organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o212-o213

Crystal structure of di­ethyl 2-amino-6-[(thio­phen-3-yl)ethyn­yl]azulene-1,3-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 February 2015; accepted 25 February 2015; online 28 February 2015)

The title compound, C22H19NO4S, has an almost planar geometry supported by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. The thio­phene ring is inclined to the azulene ring by 4.85 (16)°, while the eth­oxy­carbonyl groups are inclined to the azulene ring by 7.0 (2) and 5.7 (2)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked via C—H⋯π inter­actions, forming sheets parallel to (10-1).

1. Related literature

For the synthesis of the title compound concerning the azulene-derived starting material, see: McDonald et al. (1976[McDonald, R. N., Richmond, J. M., Curtis, J. R., Petty, H. E. & Hoskins, T. L. (1976). J. Org. Chem. 41, 1811-1821.]). For the background of this work and for the synthesis of related compounds, see: Xia et al. (2014[Xia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, R. J., Amir, E., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941-2945.]); Förster et al. (2012[Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856-863.]). For related structures, see: Förster et al. (2014[Förster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63-70.]); Shoji et al. (2013[Shoji, T., Ito, S., Okujima, T. & Morita, N. (2013). Chem. Eur. J. 19, 5721-5730.]). For C—H⋯π contacts, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H19NO4S

  • Mr = 393.44

  • Monoclinic, C 2/c

  • a = 22.2429 (5) Å

  • b = 5.5039 (1) Å

  • c = 32.8340 (8) Å

  • β = 102.914 (1)°

  • V = 3917.96 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.50 × 0.14 × 0.04 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.992

  • 18444 measured reflections

  • 3679 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.242

  • S = 1.04

  • 3679 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thio­phene ring S1/C19–C22.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3 0.86 2.16 2.765 (4) 127
N1—H1A⋯O1 0.86 2.15 2.757 (4) 127
C5—H5⋯O4 0.93 2.22 2.878 (4) 127
C9—H9⋯O2 0.93 2.23 2.897 (4) 128
N1—H1B⋯O3i 0.86 2.21 2.959 (4) 146
C8—H8⋯Cg1ii 0.93 2.92 3.714 (4) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Synthesis and crystallization top

The synthesis of the title compound was done starting from the literature known azulene derivative di­ethyl 2-amino-6-bromo­azulene-1,3-di­carboxyl­ate (McDonald et al., 1976). This compound (1.0 g, 2.73 mmol) together with 3-ethynyl­thio­phene (0.33 g, 3.05 mmol) was dissolved in a mixture of 25 ml diiso­propyl­amine and 25 ml tetra­hydro­furan. After degassing of the solution, bis­(tri­phenyl­phosphane)palladium(II) chloride (32 mg, 0.045 mmol), copper(I) iodide (17 mg, 0.09 mmol) and tri­phenyl­phosphane (39 mg, 0.15 mmol) were added. The mixture was stirred for 10 h under reflux and an argon atmosphere. After evaporation of the solvent, the residue was purified by column chromatography on SiO2 [60 F254 Merck, eluent: hexane/ethyl acetate (100:1)] to yield 0.81 g (75%) of the title compound as a red solid. Analytical data: mp = 148-149°C; 1H-NMR: (CDCl3) δ/ppm = 9.02 (d, 2H, ArH, 3JHH = 11.5 Hz), 7.86 (s, 2H, NH2), 7.73 (d, 2H, ArH, 3JHH = 11.5 Hz), 7.59 (dd, 1H, ArH, 4JHH = 2.9 Hz, 5JHH = 1.1 Hz), 7.34 (dd, 1H, ArH, 3JHH = 5.0 Hz, 4JHH = 3.0 Hz), 7.23 (dd, 1H, ArH, 3JHH = 5.0 Hz, 5JHH = 1.1 Hz), 4.47 (q, 4H, CH2, 3JHH = 7.2 Hz), 1.48 (t, 6H, CH3, 3JHH = 7.2 Hz); 13C-NMR: (CDCl3) δ/ppm = 166.40 (CO), 162.53 (ArC), 145.55 (ArC), 135.24 (ArC), 129.83 (ArC), 129.82 (ArC), 129.40 (ArC), 127.81 (ArC), 125.65 (ArC), 121.92 (ArC), 100.62 (CC), 92.47 (CC), 59.98 (CH2), 14.63 (CH3); GC/MS calc.: 393.5; found: 393 [M]+.;EA calc.: C: 67.16 %, H: 4.87 %, N: 3.56 %, S: 8.15 %; found C: 67.10 %, H: 4.75 %, N: 3.51 %, S: 7.97 %; Crystallization by slow solvent evaporation from di­chloro­methane solution yielded suitable crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C- and N-bound H atoms were fixed geometrically and treated as riding: N—H = 0.86 Å, C—H = 0.93 - 0.97 Å, with Uiso(H) =1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Comment top

Due to the special physical properties including redox behavior, azulene is an interesting structure building block for electronic materials design (Förster et al., 2012; Shoji et al., 2013; Xia et al., 2014). In this regard, the present tetrasubstituted azulene derivative, as the title compound, represents a promising intermediate.

The title compound has an almost planar overall geometry with maximum deviations of 0.166 (1) Å for C20 and 0.267 (4) Å for C6 (Fig. 1). In contrast to previously published related compounds (Förster et al., 2014), here the amine group gives rise to the formation of two intramolecular N—H···O hydrogen bonds to the neighbouring carbonyl O atoms O1 and O3 (Table 1 and Fig. 1). Furthermore, atoms O2 and O4 establish two weaker intramolecular C—H···O hydrogen bonds to azulene hydrogen atoms (Table 1 and Fig. 1).

In the crystal, an R22(12) hydrogen bonded inversion dimer motif is formed (Table 1 and Fig. 2). Along the crystallographic b-axis, the corresponding dimers are arranged in stacks (Fig. 2). Despite a plane to plane distance of 3.15 Å between the azulene units of consecutive molecules, no arene···arene interactions can be observed due to the lateral displacement. In direction of the crystallographic a- and c-axes, these stacks are connected via C—H···π contacts [Table 1; Nishio et al., 2009] and weak van der Waals forces, forming a sheets parallel to (10\1).. The absence of arene···arene interactions is a rather rare phenomenon for this class of azulenes, and is probably due to packing effects (Förster et al., 2014).

Related literature top

For the synthesis of the title compound concerning the azulene-derived starting material, see: McDonald et al. (1976). For the background of this work and for the synthesis of related compounds, see: Xia et al. (2014); Förster et al. (2012). For related structures, see: Förster et al. (2014); Shoji et al. (2013). For C—H···π contacts, see: Nishio et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b-axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Diethyl 2-amino-6-[(thiophen-3-yl)ethynyl]azulene-1,3-dicarboxylate top
Crystal data top
C22H19NO4SF(000) = 1648
Mr = 393.44Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.2429 (5) ÅCell parameters from 4036 reflections
b = 5.5039 (1) Åθ = 2.5–23.9°
c = 32.8340 (8) ŵ = 0.19 mm1
β = 102.914 (1)°T = 296 K
V = 3917.96 (15) Å3Rod, red
Z = 80.50 × 0.14 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3679 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2426
Tmin = 0.909, Tmax = 0.992k = 66
18444 measured reflectionsl = 3939
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.242 w = 1/[σ2(Fo2) + (0.1341P)2 + 7.3721P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3679 reflectionsΔρmax = 0.68 e Å3
255 parametersΔρmin = 0.69 e Å3
Crystal data top
C22H19NO4SV = 3917.96 (15) Å3
Mr = 393.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.2429 (5) ŵ = 0.19 mm1
b = 5.5039 (1) ÅT = 296 K
c = 32.8340 (8) Å0.50 × 0.14 × 0.04 mm
β = 102.914 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2441 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.992Rint = 0.032
18444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 1.04Δρmax = 0.68 e Å3
3679 reflectionsΔρmin = 0.69 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29785 (6)0.1167 (3)0.23302 (5)0.0900 (5)
O10.85377 (12)0.5584 (6)0.43542 (9)0.0725 (9)
O20.80576 (11)0.3079 (6)0.38532 (9)0.0636 (8)
O30.68603 (12)1.1767 (5)0.47849 (9)0.0631 (8)
O40.59102 (11)1.0579 (5)0.44835 (8)0.0583 (7)
N10.78370 (13)0.9042 (6)0.46415 (9)0.0556 (8)
H1A0.82130.85990.46610.067*
H1B0.77551.02540.47850.067*
C10.74517 (15)0.5833 (6)0.41350 (10)0.0436 (8)
C20.73847 (15)0.7861 (7)0.43904 (10)0.0440 (8)
C30.67421 (15)0.8431 (6)0.43263 (10)0.0423 (8)
C40.64141 (14)0.6787 (6)0.40310 (10)0.0406 (8)
C50.57758 (15)0.6849 (7)0.38555 (11)0.0485 (9)
H50.55660.81410.39430.058*
C60.54133 (15)0.5301 (7)0.35757 (11)0.0496 (9)
H60.50010.57540.34940.060*
C70.55645 (15)0.3158 (6)0.33947 (10)0.0445 (8)
C80.61599 (16)0.2185 (6)0.34362 (11)0.0461 (8)
H80.61780.07370.32940.055*
C90.67212 (15)0.3054 (6)0.36566 (10)0.0432 (8)
H90.70610.21400.36280.052*
C100.68606 (14)0.5089 (6)0.39161 (10)0.0399 (8)
C110.80595 (16)0.4849 (7)0.41321 (11)0.0522 (9)
C120.86442 (18)0.1954 (10)0.38488 (16)0.0778 (14)
H12A0.88170.12160.41180.093*
H12B0.89330.31630.37920.093*
C130.8535 (2)0.0097 (10)0.35201 (16)0.0811 (14)
H13A0.82380.10550.35730.122*
H13B0.89150.07250.35180.122*
H13C0.83810.08560.32540.122*
C140.65276 (15)1.0391 (7)0.45498 (11)0.0465 (8)
C150.56708 (18)1.2514 (8)0.46980 (13)0.0619 (11)
H15A0.58371.40660.46360.074*
H15B0.57811.22540.49980.074*
C160.4981 (2)1.2477 (11)0.45432 (17)0.0881 (16)
H16A0.48791.27250.42460.132*
H16B0.48011.37480.46770.132*
H16C0.48231.09350.46070.132*
C170.50538 (16)0.1840 (7)0.31426 (11)0.0500 (9)
C180.46201 (16)0.0786 (7)0.29443 (11)0.0497 (9)
C190.40854 (15)0.0390 (6)0.27000 (11)0.0430 (8)
C200.40753 (18)0.2579 (7)0.24830 (13)0.0596 (10)
H200.44230.35210.24840.072*
C210.34319 (18)0.3231 (6)0.22455 (11)0.0483 (9)
H210.33220.45990.20790.058*
C220.35034 (18)0.0568 (8)0.26439 (14)0.0636 (11)
H220.34120.20070.27650.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0527 (7)0.0981 (10)0.1083 (11)0.0162 (6)0.0053 (7)0.0110 (8)
O10.0303 (14)0.104 (2)0.0759 (19)0.0053 (14)0.0025 (13)0.0228 (17)
O20.0318 (13)0.084 (2)0.0702 (17)0.0043 (13)0.0009 (12)0.0169 (15)
O30.0433 (15)0.0706 (18)0.0707 (17)0.0129 (13)0.0025 (12)0.0237 (14)
O40.0364 (14)0.0734 (17)0.0620 (16)0.0051 (12)0.0043 (11)0.0207 (14)
N10.0323 (15)0.073 (2)0.0567 (18)0.0109 (15)0.0012 (13)0.0119 (16)
C10.0308 (17)0.055 (2)0.0426 (17)0.0058 (15)0.0028 (13)0.0032 (16)
C20.0357 (17)0.056 (2)0.0380 (16)0.0117 (15)0.0027 (13)0.0022 (15)
C30.0331 (17)0.0487 (18)0.0414 (17)0.0068 (14)0.0006 (13)0.0009 (15)
C40.0324 (17)0.0441 (17)0.0406 (17)0.0061 (14)0.0013 (13)0.0040 (14)
C50.0342 (18)0.049 (2)0.057 (2)0.0005 (15)0.0005 (15)0.0043 (17)
C60.0277 (17)0.056 (2)0.059 (2)0.0017 (15)0.0034 (15)0.0045 (17)
C70.0349 (18)0.0494 (19)0.0436 (17)0.0083 (15)0.0032 (14)0.0017 (15)
C80.0411 (19)0.0468 (19)0.0472 (18)0.0050 (15)0.0032 (15)0.0038 (15)
C90.0321 (17)0.0488 (18)0.0463 (18)0.0002 (14)0.0036 (14)0.0026 (15)
C100.0313 (17)0.0461 (18)0.0398 (16)0.0043 (14)0.0026 (13)0.0067 (14)
C110.0364 (19)0.069 (2)0.0487 (19)0.0035 (18)0.0037 (15)0.0011 (19)
C120.035 (2)0.106 (4)0.088 (3)0.013 (2)0.006 (2)0.022 (3)
C130.057 (3)0.095 (4)0.090 (3)0.011 (2)0.014 (2)0.017 (3)
C140.0368 (18)0.055 (2)0.0439 (18)0.0084 (16)0.0010 (14)0.0020 (16)
C150.048 (2)0.077 (3)0.059 (2)0.000 (2)0.0099 (18)0.014 (2)
C160.048 (3)0.120 (4)0.094 (4)0.013 (3)0.012 (2)0.023 (3)
C170.039 (2)0.053 (2)0.054 (2)0.0055 (16)0.0012 (16)0.0018 (17)
C180.0378 (19)0.052 (2)0.055 (2)0.0006 (16)0.0017 (16)0.0043 (17)
C190.0345 (17)0.0400 (17)0.0511 (19)0.0072 (14)0.0027 (14)0.0063 (15)
C200.050 (2)0.054 (2)0.074 (3)0.0010 (18)0.0123 (19)0.015 (2)
C210.069 (2)0.0315 (16)0.0493 (19)0.0200 (16)0.0234 (17)0.0221 (15)
C220.045 (2)0.055 (2)0.085 (3)0.0013 (18)0.000 (2)0.018 (2)
Geometric parameters (Å, º) top
S1—C211.584 (4)C8—C91.381 (5)
S1—C221.673 (4)C8—H80.9300
O1—C111.216 (4)C9—C101.400 (5)
O2—C111.336 (5)C9—H90.9300
O2—C121.447 (5)C12—C131.467 (7)
O3—C141.209 (4)C12—H12A0.9700
O4—C141.345 (4)C12—H12B0.9700
O4—C151.443 (5)C13—H13A0.9600
N1—C21.320 (4)C13—H13B0.9600
N1—H1A0.8600C13—H13C0.9600
N1—H1B0.8600C15—C161.504 (6)
C1—C101.411 (4)C15—H15A0.9700
C1—C21.424 (5)C15—H15B0.9700
C1—C111.459 (5)C16—H16A0.9600
C2—C31.432 (5)C16—H16B0.9600
C3—C41.405 (5)C16—H16C0.9600
C3—C141.445 (5)C17—C181.188 (5)
C4—C51.408 (5)C18—C191.432 (5)
C4—C101.473 (5)C19—C221.371 (5)
C5—C61.374 (5)C19—C201.397 (5)
C5—H50.9300C20—C211.512 (5)
C6—C71.395 (5)C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C81.407 (5)C22—H220.9300
C7—C171.443 (5)
C21—S1—C2297.7 (2)O2—C12—H12A110.2
C11—O2—C12117.0 (3)C13—C12—H12A110.2
C14—O4—C15116.9 (3)O2—C12—H12B110.2
C2—N1—H1A120.0C13—C12—H12B110.2
C2—N1—H1B120.0H12A—C12—H12B108.5
H1A—N1—H1B120.0C12—C13—H13A109.5
C10—C1—C2108.6 (3)C12—C13—H13B109.5
C10—C1—C11130.4 (3)H13A—C13—H13B109.5
C2—C1—C11120.9 (3)C12—C13—H13C109.5
N1—C2—C1126.0 (3)H13A—C13—H13C109.5
N1—C2—C3125.5 (3)H13B—C13—H13C109.5
C1—C2—C3108.5 (3)O3—C14—O4120.8 (3)
C4—C3—C2107.9 (3)O3—C14—C3124.6 (3)
C4—C3—C14130.7 (3)O4—C14—C3114.6 (3)
C2—C3—C14121.4 (3)O4—C15—C16106.6 (3)
C3—C4—C5126.0 (3)O4—C15—H15A110.4
C3—C4—C10108.0 (3)C16—C15—H15A110.4
C5—C4—C10125.9 (3)O4—C15—H15B110.4
C6—C5—C4130.2 (3)C16—C15—H15B110.4
C6—C5—H5114.9H15A—C15—H15B108.6
C4—C5—H5114.9C15—C16—H16A109.5
C5—C6—C7130.4 (3)C15—C16—H16B109.5
C5—C6—H6114.8H16A—C16—H16B109.5
C7—C6—H6114.8C15—C16—H16C109.5
C6—C7—C8126.3 (3)H16A—C16—H16C109.5
C6—C7—C17115.8 (3)H16B—C16—H16C109.5
C8—C7—C17117.9 (3)C18—C17—C7177.6 (4)
C9—C8—C7129.8 (3)C17—C18—C19177.6 (4)
C9—C8—H8115.1C22—C19—C20110.8 (3)
C7—C8—H8115.1C22—C19—C18122.8 (3)
C8—C9—C10130.4 (3)C20—C19—C18126.3 (3)
C8—C9—H9114.8C19—C20—C21111.9 (3)
C10—C9—H9114.8C19—C20—H20124.0
C9—C10—C1126.6 (3)C21—C20—H20124.0
C9—C10—C4126.4 (3)C20—C21—S1107.8 (2)
C1—C10—C4106.9 (3)C20—C21—H21126.1
O1—C11—O2121.5 (3)S1—C21—H21126.1
O1—C11—C1124.1 (4)C19—C22—S1111.8 (3)
O2—C11—C1114.5 (3)C19—C22—H22124.1
O2—C12—C13107.7 (3)S1—C22—H22124.1
C10—C1—C2—N1179.6 (3)C3—C4—C10—C9174.5 (3)
C11—C1—C2—N10.1 (5)C5—C4—C10—C99.2 (5)
C10—C1—C2—C31.0 (4)C3—C4—C10—C12.4 (4)
C11—C1—C2—C3179.5 (3)C5—C4—C10—C1173.9 (3)
N1—C2—C3—C4178.8 (3)C12—O2—C11—O14.5 (6)
C1—C2—C3—C40.6 (4)C12—O2—C11—C1177.3 (4)
N1—C2—C3—C141.7 (5)C10—C1—C11—O1175.9 (4)
C1—C2—C3—C14178.9 (3)C2—C1—C11—O13.4 (6)
C2—C3—C4—C5174.4 (3)C10—C1—C11—O25.9 (6)
C14—C3—C4—C56.2 (6)C2—C1—C11—O2174.7 (3)
C2—C3—C4—C101.8 (4)C11—O2—C12—C13179.6 (4)
C14—C3—C4—C10177.6 (3)C15—O4—C14—O31.3 (5)
C3—C4—C5—C6178.0 (4)C15—O4—C14—C3179.8 (3)
C10—C4—C5—C66.4 (6)C4—C3—C14—O3176.4 (4)
C4—C5—C6—C72.8 (7)C2—C3—C14—O34.2 (6)
C5—C6—C7—C85.8 (7)C4—C3—C14—O44.7 (5)
C5—C6—C7—C17174.0 (4)C2—C3—C14—O4174.7 (3)
C6—C7—C8—C90.1 (6)C14—O4—C15—C16174.9 (4)
C17—C7—C8—C9179.7 (4)C22—C19—C20—C210.9 (5)
C7—C8—C9—C103.0 (6)C18—C19—C20—C21177.9 (3)
C8—C9—C10—C1179.2 (4)C19—C20—C21—S10.5 (4)
C8—C9—C10—C42.8 (6)C22—S1—C21—C200.0 (3)
C2—C1—C10—C9174.9 (3)C20—C19—C22—S10.9 (5)
C11—C1—C10—C94.6 (6)C18—C19—C22—S1177.9 (3)
C2—C1—C10—C42.0 (4)C21—S1—C22—C190.5 (4)
C11—C1—C10—C4178.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring S1/C19–C22.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.862.162.765 (4)127
N1—H1A···O10.862.152.757 (4)127
C5—H5···O40.932.222.878 (4)127
C9—H9···O20.932.232.897 (4)128
N1—H1B···O3i0.862.212.959 (4)146
C8—H8···Cg1ii0.932.923.714 (4)144
Symmetry codes: (i) x+3/2, y+5/2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring S1/C19–C22.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.862.162.765 (4)127
N1—H1A···O10.862.152.757 (4)127
C5—H5···O40.932.222.878 (4)127
C9—H9···O20.932.232.897 (4)128
N1—H1B···O3i0.862.212.959 (4)146
C8—H8···Cg1ii0.932.923.714 (4)144
Symmetry codes: (i) x+3/2, y+5/2, z+1; (ii) x+1, y, z+1/2.
 

Acknowledgements

This work has been performed within the `Cluster of Excellence Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering' (ADDE), which was supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFörster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856–863.  Google Scholar
First citationFörster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63–70.  Google Scholar
First citationMcDonald, R. N., Richmond, J. M., Curtis, J. R., Petty, H. E. & Hoskins, T. L. (1976). J. Org. Chem. 41, 1811–1821.  CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoji, T., Ito, S., Okujima, T. & Morita, N. (2013). Chem. Eur. J. 19, 5721–5730.  CrossRef CAS PubMed Google Scholar
First citationXia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, R. J., Amir, E., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941–2945.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o212-o213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds