organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o188-o189

Crystal structure of methyl (E)-2-(1-methyl-2-oxoindolin-3-yl­­idene)acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bUniversity of Madras, Industrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 February 2015; accepted 15 February 2015; online 21 February 2015)

The title compound, C12H11NO3, is essentially planar, with the mean plane of the acetate side chain [–C—C(=O)—O—C] being inclined to the mean plane of the indole ring system by 12.49 (7)°. The five- and six-membered rings of the indole group are almost coplanar, making a dihedral angle of 1.76 (8)°. The conformation about the C=C bond is E and there is an intra­molecular C—H⋯O hydrogen bond present. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds forming inversion dimers, with an R22(16) ring motif. The dimers are linked by a second pair of C—H⋯O hydrogen bonds, enclosing R22(16) ring motifs, forming ribbons lying parallel to (-114). The ribbons are linked via C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see: Radwan et al. (2007[Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & Shenawy, S. M. E. (2007). Bioorg. Med. Chem. 15, 3832-3841.]). For related structures, see: Bhella et al. (2009[Bhella, S. S., Pannu, A. P. S., Elango, M., Kapoor, A., Hundal, M. S. S. & Ishar, M. P. (2009). Tetrahedron, 65, 5928-5935.]); Hou & Li (2011[Hou, R.-B. & Li, D.-F. (2011). Acta Cryst. E67, o2197.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H11NO3

  • Mr = 217.22

  • Monoclinic, P 21 /n

  • a = 11.6814 (7) Å

  • b = 5.6106 (4) Å

  • c = 16.5299 (11) Å

  • β = 108.713 (2)°

  • V = 1026.09 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.955

  • 14793 measured reflections

  • 1809 independent reflections

  • 1528 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.05

  • 1809 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C6–C11.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.29 2.988 (2) 132
C9—H9⋯O2i 0.93 2.50 3.387 (2) 159
C1—H1A⋯O3ii 0.96 2.57 3.526 (2) 175
C11—H11⋯Cgiii 0.93 2.83 3.558 (2) 135
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y-1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON.

Supporting information


Comment top

The indole skeleton is a key component of many biologically active compounds and 3-substituted indole derivatives have been evaluated as precursors of potent anti-inflammatory and analgesic agents (Radwan et al., 2007). Herein, we report on the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for similar structures (Bhella et al., 2009; Hou & Li, 2011). The five-membered ring (N1/C4-C7) and the six-membered ring (C6-C11) of the the indole group are almost co-planar, with a dihedral angle of 1.76 (8)°.

In the crystal, molecules are linked by pairs of C-H···O hydrogen bonds forming inversion dimers, with an R22(16) ring motif (Table 1 and Fig. 2). The dimers are linked by a second pair of C-H···O hydrogen bonds, enclosing R22(16) ring motifs, forming ribbons lying parallel to (114); see Table 1 and Fig. 2. The ribbons are linked via C-H···π interactions (Table 1 and Fig. 3) forming a three-dimensional structure.

Related literature top

For general background to the synthesis of 3-substituted indole derivatives as precursors of potent anti-inflammatory and analgesic agents, see: Radwan et al. (2007). For related structures, see: Bhella et al. (2009); Hou & Li (2011).

Experimental top

A mixture of isatin and 1.5 eq of methylbromoacetate were dissolved in DMF with potassium tert-butoxide as catalyst. Th reaction mixture was refluxed at 353 K for 2 h. On completion of the reaction, monitored by thin layer chromatography, the mixture was extracted with ethyl acetate and water. The product was dried and purified by column chromatography using ethyl acetate and hexane (1:9) as an elutent to afford the title compound (yield: 90 %). Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

All the H atoms were fixed geometrically and allowed to ride on their parent C atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
Methyl (E)-2-(1-methyl-2-oxoindolin-3-ylidene)acetate top
Crystal data top
C12H11NO3F(000) = 456
Mr = 217.22Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1809 reflections
a = 11.6814 (7) Åθ = 2.6–25.0°
b = 5.6106 (4) ŵ = 0.10 mm1
c = 16.5299 (11) ÅT = 293 K
β = 108.713 (2)°Block, colourless
V = 1026.09 (12) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1809 independent reflections
Radiation source: fine-focus sealed tube1528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.948, Tmax = 0.955k = 66
14793 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3282P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.18 e Å3
1809 reflectionsΔρmin = 0.13 e Å3
148 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.008 (2)
Crystal data top
C12H11NO3V = 1026.09 (12) Å3
Mr = 217.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6814 (7) ŵ = 0.10 mm1
b = 5.6106 (4) ÅT = 293 K
c = 16.5299 (11) Å0.35 × 0.30 × 0.30 mm
β = 108.713 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1528 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.955Rint = 0.023
14793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1809 reflectionsΔρmin = 0.13 e Å3
148 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65902 (9)0.46212 (19)0.54283 (6)0.0431 (3)
O20.80169 (10)0.1929 (2)0.54829 (8)0.0552 (4)
O30.39479 (9)0.0890 (2)0.33278 (7)0.0482 (3)
N10.53182 (11)0.3529 (2)0.31063 (8)0.0373 (3)
C10.74710 (16)0.5928 (3)0.60928 (11)0.0522 (5)
H1A0.71040.73410.62270.078*
H1B0.77600.49490.65930.078*
H1C0.81350.63660.59010.078*
C20.69963 (13)0.2616 (3)0.51875 (9)0.0361 (4)
C30.60129 (13)0.1379 (3)0.45343 (9)0.0365 (4)
H30.52360.19640.44390.044*
C40.61193 (12)0.0491 (3)0.40656 (9)0.0337 (3)
C50.49776 (13)0.1589 (3)0.34670 (9)0.0354 (3)
C60.65784 (13)0.3756 (3)0.33871 (9)0.0353 (4)
C70.71103 (13)0.1927 (3)0.39651 (9)0.0344 (3)
C80.83571 (14)0.1806 (3)0.42921 (10)0.0418 (4)
H80.87290.05920.46670.050*
C90.90449 (15)0.3510 (3)0.40554 (11)0.0473 (4)
H90.98840.34360.42720.057*
C100.84974 (16)0.5317 (3)0.35007 (11)0.0489 (4)
H100.89750.64620.33580.059*
C110.72544 (15)0.5465 (3)0.31528 (10)0.0442 (4)
H110.68890.66760.27740.053*
C120.44906 (15)0.5083 (3)0.24895 (11)0.0480 (4)
H12A0.46690.50390.19620.072*
H12B0.45790.66840.27060.072*
H12C0.36760.45540.23930.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (6)0.0360 (6)0.0424 (6)0.0008 (5)0.0062 (5)0.0067 (5)
O20.0384 (7)0.0578 (8)0.0610 (8)0.0034 (6)0.0042 (5)0.0181 (6)
O30.0353 (6)0.0460 (7)0.0569 (7)0.0001 (5)0.0060 (5)0.0046 (5)
N10.0380 (7)0.0339 (7)0.0364 (7)0.0047 (5)0.0071 (5)0.0032 (5)
C10.0551 (10)0.0466 (10)0.0482 (10)0.0047 (8)0.0073 (8)0.0154 (8)
C20.0381 (8)0.0345 (8)0.0356 (8)0.0018 (7)0.0118 (6)0.0009 (6)
C30.0348 (8)0.0346 (8)0.0388 (8)0.0014 (6)0.0102 (6)0.0010 (6)
C40.0352 (8)0.0329 (8)0.0320 (7)0.0034 (6)0.0092 (6)0.0037 (6)
C50.0371 (8)0.0331 (8)0.0342 (8)0.0022 (6)0.0087 (6)0.0038 (6)
C60.0405 (8)0.0342 (8)0.0318 (7)0.0019 (6)0.0122 (6)0.0040 (6)
C70.0381 (8)0.0338 (8)0.0317 (7)0.0013 (6)0.0117 (6)0.0034 (6)
C80.0371 (8)0.0461 (9)0.0407 (8)0.0022 (7)0.0105 (7)0.0007 (7)
C90.0384 (9)0.0563 (11)0.0479 (9)0.0064 (8)0.0147 (7)0.0029 (8)
C100.0518 (10)0.0488 (10)0.0500 (10)0.0118 (8)0.0219 (8)0.0011 (8)
C110.0552 (10)0.0386 (9)0.0404 (8)0.0013 (8)0.0175 (7)0.0016 (7)
C120.0505 (10)0.0393 (9)0.0464 (9)0.0080 (7)0.0046 (7)0.0053 (7)
Geometric parameters (Å, º) top
O1—C21.3303 (18)C4—C51.513 (2)
O1—C11.4415 (18)C6—C111.374 (2)
O2—C21.1980 (18)C6—C71.404 (2)
O3—C51.2149 (17)C7—C81.383 (2)
N1—C51.3604 (19)C8—C91.384 (2)
N1—C61.4001 (19)C8—H80.9300
N1—C121.4498 (19)C9—C101.379 (2)
C1—H1A0.9600C9—H90.9300
C1—H1B0.9600C10—C111.382 (2)
C1—H1C0.9600C10—H100.9300
C2—C31.474 (2)C11—H110.9300
C3—C41.333 (2)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C71.463 (2)C12—H12C0.9600
C2—O1—C1114.99 (12)C11—C6—C7122.19 (14)
C5—N1—C6110.60 (12)N1—C6—C7110.34 (13)
C5—N1—C12124.50 (13)C8—C7—C6118.85 (14)
C6—N1—C12124.84 (13)C8—C7—C4134.50 (14)
O1—C1—H1A109.5C6—C7—C4106.64 (12)
O1—C1—H1B109.5C7—C8—C9119.33 (15)
H1A—C1—H1B109.5C7—C8—H8120.3
O1—C1—H1C109.5C9—C8—H8120.3
H1A—C1—H1C109.5C10—C9—C8120.56 (15)
H1B—C1—H1C109.5C10—C9—H9119.7
O2—C2—O1123.65 (14)C8—C9—H9119.7
O2—C2—C3125.93 (14)C9—C10—C11121.47 (15)
O1—C2—C3110.41 (13)C9—C10—H10119.3
C4—C3—C2126.90 (14)C11—C10—H10119.3
C4—C3—H3116.5C6—C11—C10117.57 (15)
C2—C3—H3116.5C6—C11—H11121.2
C3—C4—C7136.38 (14)C10—C11—H11121.2
C3—C4—C5118.26 (13)N1—C12—H12A109.5
C7—C4—C5105.36 (12)N1—C12—H12B109.5
O3—C5—N1125.89 (14)H12A—C12—H12B109.5
O3—C5—C4127.13 (14)N1—C12—H12C109.5
N1—C5—C4106.98 (12)H12A—C12—H12C109.5
C11—C6—N1127.47 (14)H12B—C12—H12C109.5
C1—O1—C2—O21.0 (2)C12—N1—C6—C7178.31 (13)
C1—O1—C2—C3177.63 (13)C11—C6—C7—C81.7 (2)
O2—C2—C3—C411.4 (3)N1—C6—C7—C8177.86 (12)
O1—C2—C3—C4170.09 (14)C11—C6—C7—C4179.26 (13)
C2—C3—C4—C72.6 (3)N1—C6—C7—C41.18 (15)
C2—C3—C4—C5176.20 (13)C3—C4—C7—C84.6 (3)
C6—N1—C5—O3177.71 (14)C5—C4—C7—C8176.43 (16)
C12—N1—C5—O30.1 (2)C3—C4—C7—C6176.56 (16)
C6—N1—C5—C42.20 (15)C5—C4—C7—C62.39 (14)
C12—N1—C5—C4179.83 (13)C6—C7—C8—C91.2 (2)
C3—C4—C5—O33.7 (2)C4—C7—C8—C9179.95 (15)
C7—C4—C5—O3177.08 (14)C7—C8—C9—C100.1 (2)
C3—C4—C5—N1176.35 (13)C8—C9—C10—C111.2 (3)
C7—C4—C5—N12.83 (15)N1—C6—C11—C10178.78 (14)
C5—N1—C6—C11178.83 (14)C7—C6—C11—C100.7 (2)
C12—N1—C6—C111.2 (2)C9—C10—C11—C60.7 (2)
C5—N1—C6—C70.70 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C6–C11.
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.292.988 (2)132
C9—H9···O2i0.932.503.387 (2)159
C1—H1A···O3ii0.962.573.526 (2)175
C11—H11···Cgiii0.932.833.558 (2)135
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1, z+1; (iii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C6–C11.
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.292.988 (2)132
C9—H9···O2i0.932.503.387 (2)159
C1—H1A···O3ii0.962.573.526 (2)175
C11—H11···Cgiii0.932.833.558 (2)135
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1, z+1; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.

References

First citationBhella, S. S., Pannu, A. P. S., Elango, M., Kapoor, A., Hundal, M. S. S. & Ishar, M. P. (2009). Tetrahedron, 65, 5928–5935.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, R.-B. & Li, D.-F. (2011). Acta Cryst. E67, o2197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRadwan, M. A. A., Ragab, E. A., Sabry, N. M. & Shenawy, S. M. E. (2007). Bioorg. Med. Chem. 15, 3832–3841.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o188-o189
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds