organic compounds
E)-2-(1-methyl-2-oxoindolin-3-ylidene)acetate
of methyl (aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bUniversity of Madras, Industrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com
The title compound, C12H11NO3, is essentially planar, with the mean plane of the acetate side chain [–C—C(=O)—O—C] being inclined to the mean plane of the indole ring system by 12.49 (7)°. The five- and six-membered rings of the indole group are almost coplanar, making a dihedral angle of 1.76 (8)°. The conformation about the C=C bond is E and there is an intramolecular C—H⋯O hydrogen bond present. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds forming inversion dimers, with an R22(16) ring motif. The dimers are linked by a second pair of C—H⋯O hydrogen bonds, enclosing R22(16) ring motifs, forming ribbons lying parallel to (-114). The ribbons are linked via C—H⋯π interactions, forming a three-dimensional structure.
Keywords: crystal structure; indole; 3-substituted indoles; C—H⋯O hydrogen bonds; C—H⋯π interactions; π–π stacking interactions.
CCDC reference: 1049502
1. Related literature
For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see: Radwan et al. (2007). For related structures, see: Bhella et al. (2009); Hou & Li (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and PLATON.
Supporting information
CCDC reference: 1049502
10.1107/S2056989015003217/su5085sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015003217/su5085Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015003217/su5085Isup3.cml
A mixture of isatin and 1.5 eq of methylbromoacetate were dissolved in DMF with potassium tert-butoxide as catalyst. Th reaction mixture was refluxed at 353 K for 2 h. On completion of the reaction, monitored by thin layer
the mixture was extracted with ethyl acetate and water. The product was dried and purified by using ethyl acetate and hexane (1:9) as an elutent to afford the title compound (yield: 90 %). Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate at room temperature.All the H atoms were fixed geometrically and allowed to ride on their parent C atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A partial view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity). | |
Fig. 3. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity). |
C12H11NO3 | F(000) = 456 |
Mr = 217.22 | Dx = 1.406 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1809 reflections |
a = 11.6814 (7) Å | θ = 2.6–25.0° |
b = 5.6106 (4) Å | µ = 0.10 mm−1 |
c = 16.5299 (11) Å | T = 293 K |
β = 108.713 (2)° | Block, colourless |
V = 1026.09 (12) Å3 | 0.35 × 0.30 × 0.30 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 1809 independent reflections |
Radiation source: fine-focus sealed tube | 1528 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω and ϕ scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −13→13 |
Tmin = 0.948, Tmax = 0.955 | k = −6→6 |
14793 measured reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3282P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.18 e Å−3 |
1809 reflections | Δρmin = −0.13 e Å−3 |
148 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.008 (2) |
C12H11NO3 | V = 1026.09 (12) Å3 |
Mr = 217.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.6814 (7) Å | µ = 0.10 mm−1 |
b = 5.6106 (4) Å | T = 293 K |
c = 16.5299 (11) Å | 0.35 × 0.30 × 0.30 mm |
β = 108.713 (2)° |
Bruker Kappa APEXII CCD diffractometer | 1809 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1528 reflections with I > 2σ(I) |
Tmin = 0.948, Tmax = 0.955 | Rint = 0.023 |
14793 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.18 e Å−3 |
1809 reflections | Δρmin = −0.13 e Å−3 |
148 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65902 (9) | −0.46212 (19) | 0.54283 (6) | 0.0431 (3) | |
O2 | 0.80169 (10) | −0.1929 (2) | 0.54829 (8) | 0.0552 (4) | |
O3 | 0.39479 (9) | 0.0890 (2) | 0.33278 (7) | 0.0482 (3) | |
N1 | 0.53182 (11) | 0.3529 (2) | 0.31063 (8) | 0.0373 (3) | |
C1 | 0.74710 (16) | −0.5928 (3) | 0.60928 (11) | 0.0522 (5) | |
H1A | 0.7104 | −0.7341 | 0.6227 | 0.078* | |
H1B | 0.7760 | −0.4949 | 0.6593 | 0.078* | |
H1C | 0.8135 | −0.6366 | 0.5901 | 0.078* | |
C2 | 0.69963 (13) | −0.2616 (3) | 0.51875 (9) | 0.0361 (4) | |
C3 | 0.60129 (13) | −0.1379 (3) | 0.45343 (9) | 0.0365 (4) | |
H3 | 0.5236 | −0.1964 | 0.4439 | 0.044* | |
C4 | 0.61193 (12) | 0.0491 (3) | 0.40656 (9) | 0.0337 (3) | |
C5 | 0.49776 (13) | 0.1589 (3) | 0.34670 (9) | 0.0354 (3) | |
C6 | 0.65784 (13) | 0.3756 (3) | 0.33871 (9) | 0.0353 (4) | |
C7 | 0.71103 (13) | 0.1927 (3) | 0.39651 (9) | 0.0344 (3) | |
C8 | 0.83571 (14) | 0.1806 (3) | 0.42921 (10) | 0.0418 (4) | |
H8 | 0.8729 | 0.0592 | 0.4667 | 0.050* | |
C9 | 0.90449 (15) | 0.3510 (3) | 0.40554 (11) | 0.0473 (4) | |
H9 | 0.9884 | 0.3436 | 0.4272 | 0.057* | |
C10 | 0.84974 (16) | 0.5317 (3) | 0.35007 (11) | 0.0489 (4) | |
H10 | 0.8975 | 0.6462 | 0.3358 | 0.059* | |
C11 | 0.72544 (15) | 0.5465 (3) | 0.31528 (10) | 0.0442 (4) | |
H11 | 0.6889 | 0.6676 | 0.2774 | 0.053* | |
C12 | 0.44906 (15) | 0.5083 (3) | 0.24895 (11) | 0.0480 (4) | |
H12A | 0.4669 | 0.5039 | 0.1962 | 0.072* | |
H12B | 0.4579 | 0.6684 | 0.2706 | 0.072* | |
H12C | 0.3676 | 0.4554 | 0.2393 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0453 (6) | 0.0360 (6) | 0.0424 (6) | −0.0008 (5) | 0.0062 (5) | 0.0067 (5) |
O2 | 0.0384 (7) | 0.0578 (8) | 0.0610 (8) | −0.0034 (6) | 0.0042 (5) | 0.0181 (6) |
O3 | 0.0353 (6) | 0.0460 (7) | 0.0569 (7) | −0.0001 (5) | 0.0060 (5) | 0.0046 (5) |
N1 | 0.0380 (7) | 0.0339 (7) | 0.0364 (7) | 0.0047 (5) | 0.0071 (5) | 0.0032 (5) |
C1 | 0.0551 (10) | 0.0466 (10) | 0.0482 (10) | 0.0047 (8) | 0.0073 (8) | 0.0154 (8) |
C2 | 0.0381 (8) | 0.0345 (8) | 0.0356 (8) | 0.0018 (7) | 0.0118 (6) | 0.0009 (6) |
C3 | 0.0348 (8) | 0.0346 (8) | 0.0388 (8) | 0.0014 (6) | 0.0102 (6) | −0.0010 (6) |
C4 | 0.0352 (8) | 0.0329 (8) | 0.0320 (7) | 0.0034 (6) | 0.0092 (6) | −0.0037 (6) |
C5 | 0.0371 (8) | 0.0331 (8) | 0.0342 (8) | 0.0022 (6) | 0.0087 (6) | −0.0038 (6) |
C6 | 0.0405 (8) | 0.0342 (8) | 0.0318 (7) | 0.0019 (6) | 0.0122 (6) | −0.0040 (6) |
C7 | 0.0381 (8) | 0.0338 (8) | 0.0317 (7) | 0.0013 (6) | 0.0117 (6) | −0.0034 (6) |
C8 | 0.0371 (8) | 0.0461 (9) | 0.0407 (8) | 0.0022 (7) | 0.0105 (7) | 0.0007 (7) |
C9 | 0.0384 (9) | 0.0563 (11) | 0.0479 (9) | −0.0064 (8) | 0.0147 (7) | −0.0029 (8) |
C10 | 0.0518 (10) | 0.0488 (10) | 0.0500 (10) | −0.0118 (8) | 0.0219 (8) | −0.0011 (8) |
C11 | 0.0552 (10) | 0.0386 (9) | 0.0404 (8) | −0.0013 (8) | 0.0175 (7) | 0.0016 (7) |
C12 | 0.0505 (10) | 0.0393 (9) | 0.0464 (9) | 0.0080 (7) | 0.0046 (7) | 0.0053 (7) |
O1—C2 | 1.3303 (18) | C4—C5 | 1.513 (2) |
O1—C1 | 1.4415 (18) | C6—C11 | 1.374 (2) |
O2—C2 | 1.1980 (18) | C6—C7 | 1.404 (2) |
O3—C5 | 1.2149 (17) | C7—C8 | 1.383 (2) |
N1—C5 | 1.3604 (19) | C8—C9 | 1.384 (2) |
N1—C6 | 1.4001 (19) | C8—H8 | 0.9300 |
N1—C12 | 1.4498 (19) | C9—C10 | 1.379 (2) |
C1—H1A | 0.9600 | C9—H9 | 0.9300 |
C1—H1B | 0.9600 | C10—C11 | 1.382 (2) |
C1—H1C | 0.9600 | C10—H10 | 0.9300 |
C2—C3 | 1.474 (2) | C11—H11 | 0.9300 |
C3—C4 | 1.333 (2) | C12—H12A | 0.9600 |
C3—H3 | 0.9300 | C12—H12B | 0.9600 |
C4—C7 | 1.463 (2) | C12—H12C | 0.9600 |
C2—O1—C1 | 114.99 (12) | C11—C6—C7 | 122.19 (14) |
C5—N1—C6 | 110.60 (12) | N1—C6—C7 | 110.34 (13) |
C5—N1—C12 | 124.50 (13) | C8—C7—C6 | 118.85 (14) |
C6—N1—C12 | 124.84 (13) | C8—C7—C4 | 134.50 (14) |
O1—C1—H1A | 109.5 | C6—C7—C4 | 106.64 (12) |
O1—C1—H1B | 109.5 | C7—C8—C9 | 119.33 (15) |
H1A—C1—H1B | 109.5 | C7—C8—H8 | 120.3 |
O1—C1—H1C | 109.5 | C9—C8—H8 | 120.3 |
H1A—C1—H1C | 109.5 | C10—C9—C8 | 120.56 (15) |
H1B—C1—H1C | 109.5 | C10—C9—H9 | 119.7 |
O2—C2—O1 | 123.65 (14) | C8—C9—H9 | 119.7 |
O2—C2—C3 | 125.93 (14) | C9—C10—C11 | 121.47 (15) |
O1—C2—C3 | 110.41 (13) | C9—C10—H10 | 119.3 |
C4—C3—C2 | 126.90 (14) | C11—C10—H10 | 119.3 |
C4—C3—H3 | 116.5 | C6—C11—C10 | 117.57 (15) |
C2—C3—H3 | 116.5 | C6—C11—H11 | 121.2 |
C3—C4—C7 | 136.38 (14) | C10—C11—H11 | 121.2 |
C3—C4—C5 | 118.26 (13) | N1—C12—H12A | 109.5 |
C7—C4—C5 | 105.36 (12) | N1—C12—H12B | 109.5 |
O3—C5—N1 | 125.89 (14) | H12A—C12—H12B | 109.5 |
O3—C5—C4 | 127.13 (14) | N1—C12—H12C | 109.5 |
N1—C5—C4 | 106.98 (12) | H12A—C12—H12C | 109.5 |
C11—C6—N1 | 127.47 (14) | H12B—C12—H12C | 109.5 |
C1—O1—C2—O2 | 1.0 (2) | C12—N1—C6—C7 | −178.31 (13) |
C1—O1—C2—C3 | −177.63 (13) | C11—C6—C7—C8 | −1.7 (2) |
O2—C2—C3—C4 | 11.4 (3) | N1—C6—C7—C8 | 177.86 (12) |
O1—C2—C3—C4 | −170.09 (14) | C11—C6—C7—C4 | 179.26 (13) |
C2—C3—C4—C7 | 2.6 (3) | N1—C6—C7—C4 | −1.18 (15) |
C2—C3—C4—C5 | −176.20 (13) | C3—C4—C7—C8 | 4.6 (3) |
C6—N1—C5—O3 | −177.71 (14) | C5—C4—C7—C8 | −176.43 (16) |
C12—N1—C5—O3 | −0.1 (2) | C3—C4—C7—C6 | −176.56 (16) |
C6—N1—C5—C4 | 2.20 (15) | C5—C4—C7—C6 | 2.39 (14) |
C12—N1—C5—C4 | 179.83 (13) | C6—C7—C8—C9 | 1.2 (2) |
C3—C4—C5—O3 | −3.7 (2) | C4—C7—C8—C9 | 179.95 (15) |
C7—C4—C5—O3 | 177.08 (14) | C7—C8—C9—C10 | 0.1 (2) |
C3—C4—C5—N1 | 176.35 (13) | C8—C9—C10—C11 | −1.2 (3) |
C7—C4—C5—N1 | −2.83 (15) | N1—C6—C11—C10 | −178.78 (14) |
C5—N1—C6—C11 | 178.83 (14) | C7—C6—C11—C10 | 0.7 (2) |
C12—N1—C6—C11 | 1.2 (2) | C9—C10—C11—C6 | 0.7 (2) |
C5—N1—C6—C7 | −0.70 (16) |
Cg1 is the centroid of ring C6–C11. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2 | 0.93 | 2.29 | 2.988 (2) | 132 |
C9—H9···O2i | 0.93 | 2.50 | 3.387 (2) | 159 |
C1—H1A···O3ii | 0.96 | 2.57 | 3.526 (2) | 175 |
C11—H11···Cgiii | 0.93 | 2.83 | 3.558 (2) | 135 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y−1, −z+1; (iii) −x+3/2, y+1/2, −z+1/2. |
Cg1 is the centroid of ring C6–C11. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2 | 0.93 | 2.29 | 2.988 (2) | 132 |
C9—H9···O2i | 0.93 | 2.50 | 3.387 (2) | 159 |
C1—H1A···O3ii | 0.96 | 2.57 | 3.526 (2) | 175 |
C11—H11···Cgiii | 0.93 | 2.83 | 3.558 (2) | 135 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y−1, −z+1; (iii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.
References
Bhella, S. S., Pannu, A. P. S., Elango, M., Kapoor, A., Hundal, M. S. S. & Ishar, M. P. (2009). Tetrahedron, 65, 5928–5935. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hou, R.-B. & Li, D.-F. (2011). Acta Cryst. E67, o2197. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & Shenawy, S. M. E. (2007). Bioorg. Med. Chem. 15, 3832–3841. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The indole skeleton is a key component of many biologically active compounds and 3-substituted indole derivatives have been evaluated as precursors of potent anti-inflammatory and analgesic agents (Radwan et al., 2007). Herein, we report on the synthesis and crystal structure of the title compound.
In the title compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for similar structures (Bhella et al., 2009; Hou & Li, 2011). The five-membered ring (N1/C4-C7) and the six-membered ring (C6-C11) of the the indole group are almost co-planar, with a dihedral angle of 1.76 (8)°.
In the crystal, molecules are linked by pairs of C-H···O hydrogen bonds forming inversion dimers, with an R22(16) ring motif (Table 1 and Fig. 2). The dimers are linked by a second pair of C-H···O hydrogen bonds, enclosing R22(16) ring motifs, forming ribbons lying parallel to (114); see Table 1 and Fig. 2. The ribbons are linked via C-H···π interactions (Table 1 and Fig. 3) forming a three-dimensional structure.