organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o210-o211

Crystal structure of 1-meth­­oxy­pyrene

CROSSMARK_Color_square_no_text.svg

aInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, D.F., 04510, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F., 04510, Mexico
*Correspondence e-mail: riverage@unam.mx

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 February 2015; accepted 23 February 2015; online 28 February 2015)

The title compound, C17H12O, crystallized with three independent mol­ecules (A, B and C) in the asymmetric unit. In the crystal, the three independent mol­ecules are linked by ππ inter­actions [centroid–centroid distances = 3.551 (3)–3.977 (2) Å], which lead to the formation of trimers. Between the trimers there are a number of C—H⋯π inter­actions generating a laminar arrangement parallel to (010). The meth­oxy­methyl group in mol­ecule A is disordered over two sets of sites, with an occupancy ratio of 0.56 (9):0.44 (9).

1. Related literature

For information concerning π-conjugate systems, see: Dössel et al. (2012[Dössel, L. F., Kamm, V., Howard, I. A., Laquai, F., Pisula, W., Feng, X., Li, C., Takase, M., Kudernac, T., De Feyter, S. & Müllen, K. (2012). J. Am. Chem. Soc. 134, 5876-5886.]); Kim et al. (2008[Kim, H. M., Lee, Y. O., Lim, C. S., Kim, J. S. & Cho, B. R. (2008). J. Org. Chem. 73, 5127-5130.]). For the synthesis of the title compound, see: Almeida et al. (2009[Almeida, S., Rivera, E., Reyna-González, J. M., Huerta, G., Tapia, F. & Aguilar-Martínez, M. (2009). Synth. Met. 159, 1215-1223.]). For details of the structures of pyrene and pyrene derivatives, see: Camerman & Trotter (1965[Camerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636-643.]); Gruber et al. (2006[Gruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569-o2570.], 2010[Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H12O

  • Mr = 232.27

  • Orthorhombic, P c a 21

  • a = 16.4163 (15) Å

  • b = 15.8838 (15) Å

  • c = 13.5669 (13) Å

  • V = 3537.6 (6) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.38 × 0.35 × 0.23 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 15159 measured reflections

  • 5670 independent reflections

  • 3664 reflections with I > 2σ(I)

  • Rint = 0.103

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.170

  • S = 1.01

  • 5670 reflections

  • 500 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C38–C41/C50/C49, C7–C11/C16, C11–C16, and C28–C33 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17CCg1i 0.96 2.93 3.78 (3) 148
C34—H34CCg2i 0.96 2.99 3.770 (7) 140
C19—H19⋯Cg3i 0.93 2.99 3.733 (6) 138
C44—H44⋯Cg4 0.93 2.64 3.529 (6) 160
Symmetry code: (i) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2013 and DIAMOND.

Supporting information


Introduction top

π-conjugated aromatic compounds are promising materials for use in opto-electronic devices, particularly for organic photovoltaics (OPVs). These compounds exhibit both energy and charge transfer, and their absorption and emission wavelengths can be tuned (Dössel et al., 2012). Pyrene derivatives have been extensively studied due to their excellent optical and electronic properties for example, excimer/monomer emission. Moreover, pyrene shows a long fluorescence lifetime which reaches 400 ns in cyclo­hexane solution (Kim et al., 2008). Due to its susceptibility to aromatic substitution at the 1-, 3-, 6- and 8-positions, pyrene is often functionalized at these positions in order to improve its properties. In this context the title compound, 1-meth­oxy­pyrene, appears in the literature as an important inter­mediate in the synthesis of more elaborate compounds. Thus, in this context we report herein on the synthesis and crystal structure of the title compound.

Experimental top

Synthesis and crystallization top

1-meth­oxy­pyrene was synthesized from 1-pyrenol which is synthesized from 1-pyrenecarboxaldehyde that is commercially available (Aldrich). Pyrenol (0.3 g, 1.37 mmol) was added to a solution of KOH (0.23 g, 4.12 mmol) dissolved in DMSO (7 mL). To this solution, methyl iodide (0.25 g, 1.78 mmol) was added and the resulting reaction mixture was stirred for 1 h at room temperature to produce the desired product (Almeida et al., 2009). Yellow crystals of the title compound were obtained by recrystallization from CHCl3. 1H NMR (300 MHz, CDCl3): d = 8.47 (d, ArH, 1H), 8.09 (m, ArH, 4H), 7.94 (m, ArH, 4H), 7.55 (d, ArH, 1H), 4.17 (s, CH3, 3H) ppm.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were included in calculated positions and treated as riding: C—H = 0.93 - 0.96 Å with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for other H atoms. The meth­oxy methyl group (C17) in molecule A is disordered over two sites with an occupancy ratio of 0.56 (9):0.44 (9).

Results and discussion top

The asymmetric unit of the title compound consist of three independent molecules (A, B and C), as shown in Fig. 1. The pyrene moiety shows bond lengths and angles similar to those observed for free pyrene (Camerman & Trotter, 1965) and other pyrene derivatives (Gruber et al., 2006, 2010).

In the crystal, the three molecules are linked by π-π inter­actions to give a trimeric motif. The distances between centroids of the aromatic rings have values in the range of 3.551 (3) to 3.977 (2) Å. The most significant are those between molecules A and C [Cg1···Cg9i = 3.755 (3) Å, where Cg1 and Cg9 are the centroids of rings C1—C4/C15/C14 and C35—C38/C49/C48, respectively; symmetry code: (i) x+1/2, -y+1, z] and molecules B and C [Cg6···Cg12ii = 3.551 (3) Å, where Cg6 and Cg12 are the centroids of rings C21—C24/C33/C32 and C45—C50, respectively; symmetry code: (ii) -x+1/2, y, z-1/2]. Between the trimmers there are C—H···π inter­actions generating a laminar arrangement parallel to the ac plane (Table 1 and Fig. 2).

Related literature top

For information concerning π-conjugate systems, see: Dössel et al. (2012); Kim et al. (2008). For the synthesis of the title compound, see: Almeida et al. (2009). For details of the structures of pyrene and pyrene derivatives, see: Camerman & Trotter (1965); Gruber et al. (2006, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 35% probability level. The minor component of the disordered methyl group of molecule A is not shown.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the laminar arrangement as a result of the ππ and C—H···π interactions (dashed lines; see Table 1 for details).
1-Methoxypyrene top
Crystal data top
C17H12ODx = 1.308 Mg m3
Mr = 232.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 8039 reflections
a = 16.4163 (15) Åθ = 2.3–25.4°
b = 15.8838 (15) ŵ = 0.08 mm1
c = 13.5669 (13) ÅT = 298 K
V = 3537.6 (6) Å3Prism, colourless
Z = 120.38 × 0.35 × 0.23 mm
F(000) = 1464
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.103
ϕ and ω scansθmax = 25.4°, θmin = 1.3°
15159 measured reflectionsh = 1916
5670 independent reflectionsk = 1917
3664 reflections with I > 2σ(I)l = 1613
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0923P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.19 e Å3
5670 reflectionsΔρmin = 0.17 e Å3
500 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 restraintsExtinction coefficient: 0.0054 (14)
Crystal data top
C17H12OV = 3537.6 (6) Å3
Mr = 232.27Z = 12
Orthorhombic, Pca21Mo Kα radiation
a = 16.4163 (15) ŵ = 0.08 mm1
b = 15.8838 (15) ÅT = 298 K
c = 13.5669 (13) Å0.38 × 0.35 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
3664 reflections with I > 2σ(I)
15159 measured reflectionsRint = 0.103
5670 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05822 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
5670 reflectionsΔρmin = 0.17 e Å3
500 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2494 (4)0.3042 (4)0.8372 (4)0.0827 (17)
O10.2510 (3)0.3889 (3)0.8159 (4)0.1116 (15)
C170.305 (2)0.433 (3)0.749 (2)0.104 (7)0.56 (9)
H17A0.29220.49220.74950.155*0.56 (9)
H17B0.29790.41160.68320.155*0.56 (9)
H17C0.36040.42520.76910.155*0.56 (9)
C17A0.316 (2)0.400 (4)0.743 (3)0.112 (8)0.44 (9)
H17D0.32090.45800.72560.168*0.44 (9)
H17E0.30350.36750.68470.168*0.44 (9)
H17F0.36690.38020.76990.168*0.44 (9)
C20.3000 (4)0.2432 (6)0.7968 (5)0.101 (2)
H20.33980.25890.75160.121*
C30.2923 (4)0.1605 (5)0.8224 (5)0.096 (2)
H30.32590.12060.79300.115*
C40.2357 (3)0.1354 (4)0.8909 (4)0.0745 (15)
C50.2263 (4)0.0496 (4)0.9180 (6)0.093 (2)
H50.25840.00870.88800.111*
C60.1715 (4)0.0267 (4)0.9865 (5)0.0872 (18)
H60.16700.02991.00320.105*
C70.1209 (3)0.0855 (4)1.0339 (4)0.0716 (15)
C80.0652 (4)0.0625 (4)1.1054 (5)0.0907 (19)
H80.06110.00621.12370.109*
C90.0168 (4)0.1201 (5)1.1492 (5)0.102 (2)
H90.01970.10301.19770.123*
C100.0206 (3)0.2037 (5)1.1234 (4)0.0937 (19)
H100.01330.24251.15430.112*
C110.0753 (3)0.2306 (4)1.0504 (4)0.0681 (14)
C120.0818 (4)0.3160 (4)1.0210 (4)0.0802 (16)
H120.04730.35571.04930.096*
C130.1371 (4)0.3414 (4)0.9526 (4)0.0759 (16)
H130.14010.39780.93460.091*
C140.1909 (3)0.2813 (4)0.9081 (4)0.0689 (14)
C150.1841 (3)0.1954 (3)0.9347 (4)0.0603 (13)
C160.1270 (3)0.1717 (3)1.0065 (3)0.0611 (13)
O20.3921 (2)0.9290 (2)0.8083 (3)0.0832 (11)
C180.4051 (3)0.8500 (3)0.7719 (4)0.0615 (13)
C190.4681 (3)0.7987 (4)0.8002 (4)0.0679 (15)
H190.50640.81780.84560.081*
C200.4747 (3)0.7192 (3)0.7615 (4)0.0658 (14)
H200.51780.68530.78170.079*
C210.4204 (3)0.6878 (3)0.6945 (3)0.0544 (11)
C220.4248 (3)0.6049 (3)0.6535 (4)0.0657 (13)
H220.46590.56880.67430.079*
C230.3714 (3)0.5778 (3)0.5861 (4)0.0671 (14)
H230.37630.52340.56150.080*
C240.3072 (3)0.6302 (3)0.5510 (4)0.0567 (12)
C250.2525 (4)0.6041 (3)0.4791 (4)0.0705 (14)
H250.25700.55040.45230.085*
C260.1920 (4)0.6570 (4)0.4474 (4)0.0802 (17)
H260.15590.63870.39910.096*
C270.1837 (3)0.7364 (4)0.4857 (4)0.0717 (14)
H270.14240.77140.46280.086*
C280.2367 (3)0.7654 (3)0.5585 (3)0.0548 (11)
C290.2295 (3)0.8470 (3)0.6006 (4)0.0625 (13)
H290.18790.88230.57930.075*
C300.2814 (3)0.8747 (3)0.6706 (4)0.0612 (12)
H300.27380.92760.69850.073*
C310.3481 (3)0.8234 (3)0.7022 (3)0.0493 (11)
C320.3559 (3)0.7414 (3)0.6626 (3)0.0468 (10)
C330.3002 (3)0.7124 (3)0.5909 (3)0.0469 (11)
C340.4481 (4)0.9611 (4)0.8794 (5)0.104 (2)
H34A0.43071.01580.90060.156*
H34B0.50130.96510.85040.156*
H34C0.45010.92380.93500.156*
O30.0805 (3)0.8861 (3)1.0803 (3)0.0949 (13)
C350.0829 (3)0.8032 (3)1.0554 (4)0.0718 (15)
C360.1395 (3)0.7484 (4)1.0944 (5)0.0843 (17)
H360.17870.76741.13870.101*
C370.1370 (3)0.6642 (4)1.0665 (5)0.0856 (18)
H370.17420.62701.09440.103*
C380.0814 (3)0.6333 (4)0.9990 (4)0.0684 (14)
C390.0762 (3)0.5470 (4)0.9699 (5)0.0816 (17)
H390.11140.50830.99860.098*
C400.0228 (4)0.5201 (4)0.9033 (5)0.0830 (17)
H400.02200.46340.88630.100*
C410.0339 (3)0.5768 (4)0.8569 (4)0.0691 (15)
C420.0902 (4)0.5515 (4)0.7864 (4)0.0825 (16)
H420.09140.49580.76550.099*
C430.1446 (4)0.6093 (5)0.7471 (5)0.0878 (18)
H430.18130.59200.69900.105*
C440.1451 (3)0.6915 (4)0.7781 (4)0.0781 (16)
H440.18290.72890.75170.094*
C450.0903 (3)0.7196 (3)0.8481 (4)0.0610 (13)
C460.0894 (3)0.8047 (3)0.8818 (4)0.0716 (15)
H460.12780.84220.85730.086*
C470.0350 (3)0.8320 (3)0.9476 (4)0.0702 (15)
H470.03620.88790.96780.084*
C480.0247 (3)0.7770 (3)0.9872 (4)0.0607 (13)
C490.0249 (3)0.6913 (3)0.9580 (3)0.0594 (13)
C500.0328 (3)0.6629 (3)0.8874 (3)0.0564 (12)
C510.1360 (4)0.9177 (4)1.1498 (6)0.113 (2)
H51A0.12300.97541.16420.170*
H51B0.13270.88501.20920.170*
H51C0.19020.91441.12360.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (4)0.115 (5)0.062 (4)0.023 (4)0.007 (3)0.007 (3)
O10.103 (3)0.135 (4)0.097 (3)0.037 (3)0.001 (3)0.029 (3)
C170.095 (11)0.128 (16)0.088 (8)0.044 (11)0.007 (7)0.025 (11)
C17A0.115 (13)0.13 (2)0.094 (11)0.044 (14)0.002 (7)0.047 (14)
C20.055 (4)0.185 (8)0.063 (4)0.001 (4)0.007 (3)0.011 (5)
C30.077 (4)0.134 (6)0.078 (4)0.017 (4)0.001 (4)0.013 (4)
C40.055 (3)0.102 (5)0.066 (3)0.011 (3)0.009 (3)0.016 (3)
C50.077 (4)0.098 (5)0.103 (5)0.030 (4)0.019 (4)0.024 (4)
C60.085 (4)0.077 (4)0.099 (5)0.018 (3)0.020 (4)0.004 (4)
C70.065 (3)0.086 (4)0.064 (3)0.000 (3)0.023 (3)0.008 (3)
C80.091 (5)0.106 (5)0.075 (4)0.006 (4)0.010 (4)0.016 (4)
C90.098 (5)0.133 (6)0.076 (5)0.037 (5)0.001 (4)0.027 (5)
C100.077 (4)0.141 (6)0.063 (4)0.003 (4)0.011 (3)0.014 (4)
C110.064 (3)0.089 (4)0.052 (3)0.004 (3)0.001 (3)0.008 (3)
C120.078 (4)0.093 (5)0.070 (4)0.010 (3)0.010 (3)0.019 (3)
C130.087 (4)0.071 (4)0.069 (4)0.001 (3)0.013 (3)0.010 (3)
C140.058 (3)0.097 (4)0.051 (3)0.004 (3)0.006 (2)0.010 (3)
C150.052 (3)0.076 (4)0.052 (3)0.006 (2)0.011 (2)0.005 (3)
C160.052 (3)0.081 (4)0.050 (3)0.001 (3)0.012 (2)0.003 (3)
O20.084 (3)0.078 (3)0.087 (3)0.012 (2)0.023 (2)0.009 (2)
C180.063 (3)0.067 (3)0.054 (3)0.012 (3)0.003 (2)0.002 (2)
C190.057 (3)0.093 (4)0.054 (3)0.017 (3)0.014 (2)0.015 (3)
C200.052 (3)0.080 (4)0.065 (3)0.004 (3)0.005 (3)0.021 (3)
C210.049 (3)0.065 (3)0.049 (3)0.001 (2)0.005 (2)0.020 (2)
C220.067 (3)0.066 (3)0.064 (3)0.011 (3)0.010 (3)0.020 (3)
C230.079 (3)0.055 (3)0.067 (3)0.002 (3)0.021 (3)0.006 (3)
C240.060 (3)0.060 (3)0.050 (3)0.012 (2)0.015 (2)0.008 (2)
C250.079 (4)0.070 (4)0.062 (3)0.022 (3)0.011 (3)0.008 (3)
C260.078 (4)0.100 (5)0.063 (3)0.030 (4)0.012 (3)0.002 (3)
C270.066 (3)0.083 (4)0.066 (3)0.013 (3)0.013 (3)0.012 (3)
C280.052 (3)0.059 (3)0.054 (3)0.008 (2)0.007 (2)0.015 (2)
C290.060 (3)0.053 (3)0.074 (3)0.002 (2)0.014 (3)0.013 (2)
C300.067 (3)0.046 (3)0.070 (3)0.000 (2)0.006 (3)0.009 (2)
C310.048 (2)0.056 (3)0.044 (2)0.005 (2)0.000 (2)0.010 (2)
C320.049 (2)0.049 (3)0.042 (2)0.007 (2)0.005 (2)0.015 (2)
C330.053 (3)0.048 (3)0.039 (2)0.012 (2)0.002 (2)0.010 (2)
C340.108 (5)0.106 (5)0.098 (5)0.026 (4)0.025 (4)0.025 (4)
O30.095 (3)0.089 (3)0.101 (3)0.021 (2)0.016 (3)0.015 (2)
C350.067 (3)0.077 (4)0.071 (4)0.008 (3)0.005 (3)0.024 (3)
C360.062 (3)0.117 (5)0.074 (4)0.013 (3)0.007 (3)0.012 (4)
C370.056 (3)0.116 (5)0.085 (4)0.020 (3)0.001 (3)0.019 (4)
C380.048 (3)0.092 (4)0.065 (3)0.014 (3)0.004 (3)0.015 (3)
C390.071 (4)0.087 (4)0.087 (4)0.033 (3)0.008 (3)0.006 (3)
C400.078 (4)0.085 (4)0.086 (4)0.024 (3)0.009 (3)0.001 (3)
C410.059 (3)0.086 (4)0.062 (3)0.013 (3)0.014 (3)0.009 (3)
C420.081 (4)0.099 (4)0.067 (4)0.007 (3)0.010 (3)0.008 (3)
C430.076 (4)0.122 (6)0.065 (4)0.003 (4)0.006 (3)0.011 (4)
C440.069 (4)0.100 (5)0.066 (4)0.006 (3)0.003 (3)0.025 (3)
C450.056 (3)0.075 (4)0.052 (3)0.000 (3)0.004 (2)0.026 (3)
C460.063 (3)0.072 (4)0.080 (4)0.004 (3)0.001 (3)0.035 (3)
C470.071 (4)0.062 (3)0.078 (4)0.005 (3)0.001 (3)0.032 (3)
C480.051 (3)0.074 (4)0.056 (3)0.004 (2)0.007 (2)0.022 (3)
C490.046 (3)0.076 (4)0.056 (3)0.007 (2)0.010 (2)0.021 (2)
C500.048 (3)0.073 (3)0.049 (3)0.003 (2)0.014 (2)0.015 (2)
C510.109 (5)0.120 (5)0.111 (5)0.039 (4)0.014 (5)0.000 (5)
Geometric parameters (Å, º) top
C1—O11.376 (7)C24—C331.418 (6)
C1—C21.390 (9)C25—C261.371 (8)
C1—C141.407 (8)C25—H250.9300
O1—C171.452 (14)C26—C271.372 (8)
O1—C17A1.470 (18)C26—H260.9300
C17—H17A0.9600C27—C281.394 (7)
C17—H17B0.9600C27—H270.9300
C17—H17C0.9600C28—C331.410 (6)
C17A—H17D0.9600C28—C291.421 (6)
C17A—H17E0.9600C29—C301.350 (7)
C17A—H17F0.9600C29—H290.9300
C2—C31.364 (9)C30—C311.432 (6)
C2—H20.9300C30—H300.9300
C3—C41.374 (8)C31—C321.414 (6)
C3—H30.9300C32—C331.412 (6)
C4—C151.406 (7)C34—H34A0.9600
C4—C51.421 (8)C34—H34B0.9600
C5—C61.343 (9)C34—H34C0.9600
C5—H50.9300O3—C351.360 (6)
C6—C71.406 (8)O3—C511.405 (8)
C6—H60.9300C35—C361.379 (8)
C7—C81.382 (8)C35—C481.394 (7)
C7—C161.423 (7)C36—C371.391 (8)
C8—C91.351 (9)C36—H360.9300
C8—H80.9300C37—C381.382 (8)
C9—C101.375 (9)C37—H370.9300
C9—H90.9300C38—C491.421 (7)
C10—C111.403 (8)C38—C391.428 (8)
C10—H100.9300C39—C401.330 (8)
C11—C161.396 (7)C39—H390.9300
C11—C121.418 (8)C40—C411.439 (8)
C12—C131.360 (8)C40—H400.9300
C12—H120.9300C41—C421.390 (7)
C13—C141.434 (7)C41—C501.429 (7)
C13—H130.9300C42—C431.386 (8)
C14—C151.415 (7)C42—H420.9300
C15—C161.403 (7)C43—C441.373 (8)
O2—C181.365 (5)C43—H430.9300
O2—C341.427 (6)C44—C451.381 (7)
C18—C191.373 (7)C44—H440.9300
C18—C311.395 (6)C45—C501.409 (6)
C19—C201.372 (7)C45—C461.428 (7)
C19—H190.9300C46—C471.335 (8)
C20—C211.368 (7)C46—H460.9300
C20—H200.9300C47—C481.418 (7)
C21—C321.427 (6)C47—H470.9300
C21—C221.431 (7)C48—C491.418 (7)
C22—C231.338 (7)C49—C501.421 (7)
C22—H220.9300C51—H51A0.9600
C23—C241.425 (7)C51—H51B0.9600
C23—H230.9300C51—H51C0.9600
C24—C251.389 (7)
O1—C1—C2126.0 (6)C24—C25—H25119.8
O1—C1—C14114.2 (6)C25—C26—C27121.1 (5)
C2—C1—C14119.8 (6)C25—C26—H26119.4
C1—O1—C17128 (2)C27—C26—H26119.4
C1—O1—C17A106 (3)C26—C27—C28120.7 (5)
O1—C17—H17A109.5C26—C27—H27119.7
O1—C17—H17B109.5C28—C27—H27119.7
H17A—C17—H17B109.5C27—C28—C33119.0 (5)
O1—C17—H17C109.5C27—C28—C29122.3 (5)
H17A—C17—H17C109.5C33—C28—C29118.7 (4)
H17B—C17—H17C109.5C30—C29—C28121.9 (4)
O1—C17A—H17D109.5C30—C29—H29119.0
O1—C17A—H17E109.5C28—C29—H29119.0
H17D—C17A—H17E109.5C29—C30—C31120.5 (4)
O1—C17A—H17F109.5C29—C30—H30119.8
H17D—C17A—H17F109.5C31—C30—H30119.8
H17E—C17A—H17F109.5C18—C31—C32118.5 (4)
C3—C2—C1121.0 (6)C18—C31—C30122.8 (4)
C3—C2—H2119.5C32—C31—C30118.6 (4)
C1—C2—H2119.5C33—C32—C31120.3 (4)
C2—C3—C4121.0 (6)C33—C32—C21119.6 (4)
C2—C3—H3119.5C31—C32—C21120.1 (4)
C4—C3—H3119.5C28—C33—C32119.9 (4)
C3—C4—C15119.8 (6)C28—C33—C24119.4 (4)
C3—C4—C5121.8 (6)C32—C33—C24120.8 (4)
C15—C4—C5118.4 (6)O2—C34—H34A109.5
C6—C5—C4120.8 (6)O2—C34—H34B109.5
C6—C5—H5119.6H34A—C34—H34B109.5
C4—C5—H5119.6O2—C34—H34C109.5
C5—C6—C7122.2 (6)H34A—C34—H34C109.5
C5—C6—H6118.9H34B—C34—H34C109.5
C7—C6—H6118.9C35—O3—C51119.6 (5)
C8—C7—C6122.4 (6)O3—C35—C36122.4 (6)
C8—C7—C16119.0 (6)O3—C35—C48115.7 (5)
C6—C7—C16118.6 (6)C36—C35—C48121.9 (6)
C9—C8—C7121.3 (6)C35—C36—C37118.9 (6)
C9—C8—H8119.3C35—C36—H36120.6
C7—C8—H8119.3C37—C36—H36120.6
C8—C9—C10121.0 (6)C38—C37—C36122.8 (5)
C8—C9—H9119.5C38—C37—H37118.6
C10—C9—H9119.5C36—C37—H37118.6
C9—C10—C11120.2 (6)C37—C38—C49117.4 (5)
C9—C10—H10119.9C37—C38—C39124.2 (5)
C11—C10—H10119.9C49—C38—C39118.4 (5)
C16—C11—C10119.1 (6)C40—C39—C38122.4 (5)
C16—C11—C12118.3 (5)C40—C39—H39118.8
C10—C11—C12122.5 (6)C38—C39—H39118.8
C13—C12—C11121.7 (5)C39—C40—C41121.5 (6)
C13—C12—H12119.1C39—C40—H40119.3
C11—C12—H12119.1C41—C40—H40119.3
C12—C13—C14120.0 (5)C42—C41—C50119.0 (5)
C12—C13—H13120.0C42—C41—C40123.3 (6)
C14—C13—H13120.0C50—C41—C40117.7 (5)
C1—C14—C15118.5 (5)C43—C42—C41120.1 (6)
C1—C14—C13122.4 (6)C43—C42—H42120.0
C15—C14—C13119.1 (5)C41—C42—H42120.0
C16—C15—C4120.9 (5)C44—C43—C42121.1 (6)
C16—C15—C14119.2 (5)C44—C43—H43119.5
C4—C15—C14119.8 (5)C42—C43—H43119.5
C11—C16—C15121.5 (5)C43—C44—C45120.9 (5)
C11—C16—C7119.4 (5)C43—C44—H44119.6
C15—C16—C7119.1 (5)C45—C44—H44119.6
C18—O2—C34118.1 (4)C44—C45—C50119.4 (5)
O2—C18—C19124.2 (5)C44—C45—C46122.2 (5)
O2—C18—C31114.8 (4)C50—C45—C46118.4 (5)
C19—C18—C31121.0 (5)C47—C46—C45122.0 (5)
C20—C19—C18119.9 (5)C47—C46—H46119.0
C20—C19—H19120.0C45—C46—H46119.0
C18—C19—H19120.0C46—C47—C48121.0 (5)
C21—C20—C19122.6 (5)C46—C47—H47119.5
C21—C20—H20118.7C48—C47—H47119.5
C19—C20—H20118.7C35—C48—C49118.1 (5)
C20—C21—C32117.9 (4)C35—C48—C47122.7 (5)
C20—C21—C22124.1 (5)C49—C48—C47119.2 (5)
C32—C21—C22118.0 (4)C48—C49—C50119.4 (4)
C23—C22—C21121.9 (5)C48—C49—C38121.0 (5)
C23—C22—H22119.1C50—C49—C38119.6 (5)
C21—C22—H22119.1C45—C50—C49120.0 (5)
C22—C23—C24121.7 (5)C45—C50—C41119.5 (5)
C22—C23—H23119.2C49—C50—C41120.5 (4)
C24—C23—H23119.2O3—C51—H51A109.5
C25—C24—C33119.4 (5)O3—C51—H51B109.5
C25—C24—C23122.5 (5)H51A—C51—H51B109.5
C33—C24—C23118.1 (4)O3—C51—H51C109.5
C26—C25—C24120.4 (5)H51A—C51—H51C109.5
C26—C25—H25119.8H51B—C51—H51C109.5
C2—C1—O1—C171 (2)O2—C18—C31—C300.3 (6)
C14—C1—O1—C17178.2 (19)C19—C18—C31—C30180.0 (4)
C2—C1—O1—C17A0 (2)C29—C30—C31—C18177.9 (4)
C14—C1—O1—C17A179 (2)C29—C30—C31—C323.4 (7)
O1—C1—C2—C3179.1 (6)C18—C31—C32—C33179.2 (4)
C14—C1—C2—C32.1 (9)C30—C31—C32—C332.0 (6)
C1—C2—C3—C41.8 (10)C18—C31—C32—C210.4 (6)
C2—C3—C4—C150.8 (9)C30—C31—C32—C21178.3 (4)
C2—C3—C4—C5179.5 (6)C20—C21—C32—C33177.9 (4)
C3—C4—C5—C6178.8 (6)C22—C21—C32—C331.4 (6)
C15—C4—C5—C62.5 (8)C20—C21—C32—C311.8 (6)
C4—C5—C6—C70.5 (9)C22—C21—C32—C31178.9 (4)
C5—C6—C7—C8179.1 (5)C27—C28—C33—C32178.2 (4)
C5—C6—C7—C161.3 (8)C29—C28—C33—C321.2 (6)
C6—C7—C8—C9179.5 (6)C27—C28—C33—C241.8 (6)
C16—C7—C8—C90.2 (8)C29—C28—C33—C24178.8 (4)
C7—C8—C9—C100.7 (10)C31—C32—C33—C280.2 (6)
C8—C9—C10—C110.0 (9)C21—C32—C33—C28179.4 (4)
C9—C10—C11—C161.6 (8)C31—C32—C33—C24179.8 (4)
C9—C10—C11—C12179.9 (6)C21—C32—C33—C240.6 (6)
C16—C11—C12—C130.6 (8)C25—C24—C33—C281.4 (6)
C10—C11—C12—C13177.7 (5)C23—C24—C33—C28179.3 (4)
C11—C12—C13—C140.0 (8)C25—C24—C33—C32178.6 (4)
O1—C1—C14—C15179.7 (4)C23—C24—C33—C320.7 (6)
C2—C1—C14—C151.4 (8)C51—O3—C35—C361.5 (8)
O1—C1—C14—C131.0 (7)C51—O3—C35—C48178.9 (5)
C2—C1—C14—C13179.8 (5)O3—C35—C36—C37178.8 (5)
C12—C13—C14—C1179.8 (5)C48—C35—C36—C371.5 (8)
C12—C13—C14—C151.5 (7)C35—C36—C37—C381.8 (9)
C3—C4—C15—C16178.6 (5)C36—C37—C38—C490.4 (8)
C5—C4—C15—C162.7 (7)C36—C37—C38—C39178.9 (6)
C3—C4—C15—C140.1 (7)C37—C38—C39—C40178.7 (5)
C5—C4—C15—C14178.9 (5)C49—C38—C39—C402.8 (8)
C1—C14—C15—C16178.9 (4)C38—C39—C40—C410.6 (8)
C13—C14—C15—C162.3 (7)C39—C40—C41—C42179.4 (5)
C1—C14—C15—C40.5 (7)C39—C40—C41—C502.2 (8)
C13—C14—C15—C4179.2 (4)C50—C41—C42—C430.4 (7)
C10—C11—C16—C15178.6 (4)C40—C41—C42—C43178.0 (5)
C12—C11—C16—C150.2 (7)C41—C42—C43—C441.3 (8)
C10—C11—C16—C72.4 (7)C42—C43—C44—C451.3 (9)
C12—C11—C16—C7179.2 (5)C43—C44—C45—C500.5 (8)
C4—C15—C16—C11179.9 (5)C43—C44—C45—C46179.9 (5)
C14—C15—C16—C111.7 (7)C44—C45—C46—C47178.3 (5)
C4—C15—C16—C70.9 (7)C50—C45—C46—C471.3 (7)
C14—C15—C16—C7179.4 (4)C45—C46—C47—C480.1 (8)
C8—C7—C16—C111.8 (7)O3—C35—C48—C49179.5 (4)
C6—C7—C16—C11177.9 (5)C36—C35—C48—C490.1 (7)
C8—C7—C16—C15179.3 (4)O3—C35—C48—C471.6 (7)
C6—C7—C16—C151.1 (7)C36—C35—C48—C47178.8 (5)
C34—O2—C18—C190.9 (7)C46—C47—C48—C35179.5 (5)
C34—O2—C18—C31179.5 (4)C46—C47—C48—C491.6 (7)
O2—C18—C19—C20178.1 (5)C35—C48—C49—C50178.9 (4)
C31—C18—C19—C201.6 (7)C47—C48—C49—C502.1 (6)
C18—C19—C20—C210.1 (8)C35—C48—C49—C381.6 (7)
C19—C20—C21—C321.5 (7)C47—C48—C49—C38177.3 (4)
C19—C20—C21—C22179.2 (5)C37—C38—C49—C481.3 (7)
C20—C21—C22—C23178.2 (4)C39—C38—C49—C48177.3 (4)
C32—C21—C22—C231.1 (7)C37—C38—C49—C50179.2 (4)
C21—C22—C23—C240.2 (7)C39—C38—C49—C502.2 (7)
C22—C23—C24—C25178.2 (4)C44—C45—C50—C49178.8 (4)
C22—C23—C24—C331.1 (7)C46—C45—C50—C490.8 (6)
C33—C24—C25—C260.4 (7)C44—C45—C50—C412.1 (6)
C23—C24—C25—C26179.7 (5)C46—C45—C50—C41178.3 (4)
C24—C25—C26—C270.1 (8)C48—C49—C50—C450.9 (6)
C25—C26—C27—C280.3 (8)C38—C49—C50—C45178.5 (4)
C26—C27—C28—C331.3 (7)C48—C49—C50—C41179.9 (4)
C26—C27—C28—C29179.4 (5)C38—C49—C50—C410.5 (6)
C27—C28—C29—C30179.5 (4)C42—C41—C50—C452.1 (7)
C33—C28—C29—C300.2 (7)C40—C41—C50—C45176.4 (4)
C28—C29—C30—C312.5 (7)C42—C41—C50—C49178.9 (4)
O2—C18—C31—C32178.4 (4)C40—C41—C50—C492.6 (7)
C19—C18—C31—C321.2 (7)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C38–C41/C50/C49, C7–C11/C16, C11–C16, and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cg1i0.962.933.78 (3)148
C34—H34C···Cg2i0.962.993.770 (7)140
C19—H19···Cg3i0.932.993.733 (6)138
C44—H44···Cg40.932.643.529 (6)160
Symmetry code: (i) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C38–C41/C50/C49, C7–C11/C16, C11–C16, and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cg1i0.962.933.78 (3)148
C34—H34C···Cg2i0.962.993.770 (7)140
C19—H19···Cg3i0.932.993.733 (6)138
C44—H44···Cg40.932.643.529 (6)160
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The financial support of this research by CONACYT (grant No. CB2010-154732) and PAPIIT (grant Nos. IN201711-3 and IN213214-3) is gratefully acknowledged. We are also grateful to CONACYT (project 128788) and PAPIIT (project IN100513).

References

First citationAlmeida, S., Rivera, E., Reyna-González, J. M., Huerta, G., Tapia, F. & Aguilar-Martínez, M. (2009). Synth. Met. 159, 1215–1223.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636–643.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDössel, L. F., Kamm, V., Howard, I. A., Laquai, F., Pisula, W., Feng, X., Li, C., Takase, M., Kudernac, T., De Feyter, S. & Müllen, K. (2012). J. Am. Chem. Soc. 134, 5876–5886.  PubMed Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569–o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, H. M., Lee, Y. O., Lim, C. S., Kim, J. S. & Cho, B. R. (2008). J. Org. Chem. 73, 5127–5130.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o210-o211
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds