organic compounds
of diethyl 2-amino-6-[(thiophen-3-yl)ethynyl]azulene-1,3-dicarboxylate
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
The title compound, C22H19NO4S, has an almost planar geometry supported by intramolecular N—H⋯O and C—H⋯O hydrogen bonds. The thiophene ring is inclined to the azulene ring by 4.85 (16)°, while the ethoxycarbonyl groups are inclined to the azulene ring by 7.0 (2) and 5.7 (2)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked via C—H⋯π interactions, forming sheets parallel to (10-1).
Keywords: crystal structure; azulene; thiophene; 3-thienylethynyl; hydrogen bonds; C—H⋯π interactions.
CCDC reference: 1051132
1. Related literature
For the synthesis of the title compound concerning the azulene-derived starting material, see: McDonald et al. (1976). For the background of this work and for the synthesis of related compounds, see: Xia et al. (2014); Förster et al. (2012). For related structures, see: Förster et al. (2014); Shoji et al. (2013). For C—H⋯π contacts, see: Nishio et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1051132
10.1107/S2056989015003898/su5088sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015003898/su5088Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015003898/su5088Isup3.cml
The synthesis of the title compound was done starting from the literature known azulene derivative diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (McDonald et al., 1976). This compound (1.0 g, 2.73 mmol) together with 3-ethynylthiophene (0.33 g, 3.05 mmol) was dissolved in a mixture of 25 ml diisopropylamine and 25 ml tetrahydrofuran. After degassing of the solution, bis(triphenylphosphane)palladium(II) chloride (32 mg, 0.045 mmol), copper(I) iodide (17 mg, 0.09 mmol) and triphenylphosphane (39 mg, 0.15 mmol) were added. The mixture was stirred for 10 h under reflux and an argon atmosphere. After evaporation of the solvent, the residue was purified by δ/ppm = 9.02 (d, 2H, ArH, 3JHH = 11.5 Hz), 7.86 (s, 2H, NH2), 7.73 (d, 2H, ArH, 3JHH = 11.5 Hz), 7.59 (dd, 1H, ArH, 4JHH = 2.9 Hz, 5JHH = 1.1 Hz), 7.34 (dd, 1H, ArH, 3JHH = 5.0 Hz, 4JHH = 3.0 Hz), 7.23 (dd, 1H, ArH, 3JHH = 5.0 Hz, 5JHH = 1.1 Hz), 4.47 (q, 4H, CH2, 3JHH = 7.2 Hz), 1.48 (t, 6H, CH3, 3JHH = 7.2 Hz); 13C-NMR: (CDCl3) δ/ppm = 166.40 (CO), 162.53 (ArC), 145.55 (ArC), 135.24 (ArC), 129.83 (ArC), 129.82 (ArC), 129.40 (ArC), 127.81 (ArC), 125.65 (ArC), 121.92 (ArC), 100.62 (C≡C), 92.47 (C≡C), 59.98 (CH2), 14.63 (CH3); GC/MS calc.: 393.5; found: 393 [M]+.;EA calc.: C: 67.16 %, H: 4.87 %, N: 3.56 %, S: 8.15 %; found C: 67.10 %, H: 4.75 %, N: 3.51 %, S: 7.97 %; Crystallization by slow solvent evaporation from dichloromethane solution yielded suitable crystals.
on SiO2 [60 F254 Merck, hexane/ethyl acetate (100:1)] to yield 0.81 g (75%) of the title compound as a red solid. Analytical data: mp = 148-149°C; 1H-NMR: (CDCl3)Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details). | |
Fig. 2. Crystal packing of the title compound viewed along the b-axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). |
C22H19NO4S | F(000) = 1648 |
Mr = 393.44 | Dx = 1.334 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.2429 (5) Å | Cell parameters from 4036 reflections |
b = 5.5039 (1) Å | θ = 2.5–23.9° |
c = 32.8340 (8) Å | µ = 0.19 mm−1 |
β = 102.914 (1)° | T = 296 K |
V = 3917.96 (15) Å3 | Rod, red |
Z = 8 | 0.50 × 0.14 × 0.04 mm |
Bruker SMART CCD area-detector diffractometer | 3679 independent reflections |
Radiation source: fine-focus sealed tube | 2441 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.032 |
phi and ω scans | θmax = 25.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −24→26 |
Tmin = 0.909, Tmax = 0.992 | k = −6→6 |
18444 measured reflections | l = −39→39 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.242 | w = 1/[σ2(Fo2) + (0.1341P)2 + 7.3721P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3679 reflections | Δρmax = 0.68 e Å−3 |
255 parameters | Δρmin = −0.69 e Å−3 |
C22H19NO4S | V = 3917.96 (15) Å3 |
Mr = 393.44 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.2429 (5) Å | µ = 0.19 mm−1 |
b = 5.5039 (1) Å | T = 296 K |
c = 32.8340 (8) Å | 0.50 × 0.14 × 0.04 mm |
β = 102.914 (1)° |
Bruker SMART CCD area-detector diffractometer | 3679 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2441 reflections with I > 2σ(I) |
Tmin = 0.909, Tmax = 0.992 | Rint = 0.032 |
18444 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.242 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.68 e Å−3 |
3679 reflections | Δρmin = −0.69 e Å−3 |
255 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.29785 (6) | −0.1167 (3) | 0.23302 (5) | 0.0900 (5) | |
O1 | 0.85377 (12) | 0.5584 (6) | 0.43542 (9) | 0.0725 (9) | |
O2 | 0.80576 (11) | 0.3079 (6) | 0.38532 (9) | 0.0636 (8) | |
O3 | 0.68603 (12) | 1.1767 (5) | 0.47849 (9) | 0.0631 (8) | |
O4 | 0.59102 (11) | 1.0579 (5) | 0.44835 (8) | 0.0583 (7) | |
N1 | 0.78370 (13) | 0.9042 (6) | 0.46415 (9) | 0.0556 (8) | |
H1A | 0.8213 | 0.8599 | 0.4661 | 0.067* | |
H1B | 0.7755 | 1.0254 | 0.4785 | 0.067* | |
C1 | 0.74517 (15) | 0.5833 (6) | 0.41350 (10) | 0.0436 (8) | |
C2 | 0.73847 (15) | 0.7861 (7) | 0.43904 (10) | 0.0440 (8) | |
C3 | 0.67421 (15) | 0.8431 (6) | 0.43263 (10) | 0.0423 (8) | |
C4 | 0.64141 (14) | 0.6787 (6) | 0.40310 (10) | 0.0406 (8) | |
C5 | 0.57758 (15) | 0.6849 (7) | 0.38555 (11) | 0.0485 (9) | |
H5 | 0.5566 | 0.8141 | 0.3943 | 0.058* | |
C6 | 0.54133 (15) | 0.5301 (7) | 0.35757 (11) | 0.0496 (9) | |
H6 | 0.5001 | 0.5754 | 0.3494 | 0.060* | |
C7 | 0.55645 (15) | 0.3158 (6) | 0.33947 (10) | 0.0445 (8) | |
C8 | 0.61599 (16) | 0.2185 (6) | 0.34362 (11) | 0.0461 (8) | |
H8 | 0.6178 | 0.0737 | 0.3294 | 0.055* | |
C9 | 0.67212 (15) | 0.3054 (6) | 0.36566 (10) | 0.0432 (8) | |
H9 | 0.7061 | 0.2140 | 0.3628 | 0.052* | |
C10 | 0.68606 (14) | 0.5089 (6) | 0.39161 (10) | 0.0399 (8) | |
C11 | 0.80595 (16) | 0.4849 (7) | 0.41321 (11) | 0.0522 (9) | |
C12 | 0.86442 (18) | 0.1954 (10) | 0.38488 (16) | 0.0778 (14) | |
H12A | 0.8817 | 0.1216 | 0.4118 | 0.093* | |
H12B | 0.8933 | 0.3163 | 0.3792 | 0.093* | |
C13 | 0.8535 (2) | 0.0097 (10) | 0.35201 (16) | 0.0811 (14) | |
H13A | 0.8238 | −0.1055 | 0.3573 | 0.122* | |
H13B | 0.8915 | −0.0725 | 0.3518 | 0.122* | |
H13C | 0.8381 | 0.0856 | 0.3254 | 0.122* | |
C14 | 0.65276 (15) | 1.0391 (7) | 0.45498 (11) | 0.0465 (8) | |
C15 | 0.56708 (18) | 1.2514 (8) | 0.46980 (13) | 0.0619 (11) | |
H15A | 0.5837 | 1.4066 | 0.4636 | 0.074* | |
H15B | 0.5781 | 1.2254 | 0.4998 | 0.074* | |
C16 | 0.4981 (2) | 1.2477 (11) | 0.45432 (17) | 0.0881 (16) | |
H16A | 0.4879 | 1.2725 | 0.4246 | 0.132* | |
H16B | 0.4801 | 1.3748 | 0.4677 | 0.132* | |
H16C | 0.4823 | 1.0935 | 0.4607 | 0.132* | |
C17 | 0.50538 (16) | 0.1840 (7) | 0.31426 (11) | 0.0500 (9) | |
C18 | 0.46201 (16) | 0.0786 (7) | 0.29443 (11) | 0.0497 (9) | |
C19 | 0.40854 (15) | −0.0390 (6) | 0.27000 (11) | 0.0430 (8) | |
C20 | 0.40753 (18) | −0.2579 (7) | 0.24830 (13) | 0.0596 (10) | |
H20 | 0.4423 | −0.3521 | 0.2484 | 0.072* | |
C21 | 0.34319 (18) | −0.3231 (6) | 0.22455 (11) | 0.0483 (9) | |
H21 | 0.3322 | −0.4599 | 0.2079 | 0.058* | |
C22 | 0.35034 (18) | 0.0568 (8) | 0.26439 (14) | 0.0636 (11) | |
H22 | 0.3412 | 0.2007 | 0.2765 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0527 (7) | 0.0981 (10) | 0.1083 (11) | −0.0162 (6) | −0.0053 (7) | −0.0110 (8) |
O1 | 0.0303 (14) | 0.104 (2) | 0.0759 (19) | −0.0053 (14) | −0.0025 (13) | −0.0228 (17) |
O2 | 0.0318 (13) | 0.084 (2) | 0.0702 (17) | 0.0043 (13) | 0.0009 (12) | −0.0169 (15) |
O3 | 0.0433 (15) | 0.0706 (18) | 0.0707 (17) | −0.0129 (13) | 0.0025 (12) | −0.0237 (14) |
O4 | 0.0364 (14) | 0.0734 (17) | 0.0620 (16) | −0.0051 (12) | 0.0043 (11) | −0.0207 (14) |
N1 | 0.0323 (15) | 0.073 (2) | 0.0567 (18) | −0.0109 (15) | −0.0012 (13) | −0.0119 (16) |
C1 | 0.0308 (17) | 0.055 (2) | 0.0426 (17) | −0.0058 (15) | 0.0028 (13) | 0.0032 (16) |
C2 | 0.0357 (17) | 0.056 (2) | 0.0380 (16) | −0.0117 (15) | 0.0027 (13) | 0.0022 (15) |
C3 | 0.0331 (17) | 0.0487 (18) | 0.0414 (17) | −0.0068 (14) | 0.0006 (13) | 0.0009 (15) |
C4 | 0.0324 (17) | 0.0441 (17) | 0.0406 (17) | −0.0061 (14) | −0.0013 (13) | 0.0040 (14) |
C5 | 0.0342 (18) | 0.049 (2) | 0.057 (2) | −0.0005 (15) | −0.0005 (15) | −0.0043 (17) |
C6 | 0.0277 (17) | 0.056 (2) | 0.059 (2) | −0.0017 (15) | −0.0034 (15) | −0.0045 (17) |
C7 | 0.0349 (18) | 0.0494 (19) | 0.0436 (17) | −0.0083 (15) | −0.0032 (14) | 0.0017 (15) |
C8 | 0.0411 (19) | 0.0468 (19) | 0.0472 (18) | −0.0050 (15) | 0.0032 (15) | −0.0038 (15) |
C9 | 0.0321 (17) | 0.0488 (18) | 0.0463 (18) | 0.0002 (14) | 0.0036 (14) | 0.0026 (15) |
C10 | 0.0313 (17) | 0.0461 (18) | 0.0398 (16) | −0.0043 (14) | 0.0026 (13) | 0.0067 (14) |
C11 | 0.0364 (19) | 0.069 (2) | 0.0487 (19) | −0.0035 (18) | 0.0037 (15) | 0.0011 (19) |
C12 | 0.035 (2) | 0.106 (4) | 0.088 (3) | 0.013 (2) | 0.006 (2) | −0.022 (3) |
C13 | 0.057 (3) | 0.095 (4) | 0.090 (3) | 0.011 (2) | 0.014 (2) | −0.017 (3) |
C14 | 0.0368 (18) | 0.055 (2) | 0.0439 (18) | −0.0084 (16) | 0.0010 (14) | 0.0020 (16) |
C15 | 0.048 (2) | 0.077 (3) | 0.059 (2) | 0.000 (2) | 0.0099 (18) | −0.014 (2) |
C16 | 0.048 (3) | 0.120 (4) | 0.094 (4) | 0.013 (3) | 0.012 (2) | −0.023 (3) |
C17 | 0.039 (2) | 0.053 (2) | 0.054 (2) | −0.0055 (16) | 0.0012 (16) | −0.0018 (17) |
C18 | 0.0378 (19) | 0.052 (2) | 0.055 (2) | −0.0006 (16) | 0.0017 (16) | −0.0043 (17) |
C19 | 0.0345 (17) | 0.0400 (17) | 0.0511 (19) | −0.0072 (14) | 0.0027 (14) | −0.0063 (15) |
C20 | 0.050 (2) | 0.054 (2) | 0.074 (3) | −0.0010 (18) | 0.0123 (19) | −0.015 (2) |
C21 | 0.069 (2) | 0.0315 (16) | 0.0493 (19) | −0.0200 (16) | 0.0234 (17) | −0.0221 (15) |
C22 | 0.045 (2) | 0.055 (2) | 0.085 (3) | −0.0013 (18) | 0.000 (2) | −0.018 (2) |
S1—C21 | 1.584 (4) | C8—C9 | 1.381 (5) |
S1—C22 | 1.673 (4) | C8—H8 | 0.9300 |
O1—C11 | 1.216 (4) | C9—C10 | 1.400 (5) |
O2—C11 | 1.336 (5) | C9—H9 | 0.9300 |
O2—C12 | 1.447 (5) | C12—C13 | 1.467 (7) |
O3—C14 | 1.209 (4) | C12—H12A | 0.9700 |
O4—C14 | 1.345 (4) | C12—H12B | 0.9700 |
O4—C15 | 1.443 (5) | C13—H13A | 0.9600 |
N1—C2 | 1.320 (4) | C13—H13B | 0.9600 |
N1—H1A | 0.8600 | C13—H13C | 0.9600 |
N1—H1B | 0.8600 | C15—C16 | 1.504 (6) |
C1—C10 | 1.411 (4) | C15—H15A | 0.9700 |
C1—C2 | 1.424 (5) | C15—H15B | 0.9700 |
C1—C11 | 1.459 (5) | C16—H16A | 0.9600 |
C2—C3 | 1.432 (5) | C16—H16B | 0.9600 |
C3—C4 | 1.405 (5) | C16—H16C | 0.9600 |
C3—C14 | 1.445 (5) | C17—C18 | 1.188 (5) |
C4—C5 | 1.408 (5) | C18—C19 | 1.432 (5) |
C4—C10 | 1.473 (5) | C19—C22 | 1.371 (5) |
C5—C6 | 1.374 (5) | C19—C20 | 1.397 (5) |
C5—H5 | 0.9300 | C20—C21 | 1.512 (5) |
C6—C7 | 1.395 (5) | C20—H20 | 0.9300 |
C6—H6 | 0.9300 | C21—H21 | 0.9300 |
C7—C8 | 1.407 (5) | C22—H22 | 0.9300 |
C7—C17 | 1.443 (5) | ||
C21—S1—C22 | 97.7 (2) | O2—C12—H12A | 110.2 |
C11—O2—C12 | 117.0 (3) | C13—C12—H12A | 110.2 |
C14—O4—C15 | 116.9 (3) | O2—C12—H12B | 110.2 |
C2—N1—H1A | 120.0 | C13—C12—H12B | 110.2 |
C2—N1—H1B | 120.0 | H12A—C12—H12B | 108.5 |
H1A—N1—H1B | 120.0 | C12—C13—H13A | 109.5 |
C10—C1—C2 | 108.6 (3) | C12—C13—H13B | 109.5 |
C10—C1—C11 | 130.4 (3) | H13A—C13—H13B | 109.5 |
C2—C1—C11 | 120.9 (3) | C12—C13—H13C | 109.5 |
N1—C2—C1 | 126.0 (3) | H13A—C13—H13C | 109.5 |
N1—C2—C3 | 125.5 (3) | H13B—C13—H13C | 109.5 |
C1—C2—C3 | 108.5 (3) | O3—C14—O4 | 120.8 (3) |
C4—C3—C2 | 107.9 (3) | O3—C14—C3 | 124.6 (3) |
C4—C3—C14 | 130.7 (3) | O4—C14—C3 | 114.6 (3) |
C2—C3—C14 | 121.4 (3) | O4—C15—C16 | 106.6 (3) |
C3—C4—C5 | 126.0 (3) | O4—C15—H15A | 110.4 |
C3—C4—C10 | 108.0 (3) | C16—C15—H15A | 110.4 |
C5—C4—C10 | 125.9 (3) | O4—C15—H15B | 110.4 |
C6—C5—C4 | 130.2 (3) | C16—C15—H15B | 110.4 |
C6—C5—H5 | 114.9 | H15A—C15—H15B | 108.6 |
C4—C5—H5 | 114.9 | C15—C16—H16A | 109.5 |
C5—C6—C7 | 130.4 (3) | C15—C16—H16B | 109.5 |
C5—C6—H6 | 114.8 | H16A—C16—H16B | 109.5 |
C7—C6—H6 | 114.8 | C15—C16—H16C | 109.5 |
C6—C7—C8 | 126.3 (3) | H16A—C16—H16C | 109.5 |
C6—C7—C17 | 115.8 (3) | H16B—C16—H16C | 109.5 |
C8—C7—C17 | 117.9 (3) | C18—C17—C7 | 177.6 (4) |
C9—C8—C7 | 129.8 (3) | C17—C18—C19 | 177.6 (4) |
C9—C8—H8 | 115.1 | C22—C19—C20 | 110.8 (3) |
C7—C8—H8 | 115.1 | C22—C19—C18 | 122.8 (3) |
C8—C9—C10 | 130.4 (3) | C20—C19—C18 | 126.3 (3) |
C8—C9—H9 | 114.8 | C19—C20—C21 | 111.9 (3) |
C10—C9—H9 | 114.8 | C19—C20—H20 | 124.0 |
C9—C10—C1 | 126.6 (3) | C21—C20—H20 | 124.0 |
C9—C10—C4 | 126.4 (3) | C20—C21—S1 | 107.8 (2) |
C1—C10—C4 | 106.9 (3) | C20—C21—H21 | 126.1 |
O1—C11—O2 | 121.5 (3) | S1—C21—H21 | 126.1 |
O1—C11—C1 | 124.1 (4) | C19—C22—S1 | 111.8 (3) |
O2—C11—C1 | 114.5 (3) | C19—C22—H22 | 124.1 |
O2—C12—C13 | 107.7 (3) | S1—C22—H22 | 124.1 |
C10—C1—C2—N1 | 179.6 (3) | C3—C4—C10—C9 | 174.5 (3) |
C11—C1—C2—N1 | 0.1 (5) | C5—C4—C10—C9 | −9.2 (5) |
C10—C1—C2—C3 | −1.0 (4) | C3—C4—C10—C1 | −2.4 (4) |
C11—C1—C2—C3 | 179.5 (3) | C5—C4—C10—C1 | 173.9 (3) |
N1—C2—C3—C4 | 178.8 (3) | C12—O2—C11—O1 | 4.5 (6) |
C1—C2—C3—C4 | −0.6 (4) | C12—O2—C11—C1 | −177.3 (4) |
N1—C2—C3—C14 | −1.7 (5) | C10—C1—C11—O1 | −175.9 (4) |
C1—C2—C3—C14 | 178.9 (3) | C2—C1—C11—O1 | 3.4 (6) |
C2—C3—C4—C5 | −174.4 (3) | C10—C1—C11—O2 | 5.9 (6) |
C14—C3—C4—C5 | 6.2 (6) | C2—C1—C11—O2 | −174.7 (3) |
C2—C3—C4—C10 | 1.8 (4) | C11—O2—C12—C13 | −179.6 (4) |
C14—C3—C4—C10 | −177.6 (3) | C15—O4—C14—O3 | 1.3 (5) |
C3—C4—C5—C6 | −178.0 (4) | C15—O4—C14—C3 | −179.8 (3) |
C10—C4—C5—C6 | 6.4 (6) | C4—C3—C14—O3 | −176.4 (4) |
C4—C5—C6—C7 | 2.8 (7) | C2—C3—C14—O3 | 4.2 (6) |
C5—C6—C7—C8 | −5.8 (7) | C4—C3—C14—O4 | 4.7 (5) |
C5—C6—C7—C17 | 174.0 (4) | C2—C3—C14—O4 | −174.7 (3) |
C6—C7—C8—C9 | 0.1 (6) | C14—O4—C15—C16 | 174.9 (4) |
C17—C7—C8—C9 | −179.7 (4) | C22—C19—C20—C21 | 0.9 (5) |
C7—C8—C9—C10 | 3.0 (6) | C18—C19—C20—C21 | −177.9 (3) |
C8—C9—C10—C1 | 179.2 (4) | C19—C20—C21—S1 | −0.5 (4) |
C8—C9—C10—C4 | 2.8 (6) | C22—S1—C21—C20 | 0.0 (3) |
C2—C1—C10—C9 | −174.9 (3) | C20—C19—C22—S1 | −0.9 (5) |
C11—C1—C10—C9 | 4.6 (6) | C18—C19—C22—S1 | 177.9 (3) |
C2—C1—C10—C4 | 2.0 (4) | C21—S1—C22—C19 | 0.5 (4) |
C11—C1—C10—C4 | −178.5 (3) |
Cg1 is the centroid of the thiophene ring S1/C19–C22. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3 | 0.86 | 2.16 | 2.765 (4) | 127 |
N1—H1A···O1 | 0.86 | 2.15 | 2.757 (4) | 127 |
C5—H5···O4 | 0.93 | 2.22 | 2.878 (4) | 127 |
C9—H9···O2 | 0.93 | 2.23 | 2.897 (4) | 128 |
N1—H1B···O3i | 0.86 | 2.21 | 2.959 (4) | 146 |
C8—H8···Cg1ii | 0.93 | 2.92 | 3.714 (4) | 144 |
Symmetry codes: (i) −x+3/2, −y+5/2, −z+1; (ii) −x+1, y, −z+1/2. |
Cg1 is the centroid of the thiophene ring S1/C19–C22. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3 | 0.86 | 2.16 | 2.765 (4) | 127 |
N1—H1A···O1 | 0.86 | 2.15 | 2.757 (4) | 127 |
C5—H5···O4 | 0.93 | 2.22 | 2.878 (4) | 127 |
C9—H9···O2 | 0.93 | 2.23 | 2.897 (4) | 128 |
N1—H1B···O3i | 0.86 | 2.21 | 2.959 (4) | 146 |
C8—H8···Cg1ii | 0.93 | 2.92 | 3.714 (4) | 144 |
Symmetry codes: (i) −x+3/2, −y+5/2, −z+1; (ii) −x+1, y, −z+1/2. |
Acknowledgements
This work has been performed within the `Cluster of Excellence Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering' (ADDE), which was supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856–863. Google Scholar
Förster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63–70. Google Scholar
McDonald, R. N., Richmond, J. M., Curtis, J. R., Petty, H. E. & Hoskins, T. L. (1976). J. Org. Chem. 41, 1811–1821. CrossRef CAS Google Scholar
Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoji, T., Ito, S., Okujima, T. & Morita, N. (2013). Chem. Eur. J. 19, 5721–5730. CrossRef CAS PubMed Google Scholar
Xia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, R. J., Amir, E., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941–2945. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to the special physical properties including redox behavior, azulene is an interesting structure building block for electronic materials design (Förster et al., 2012; Shoji et al., 2013; Xia et al., 2014). In this regard, the present tetrasubstituted azulene derivative, as the title compound, represents a promising intermediate.
The title compound has an almost planar overall geometry with maximum deviations of 0.166 (1) Å for C20 and 0.267 (4) Å for C6 (Fig. 1). In contrast to previously published related compounds (Förster et al., 2014), here the amine group gives rise to the formation of two intramolecular N—H···O hydrogen bonds to the neighbouring carbonyl O atoms O1 and O3 (Table 1 and Fig. 1). Furthermore, atoms O2 and O4 establish two weaker intramolecular C—H···O hydrogen bonds to azulene hydrogen atoms (Table 1 and Fig. 1).
In the crystal, an R22(12) hydrogen bonded inversion dimer motif is formed (Table 1 and Fig. 2). Along the crystallographic b-axis, the corresponding dimers are arranged in stacks (Fig. 2). Despite a plane to plane distance of 3.15 Å between the azulene units of consecutive molecules, no arene···arene interactions can be observed due to the lateral displacement. In direction of the crystallographic a- and c-axes, these stacks are connected via C—H···π contacts [Table 1; Nishio et al., 2009] and weak van der Waals forces, forming a sheets parallel to (10\1).. The absence of arene···arene interactions is a rather rare phenomenon for this class of azulenes, and is probably due to packing effects (Förster et al., 2014).