C1—C2—C3—N16.7 (2)C20—C21—C22—C170.9 (6)
N2—C2—C3—N1129.1 (3)C21—C22—C23—C24179.6 (3)
C1—C2—C3—C16130.7 (3)C17—C22—C23—C242.0 (4)
N1—C3—C16—C17144.6 (3)C22—C23—C24—C25179.6 (3)
C2—C3—C16—C17111.9 (3)C22—C23—C24—C290.6 (4)
C2—C3—C16—C2960.4 (3)C23—C24—C29—C162.1 (4)
N1—C3—C16—C2943.1 (4)C23—C24—C29—C28178.1 (3)
N2—C4—C5—C103.7 (4)C29—C24—C25—C263.4 (6)
O2—C4—C5—C64.0 (5)C25—C24—C29—C282.9 (4)
N2—C4—C5—C6175.8 (3)C25—C24—C29—C16176.9 (3)
O2—C4—C5—C10176.5 (3)C23—C24—C25—C26177.6 (4)
C4—C5—C10—C9179.9 (3)C24—C25—C26—C271.2 (7)
C6—C5—C10—C11178.7 (3)C25—C26—C27—C281.4 (7)
C10—C5—C6—C70.5 (5)C26—C27—C28—C291.8 (6)
C4—C5—C6—C7180.0 (3)C27—C28—C29—C240.4 (5)
C4—C5—C10—C110.9 (5)C27—C28—C29—C16179.4 (3)
C6—C5—C10—C90.4 (5)N1—C30—C35—C34177.6 (3)
C5—C6—C7—C80.7 (6)C31—C30—C35—C341.0 (4)
C6—C7—C8—C90.7 (7)N1—C30—C31—C32178.2 (3)
C7—C8—C9—C100.5 (6)C35—C30—C31—C320.5 (4)
C7—C8—C9—C14179.5 (4)C30—C31—C32—C331.2 (5)
C8—C9—C10—C50.4 (5)C31—C32—C33—C342.3 (5)
C14—C9—C10—C5179.7 (3)C31—C32—C33—O4179.3 (3)
C14—C9—C10—C111.3 (5)O4—C33—C34—C35179.7 (3)
C8—C9—C10—C11178.7 (3)C32—C33—C34—C351.8 (5)
C8—C9—C14—C13179.3 (4)C33—C34—C35—C300.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C16/C17/C22–C24/C29 benzene ring.
D—H···AD—HH···AD···AD—H···A
C28—H28···N10.932.353.022 (4)129
C13—H13···Cg5i0.932.843.713 (4)158
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C16/C17/C22–C24/C29 benzene ring.
D—H···AD—HH···AD···AD—H···A
C28—H28···N10.932.353.022 (4)129
C13—H13···Cg5i0.932.843.713 (4)158
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. AJ and JAR thank the Shiraz University Research Council for financial support (grant No. 93-GR–SC-23).

References

First citationAtioğlu, Z., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o835–o836.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Rad, J. A. & Çelik, Ö. (2015). Acta Cryst. E71, o129–o130.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischbach, M. A. & Walsh, C. T. (2009). Science, 325, 1089–1093.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorg, G. I. (1992). In The Organic Chemistry of β-Lactams. New York, Cambridge: VCH Publishers.  Google Scholar
First citationJarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515–531.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJarrahpour, A., Ebrahimi, E., Khalifeh, R., Sharghi, H., Sahraei, M., Sinou, V., Latour, C. & Brunel, J. M. (2012). Tetrahedron, 68, 4740–4744.  Web of Science CrossRef CAS Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationKim, I., Roh, S. W., Lee, D. G. & Lee, C. (2014). Org. Lett. 16, 2482–2485.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNussbaum, F. von, Brands, M., Hinzen, B., Weigand, S. & Häbich, D. (2006). Angew. Chem. Int. Ed. 45, 5072–5129.  Google Scholar
First citationOcampo, R. & Dolbier, W. R. (2004). Tetrahedron, 60, 9325–9374.  Web of Science CrossRef CAS Google Scholar
First citationPalomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2004). Curr. Med. Chem. 11, 1837–1872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, R. S., Douglas, J., Prevet, H., Shapland, P., Slawin, A. M. Z. & Smith, A. D. (2014). J. Org. Chem. 79, 1626–1639.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSoengas, G. R., Segade, Y., Jiménez, C. & Rodríguez, J. (2011). Tetrahedron, 67, 2617–2622.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalsh, C. T. & Wencewicz, T. A. (2014). J. Antibiot. 67, 7–22.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o184-o185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds