metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m57-m58

Crystal structure of bis­­(1-methyl-1H-imidazole-κN3)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)iron(II)–1-methyl-1H-imidazole (1/2)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA
*Correspondence e-mail: guanye@ou.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 24 December 2014; accepted 4 February 2015; online 11 February 2015)

The title compound, [Fe(C44H28N4)(C4H6N2)2]·2C4H6N2, is a six-coordinate FeII–porphyrinate complex with the metal located on a center of inversion and coordinated by two axial 1-methyl­imidazole ligands; the complex crystallizes as a 1-methyl­imidazole disolvate. The 1-methyl­imidazole group bonded to the FeII atom [occupancy ratio 0.789 (4):0.211 (4)] and the unbound 1-methyl­imidazole mol­ecule [0.519 (4):0.481 (4)] were disordered. The average Fe—N(porphyrinate) bond length is 1.998 (3) Å and the axial Fe—N(imidazole) bond length is 1.9970 (12) Å. In the crystal, mol­ecules are linked into a three-mol­ecule aggregate by two weak C—H⋯N inter­actions.

1. Related literature

For the function and structure of bis-histidine-coordinated cytochromes b, see: Xia et al. (1997[Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L. & Deisenhofer, J. (1997). Science, 277, 60-66.]). For the structures of other models of bis-histidine-coordinated hemes in proteins, see: Walker (2004[Walker, F. A. (2004). Chem. Rev. 104, 589-616.]). For the parallel and perpendicular orientation preferences of imidazole ligands in model porphyrins, see: Safo et al. (1991[Safo, M. K., Gupta, G. P., Walker, F. A. & Scheidt, W. R. (1991). J. Am. Chem. Soc. 113, 5497-5510]). For the synthesis of some bis-imidazole complexes, see: Higgins et al. (1991[Higgins, T., Safo, M. K. & Scheidt, W. R. (1991). Inorg. Chim. Acta, 178, 261-267.]). The structure of Fe(TPP)(1-MeIm)2 (i.e. the solvate-free title compound) was briefly mentioned in a meeting abstract, but no structural information is available, see: Steffen et al. (1978[Steffen, W. L., Chun, H. K., Hoard, J. L. & Reed, C. A. (1978). 175th National Meeting of the American Chemical Society, Anaheim, California, USA. Abstract.]). For an example of a complex with a low-spin ferrous center, see: Scheidt & Reed (1981[Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543-555.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Fe(C44H28N4)(C4H6N2)2]·2C4H6N2

  • Mr = 996.98

  • Triclinic, [P \overline 1]

  • a = 9.3108 (4) Å

  • b = 10.1943 (4) Å

  • c = 13.4745 (5) Å

  • α = 81.557 (2)°

  • β = 79.143 (2)°

  • γ = 77.797 (3)°

  • V = 1220.03 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.26 × 0.26 × 0.04 mm

2.2. Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.986

  • 18378 measured reflections

  • 6043 independent reflections

  • 5263 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.00

  • 6043 reflections

  • 432 parameters

  • 377 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N3Ai 0.95 2.55 3.478 (4) 164
Symmetry code: (i) x+1, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

Bis-histidine coordinated hemes are present in a number of cytochrome b complexes, and are known to be involved in electron transfer processes (Xia et al., 1997). The parallel and perpendicular relative orientations of the histidine ligands are believed to have correlations with the spectroscopic properties of the proteins (Walker, 2004). As models of bis-histidine coordinated cytochrome b, several cationic bis-imidazole coordinated porphyrin complexes have been synthesized and their structures have been determined (Safo et al., 1991). Here, we report the molecular structure of a neutral bis-imidazole coordinated FeII complex, Fe(TPP)(1-MeIm)2.2(1-MeIm). The molecular structure of the titled compound is shown in Fig. 1. The porphyrin complex was located on an inversion center. The 1-methyl­imidazole groups bonded to the metal and the unbound 1-methyl­imidazoles were disordered. The average Fe—Np bond distance is 1.998 (3) Å and the axial Fe—NIm distance is 1.9970 (12) Å, suggesting a low-spin ferrous center (Scheidt & Reed, 1981). The two 1-MeIm planes are mutually parallel. The projection of the axial ligand has a dihedral angle of 28.04 (15)° with the closest Fe—Np bond.

Experimental top

The Fe(TPP)(1-MeIm)2.2(1-MeIm) was obtained serendipitously as follows: To a 10 ml CH2Cl2 solution of (TPP)FeCl (0.010 g, 0.014 mmol) was added N-hy­droxy­amphetamine (7 mg, 46.3 mmol) and 1-MeIm (0.05 ml, 29.0 mmol) under nitro­gen. The color of the solution changed from brown to reddish purple during a 6 h period. The solution was dried under reduced pressure. The residue was dissolved in CH2Cl2 and filtered, and an equal volume of hexane was added. A red plate shaped crystal grew from the slow evaporation of this mixture at room temperature under nitro­gen.

Refinement top

H atoms were located geometrically and treated as riding on their parent atoms with C—H = 0.95 Å for aromatic and 0.98 Å for aliphatic, with Uiso(H) = 1.2–1.5Ueq(C). The 1-methyl­imidazole groups bonded to the metal were disordered. The occupancies of the metal bound ligands were refined to 0.789 (4) and 0.211 (4) for the unprimed and primed atoms. The occupancies of the unbound imidazoles refined to 0.519 (4) and 0.481 (4) for the A and B molecules.

Related literature top

For the function and structure of bis-histidine-coordinated cytochromes b, see: Xia et al. (1997). For the structures of other models of bis-histidine-coordinated hemes in proteins, see: Walker (2004). For the parallel and perpendicular orientation preferences of imidazoles ligands in model porphyrins, see: Safo et al. (1991). For the synthesis of some bis-imidazole complexes, see: Higgins et al. (1991). The structure of Fe(TPP)(1-MeIm)2 was briefly mentioned in a meeting abstract, but no structural information is available, see: Steffen et al. (1978). For an example of a complex with a low-spin ferrous center, see: Scheidt & Reed (1981).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2015); program(s) used to refine structure: SHELXTL (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
Bis(1-methyl-1H-imidazole-κN3)(5,10,15,20-tetraphenylporphyrinato-κ4N)iron(II)–1-methyl-1H-imidazole (1/2) top
Crystal data top
[Fe(C44H28N4)(C4H6N2)2]·2C4H6N2Z = 1
Mr = 996.98F(000) = 522
Triclinic, P1Dx = 1.357 Mg m3
a = 9.3108 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1943 (4) ÅCell parameters from 8102 reflections
c = 13.4745 (5) Åθ = 2.3–28.3°
α = 81.557 (2)°µ = 0.37 mm1
β = 79.143 (2)°T = 100 K
γ = 77.797 (3)°Plate, red
V = 1220.03 (9) Å30.26 × 0.26 × 0.04 mm
Data collection top
Bruker APEX CCD
diffractometer
5263 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.911, Tmax = 0.986h = 1212
18378 measured reflectionsk = 1313
6043 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.071P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
6043 reflections(Δ/σ)max < 0.001
432 parametersΔρmax = 0.43 e Å3
377 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Fe(C44H28N4)(C4H6N2)2]·2C4H6N2γ = 77.797 (3)°
Mr = 996.98V = 1220.03 (9) Å3
Triclinic, P1Z = 1
a = 9.3108 (4) ÅMo Kα radiation
b = 10.1943 (4) ŵ = 0.37 mm1
c = 13.4745 (5) ÅT = 100 K
α = 81.557 (2)°0.26 × 0.26 × 0.04 mm
β = 79.143 (2)°
Data collection top
Bruker APEX CCD
diffractometer
6043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5263 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.986Rint = 0.018
18378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040377 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
6043 reflectionsΔρmin = 0.36 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.50000.50000.02574 (10)
N10.52081 (14)0.45129 (13)0.35915 (9)0.0280 (3)
N20.60381 (13)0.31382 (13)0.54440 (9)0.0261 (2)
N30.30392 (14)0.44052 (13)0.53811 (10)0.0310 (3)
N40.1140 (2)0.3434 (2)0.54313 (16)0.0257 (5)0.789 (4)
N4'0.0828 (6)0.3902 (8)0.5888 (6)0.0247 (14)0.211 (4)
C10.47503 (17)0.53338 (16)0.27524 (11)0.0313 (3)
C20.5222 (2)0.46249 (18)0.18604 (12)0.0395 (4)
H20.50550.49740.11900.047*
C30.5942 (2)0.33746 (18)0.21543 (12)0.0385 (4)
H30.63780.26780.17320.046*
C40.59236 (17)0.33016 (16)0.32344 (11)0.0304 (3)
C50.65568 (16)0.21560 (16)0.38157 (11)0.0285 (3)
C60.66021 (16)0.21019 (15)0.48511 (11)0.0276 (3)
C70.73309 (17)0.09311 (16)0.54325 (12)0.0317 (3)
H70.77990.00870.51950.038*
C80.72186 (17)0.12684 (16)0.63825 (12)0.0305 (3)
H80.76070.07100.69370.037*
C90.63976 (15)0.26358 (15)0.63937 (11)0.0265 (3)
C100.60348 (16)0.33397 (16)0.72504 (11)0.0291 (3)
C110.72561 (17)0.09204 (15)0.32906 (11)0.0288 (3)
C120.87028 (17)0.07895 (16)0.27499 (11)0.0307 (3)
H120.92560.14790.27290.037*
C130.93466 (18)0.03372 (17)0.22411 (12)0.0329 (3)
H131.03300.04110.18710.040*
C140.85489 (19)0.13543 (17)0.22755 (13)0.0360 (3)
H140.89790.21200.19210.043*
C150.7121 (2)0.12480 (17)0.28294 (15)0.0398 (4)
H150.65810.19520.28670.048*
C160.64794 (18)0.01155 (17)0.33296 (13)0.0358 (3)
H160.54980.00480.37030.043*
C170.65558 (17)0.26479 (16)0.82149 (11)0.0322 (3)
C180.7494 (2)0.32039 (19)0.86635 (13)0.0405 (4)
H180.77800.40310.83590.049*
C190.8014 (2)0.2564 (2)0.95494 (13)0.0466 (4)
H190.86390.29600.98500.056*
C200.7619 (2)0.1348 (2)0.99913 (13)0.0466 (5)
H200.79830.09041.05910.056*
C210.6695 (2)0.0782 (2)0.95580 (13)0.0440 (4)
H210.64270.00530.98610.053*
C220.61509 (18)0.14289 (18)0.86782 (12)0.0370 (4)
H220.55030.10390.83930.044*
C230.1866 (3)0.4950 (3)0.6130 (3)0.0304 (6)0.789 (4)
H230.18860.56220.65440.037*0.789 (4)
C240.0689 (3)0.4316 (3)0.6144 (2)0.0301 (5)0.789 (4)
H240.02540.44670.65690.036*0.789 (4)
C250.2530 (3)0.3543 (3)0.4999 (3)0.0332 (7)0.789 (4)
H250.30850.30390.44660.040*0.789 (4)
C260.0300 (2)0.2484 (2)0.52161 (16)0.0318 (5)0.789 (4)
H26A0.04820.16450.56710.048*0.789 (4)
H26B0.06190.22910.45080.048*0.789 (4)
H26C0.07650.28780.53250.048*0.789 (4)
C23'0.2829 (11)0.3246 (9)0.4974 (10)0.0282 (18)0.211 (4)
H23'0.36010.27250.45460.034*0.211 (4)
C24'0.1416 (9)0.2948 (10)0.5251 (7)0.0319 (15)0.211 (4)
H24'0.09900.22770.50540.038*0.211 (4)
C25'0.1766 (7)0.4706 (11)0.5934 (8)0.0269 (16)0.211 (4)
H25'0.15120.54340.63400.032*0.211 (4)
C26'0.0660 (7)0.4117 (8)0.6480 (6)0.0344 (19)0.211 (4)
H26D0.13910.41150.60440.052*0.211 (4)
H26E0.08640.49890.67540.052*0.211 (4)
H26F0.07290.33930.70420.052*0.211 (4)
N1A0.1929 (6)0.3111 (4)0.1418 (4)0.0464 (10)0.519 (4)
C2A0.0604 (5)0.3741 (5)0.1145 (4)0.0522 (11)0.519 (4)
H2A0.02950.39240.16130.063*0.519 (4)
N3A0.0707 (4)0.4066 (4)0.0165 (3)0.0571 (10)0.519 (4)
C4A0.2185 (14)0.3640 (11)0.0224 (9)0.057 (2)0.519 (4)
H4A0.26060.37410.09240.069*0.519 (4)
C5A0.2950 (7)0.3056 (4)0.0542 (4)0.0515 (11)0.519 (4)
H5A0.39840.26840.04820.062*0.519 (4)
C6A0.2199 (9)0.2633 (8)0.2447 (6)0.062 (2)0.519 (4)
H6AA0.12520.27520.29170.094*0.519 (4)
H6AB0.28650.31490.26340.094*0.519 (4)
H6AC0.26620.16730.24860.094*0.519 (4)
N1B0.2220 (6)0.2984 (4)0.0878 (4)0.0465 (10)0.481 (4)
C2B0.1079 (7)0.3523 (6)0.1580 (4)0.0498 (12)0.481 (4)
H2BB0.02300.41530.14080.060*0.481 (4)
N3B0.1271 (5)0.3090 (4)0.2505 (3)0.0518 (10)0.481 (4)
C4B0.2654 (9)0.2239 (8)0.2407 (7)0.0585 (19)0.481 (4)
H4B0.31300.17740.29580.070*0.481 (4)
C5B0.3215 (5)0.2170 (6)0.1430 (4)0.0681 (16)0.481 (4)
H5B0.41430.16480.11640.082*0.481 (4)
C6B0.2291 (16)0.3218 (12)0.0212 (9)0.069 (3)0.481 (4)
H6BA0.17190.41160.03960.104*0.481 (4)
H6BB0.18720.25310.04400.104*0.481 (4)
H6BC0.33320.31660.05400.104*0.481 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02133 (15)0.03238 (17)0.02061 (15)0.00538 (11)0.00410 (10)0.00776 (11)
N10.0253 (6)0.0330 (6)0.0222 (6)0.0041 (5)0.0041 (5)0.0066 (5)
N20.0219 (5)0.0335 (6)0.0206 (5)0.0063 (5)0.0041 (4)0.0066 (5)
N30.0250 (6)0.0384 (7)0.0268 (6)0.0077 (5)0.0072 (5)0.0118 (5)
N40.0218 (9)0.0272 (11)0.0262 (10)0.0026 (7)0.0042 (7)0.0007 (8)
N4'0.017 (2)0.030 (3)0.028 (3)0.010 (2)0.005 (2)0.003 (2)
C10.0313 (7)0.0370 (8)0.0219 (7)0.0047 (6)0.0048 (6)0.0066 (6)
C20.0497 (10)0.0407 (9)0.0213 (7)0.0009 (7)0.0058 (7)0.0051 (6)
C30.0465 (9)0.0403 (9)0.0228 (7)0.0003 (7)0.0055 (7)0.0024 (6)
C40.0299 (7)0.0351 (8)0.0231 (7)0.0045 (6)0.0046 (5)0.0047 (6)
C50.0245 (7)0.0334 (7)0.0257 (7)0.0057 (5)0.0050 (5)0.0042 (6)
C60.0234 (6)0.0316 (7)0.0260 (7)0.0058 (5)0.0068 (5)0.0070 (5)
C70.0308 (7)0.0336 (8)0.0290 (7)0.0030 (6)0.0106 (6)0.0046 (6)
C80.0277 (7)0.0332 (7)0.0283 (7)0.0036 (6)0.0097 (6)0.0079 (6)
C90.0203 (6)0.0324 (7)0.0244 (7)0.0059 (5)0.0050 (5)0.0081 (5)
C100.0265 (7)0.0359 (8)0.0218 (7)0.0059 (6)0.0051 (5)0.0087 (6)
C110.0283 (7)0.0320 (7)0.0242 (7)0.0041 (6)0.0085 (5)0.0057 (5)
C120.0290 (7)0.0361 (8)0.0271 (7)0.0082 (6)0.0072 (6)0.0025 (6)
C130.0289 (7)0.0387 (8)0.0284 (7)0.0025 (6)0.0073 (6)0.0029 (6)
C140.0392 (9)0.0310 (8)0.0367 (8)0.0005 (6)0.0145 (7)0.0017 (6)
C150.0390 (9)0.0312 (8)0.0512 (10)0.0094 (7)0.0155 (8)0.0036 (7)
C160.0276 (7)0.0358 (8)0.0414 (9)0.0071 (6)0.0062 (6)0.0064 (7)
C170.0311 (7)0.0376 (8)0.0216 (7)0.0013 (6)0.0047 (6)0.0058 (6)
C180.0490 (10)0.0414 (9)0.0290 (8)0.0012 (7)0.0136 (7)0.0016 (7)
C190.0522 (11)0.0545 (11)0.0299 (8)0.0078 (8)0.0175 (8)0.0063 (8)
C200.0513 (10)0.0539 (11)0.0212 (7)0.0179 (8)0.0090 (7)0.0028 (7)
C210.0428 (9)0.0467 (10)0.0279 (8)0.0064 (8)0.0001 (7)0.0136 (7)
C220.0326 (8)0.0425 (9)0.0275 (8)0.0011 (7)0.0026 (6)0.0115 (6)
C230.0236 (10)0.0300 (12)0.0372 (15)0.0075 (8)0.0031 (10)0.0012 (9)
C240.0253 (9)0.0264 (11)0.0353 (13)0.0021 (8)0.0001 (8)0.0030 (9)
C250.0237 (14)0.0454 (15)0.0274 (10)0.0035 (11)0.0058 (11)0.0037 (11)
C260.0272 (9)0.0320 (10)0.0374 (11)0.0071 (7)0.0089 (8)0.0006 (8)
C23'0.009 (3)0.045 (4)0.028 (3)0.009 (3)0.011 (2)0.020 (3)
C24'0.025 (3)0.036 (3)0.031 (3)0.003 (3)0.004 (2)0.001 (3)
C25'0.023 (2)0.033 (3)0.030 (3)0.013 (2)0.018 (2)0.008 (2)
C26'0.022 (3)0.034 (4)0.039 (4)0.002 (3)0.005 (3)0.006 (3)
N1A0.052 (3)0.0387 (19)0.052 (2)0.0148 (18)0.014 (2)0.0006 (18)
C2A0.048 (2)0.056 (3)0.054 (3)0.017 (2)0.0080 (19)0.001 (2)
N3A0.056 (2)0.064 (2)0.053 (2)0.0211 (17)0.0173 (16)0.0093 (17)
C4A0.071 (4)0.062 (5)0.044 (3)0.028 (4)0.004 (3)0.007 (3)
C5A0.052 (3)0.045 (2)0.060 (3)0.008 (2)0.008 (2)0.0175 (19)
C6A0.062 (5)0.071 (6)0.055 (3)0.025 (4)0.016 (3)0.015 (3)
N1B0.040 (2)0.049 (2)0.051 (3)0.0091 (18)0.000 (2)0.016 (2)
C2B0.038 (3)0.051 (3)0.052 (3)0.005 (2)0.003 (2)0.004 (2)
N3B0.052 (2)0.052 (2)0.048 (2)0.0133 (19)0.0001 (18)0.0009 (16)
C4B0.064 (4)0.051 (4)0.067 (3)0.007 (3)0.033 (3)0.025 (3)
C5B0.052 (3)0.084 (4)0.071 (3)0.016 (2)0.024 (2)0.041 (3)
C6B0.062 (4)0.090 (9)0.050 (3)0.008 (5)0.000 (3)0.011 (5)
Geometric parameters (Å, º) top
Fe1—N11.9959 (13)C17—C181.399 (2)
Fe1—N1i1.9960 (13)C18—C191.393 (2)
Fe1—N3i1.9970 (12)C18—H180.9500
Fe1—N31.9970 (12)C19—C201.385 (3)
Fe1—N2i2.0008 (12)C19—H190.9500
Fe1—N22.0008 (12)C20—C211.383 (3)
N1—C41.381 (2)C20—H200.9500
N1—C11.3832 (18)C21—C221.397 (2)
N2—C61.373 (2)C21—H210.9500
N2—C91.3814 (17)C22—H220.9500
N3—C25'1.279 (5)C23—C241.380 (3)
N3—C251.290 (3)C23—H230.9500
N3—C231.419 (3)C24—H240.9500
N3—C23'1.437 (5)C25—H250.9500
N4—C251.336 (3)C26—H26A0.9800
N4—C241.360 (3)C26—H26B0.9800
N4—C261.456 (3)C26—H26C0.9801
N4'—C25'1.333 (5)C23'—C24'1.383 (5)
N4'—C24'1.350 (5)C23'—H23'0.9500
N4'—C26'1.453 (4)C24'—H24'0.9500
C1—C10i1.395 (2)C25'—H25'0.9500
C1—C21.443 (2)C26'—H26D0.9800
C2—C31.350 (2)C26'—H26E0.9800
C2—H20.9500C26'—H26F0.9800
C3—C41.443 (2)N1A—C2A1.355 (6)
C3—H30.9500N1A—C5A1.369 (6)
C4—C51.393 (2)N1A—C6A1.452 (8)
C5—C61.396 (2)C2A—N3A1.304 (6)
C5—C111.501 (2)C2A—H2A0.9500
C6—C71.443 (2)N3A—C4A1.378 (13)
C7—C81.353 (2)C4A—C5A1.358 (12)
C7—H70.9500C4A—H4A0.9500
C8—C91.442 (2)C5A—H5A0.9500
C8—H80.9500C6A—H6AA0.9800
C9—C101.398 (2)C6A—H6AB0.9800
C10—C1i1.395 (2)C6A—H6AC0.9800
C10—C171.4984 (19)N1B—C2B1.361 (6)
C11—C161.390 (2)N1B—C5B1.362 (7)
C11—C121.395 (2)N1B—C6B1.445 (13)
C12—C131.391 (2)C2B—N3B1.292 (7)
C12—H120.9500C2B—H2BB0.9500
C13—C141.388 (2)N3B—C4B1.388 (7)
C13—H130.9500C4B—C5B1.328 (10)
C14—C151.388 (3)C4B—H4B0.9500
C14—H140.9500C5B—H5B0.9500
C15—C161.389 (3)C6B—H6BA0.9800
C15—H150.9500C6B—H6BB0.9801
C16—H160.9500C6B—H6BC0.9800
C17—C221.399 (2)
N1—Fe1—N1i180.0C19—C18—C17121.04 (18)
N1—Fe1—N3i89.17 (5)C19—C18—H18119.5
N1i—Fe1—N3i90.83 (5)C17—C18—H18119.5
N1—Fe1—N390.83 (5)C20—C19—C18119.92 (19)
N1i—Fe1—N389.17 (5)C20—C19—H19120.0
N3i—Fe1—N3180.00 (3)C18—C19—H19120.0
N1—Fe1—N2i89.66 (5)C21—C20—C19119.86 (16)
N1i—Fe1—N2i90.34 (5)C21—C20—H20120.1
N3i—Fe1—N2i90.09 (5)C19—C20—H20120.1
N3—Fe1—N2i89.91 (5)C20—C21—C22120.51 (18)
N1—Fe1—N290.33 (5)C20—C21—H21119.7
N1i—Fe1—N289.67 (5)C22—C21—H21119.7
N3i—Fe1—N289.91 (5)C21—C22—C17120.32 (18)
N3—Fe1—N290.09 (5)C21—C22—H22119.8
N2i—Fe1—N2180.00 (4)C17—C22—H22119.8
C4—N1—C1105.23 (12)C24—C23—N3107.0 (2)
C4—N1—Fe1127.00 (10)C24—C23—H23126.5
C1—N1—Fe1127.67 (11)N3—C23—H23126.5
C6—N2—C9105.26 (12)N4—C24—C23106.8 (2)
C6—N2—Fe1126.95 (9)N4—C24—H24126.6
C9—N2—Fe1127.73 (11)C23—C24—H24126.6
C25—N3—C23105.8 (2)N3—C25—N4112.9 (3)
C25'—N3—C23'99.9 (5)N3—C25—H25123.6
C25'—N3—Fe1140.9 (4)N4—C25—H25123.6
C25—N3—Fe1129.68 (18)N4—C26—H26A109.5
C23—N3—Fe1124.41 (14)N4—C26—H26B109.5
C23'—N3—Fe1119.3 (4)H26A—C26—H26B109.5
C25—N4—C24107.6 (2)N4—C26—H26C109.5
C25—N4—C26125.9 (2)H26A—C26—H26C109.5
C24—N4—C26126.5 (2)H26B—C26—H26C109.5
C25'—N4'—C24'113.0 (6)C24'—C23'—N3114.8 (7)
C25'—N4'—C26'119.9 (7)C24'—C23'—H23'122.6
C24'—N4'—C26'127.0 (7)N3—C23'—H23'122.6
N1—C1—C10i125.77 (14)N4'—C24'—C23'98.4 (7)
N1—C1—C2110.08 (14)N4'—C24'—H24'130.8
C10i—C1—C2124.14 (14)C23'—C24'—H24'130.8
C3—C2—C1107.41 (14)N3—C25'—N4'113.7 (6)
C3—C2—H2126.3N3—C25'—H25'123.2
C1—C2—H2126.3N4'—C25'—H25'123.2
C2—C3—C4106.69 (15)N4'—C26'—H26D109.5
C2—C3—H3126.7N4'—C26'—H26E109.5
C4—C3—H3126.7H26D—C26'—H26E109.5
N1—C4—C5125.81 (14)N4'—C26'—H26F109.5
N1—C4—C3110.58 (13)H26D—C26'—H26F109.5
C5—C4—C3123.61 (15)H26E—C26'—H26F109.5
C4—C5—C6123.75 (15)C2A—N1A—C5A106.7 (4)
C4—C5—C11117.86 (13)C2A—N1A—C6A125.9 (6)
C6—C5—C11118.37 (13)C5A—N1A—C6A127.4 (5)
N2—C6—C5126.04 (13)N3A—C2A—N1A112.0 (4)
N2—C6—C7110.72 (13)N3A—C2A—H2A124.0
C5—C6—C7123.18 (15)N1A—C2A—H2A124.0
C8—C7—C6106.68 (14)C2A—N3A—C4A105.3 (6)
C8—C7—H7126.7C5A—C4A—N3A109.9 (9)
C6—C7—H7126.7C5A—C4A—H4A125.1
C7—C8—C9107.00 (13)N3A—C4A—H4A125.1
C7—C8—H8126.5C4A—C5A—N1A106.1 (7)
C9—C8—H8126.5C4A—C5A—H5A127.0
N2—C9—C10125.56 (14)N1A—C5A—H5A127.0
N2—C9—C8110.32 (13)N1A—C6A—H6AA109.5
C10—C9—C8124.12 (13)N1A—C6A—H6AB109.5
C1i—C10—C9123.47 (13)H6AA—C6A—H6AB109.5
C1i—C10—C17118.17 (14)N1A—C6A—H6AC109.5
C9—C10—C17118.33 (14)H6AA—C6A—H6AC109.5
C16—C11—C12118.56 (15)H6AB—C6A—H6AC109.5
C16—C11—C5120.91 (14)C2B—N1B—C5B105.1 (5)
C12—C11—C5120.53 (14)C2B—N1B—C6B126.0 (7)
C13—C12—C11120.91 (15)C5B—N1B—C6B128.9 (7)
C13—C12—H12119.5N3B—C2B—N1B113.0 (6)
C11—C12—H12119.5N3B—C2B—H2BB123.5
C14—C13—C12119.83 (15)N1B—C2B—H2BB123.5
C14—C13—H13120.1C2B—N3B—C4B104.3 (6)
C12—C13—H13120.1C5B—C4B—N3B109.9 (6)
C15—C14—C13119.73 (16)C5B—C4B—H4B125.0
C15—C14—H14120.1N3B—C4B—H4B125.0
C13—C14—H14120.1C4B—C5B—N1B107.6 (5)
C14—C15—C16120.17 (16)C4B—C5B—H5B126.2
C14—C15—H15119.9N1B—C5B—H5B126.2
C16—C15—H15119.9N1B—C6B—H6BA109.5
C15—C16—C11120.78 (15)N1B—C6B—H6BB109.5
C15—C16—H16119.6H6BA—C6B—H6BB109.5
C11—C16—H16119.6N1B—C6B—H6BC109.5
C22—C17—C18118.34 (14)H6BA—C6B—H6BC109.5
C22—C17—C10121.53 (15)H6BB—C6B—H6BC109.5
C18—C17—C10120.11 (15)
C4—N1—C1—C10i179.49 (15)C14—C15—C16—C110.5 (3)
Fe1—N1—C1—C10i4.0 (2)C12—C11—C16—C150.9 (2)
C4—N1—C1—C21.29 (18)C5—C11—C16—C15178.97 (14)
Fe1—N1—C1—C2175.20 (11)C1i—C10—C17—C22123.17 (17)
N1—C1—C2—C30.9 (2)C9—C10—C17—C2258.6 (2)
C10i—C1—C2—C3179.91 (16)C1i—C10—C17—C1858.1 (2)
C1—C2—C3—C40.1 (2)C9—C10—C17—C18120.08 (17)
C1—N1—C4—C5179.10 (15)C22—C17—C18—C190.0 (3)
Fe1—N1—C4—C54.4 (2)C10—C17—C18—C19178.75 (16)
C1—N1—C4—C31.26 (17)C17—C18—C19—C200.9 (3)
Fe1—N1—C4—C3175.27 (11)C18—C19—C20—C210.8 (3)
C2—C3—C4—N10.8 (2)C19—C20—C21—C220.2 (3)
C2—C3—C4—C5179.59 (16)C20—C21—C22—C171.1 (3)
N1—C4—C5—C62.7 (2)C18—C17—C22—C211.0 (2)
C3—C4—C5—C6176.88 (15)C10—C17—C22—C21177.77 (15)
N1—C4—C5—C11178.57 (14)C25—N3—C23—C240.9 (3)
C3—C4—C5—C111.8 (2)Fe1—N3—C23—C24177.80 (16)
C9—N2—C6—C5177.47 (14)C25—N4—C24—C230.6 (3)
Fe1—N2—C6—C50.1 (2)C26—N4—C24—C23176.1 (2)
C9—N2—C6—C70.16 (16)N3—C23—C24—N40.2 (3)
Fe1—N2—C6—C7177.38 (10)C23—N3—C25—N41.3 (4)
C4—C5—C6—N20.4 (2)Fe1—N3—C25—N4178.00 (15)
C11—C5—C6—N2179.09 (13)C24—N4—C25—N31.2 (4)
C4—C5—C6—C7176.61 (14)C26—N4—C25—N3175.5 (2)
C11—C5—C6—C72.1 (2)C25'—N3—C23'—C24'3.6 (13)
N2—C6—C7—C80.60 (17)Fe1—N3—C23'—C24'177.6 (7)
C5—C6—C7—C8176.80 (14)C25'—N4'—C24'—C23'2.9 (12)
C6—C7—C8—C91.07 (17)C26'—N4'—C24'—C23'177.8 (9)
C6—N2—C9—C10179.52 (14)N3—C23'—C24'—N4'4.0 (12)
Fe1—N2—C9—C103.0 (2)C23'—N3—C25'—N4'1.5 (12)
C6—N2—C9—C80.84 (15)Fe1—N3—C25'—N4'179.9 (4)
Fe1—N2—C9—C8176.68 (9)C24'—N4'—C25'—N30.9 (14)
C7—C8—C9—N21.24 (17)C26'—N4'—C25'—N3179.7 (8)
C7—C8—C9—C10179.11 (14)C5A—N1A—C2A—N3A1.0 (5)
N2—C9—C10—C1i0.1 (2)C6A—N1A—C2A—N3A179.4 (5)
C8—C9—C10—C1i179.49 (14)N1A—C2A—N3A—C4A0.7 (7)
N2—C9—C10—C17178.22 (13)C2A—N3A—C4A—C5A0.2 (9)
C8—C9—C10—C171.4 (2)N3A—C4A—C5A—N1A0.4 (9)
C4—C5—C11—C1697.78 (18)C2A—N1A—C5A—C4A0.9 (7)
C6—C5—C11—C1683.43 (18)C6A—N1A—C5A—C4A179.2 (7)
C4—C5—C11—C1282.09 (18)C5B—N1B—C2B—N3B1.6 (6)
C6—C5—C11—C1296.70 (17)C6B—N1B—C2B—N3B176.7 (8)
C16—C11—C12—C131.4 (2)N1B—C2B—N3B—C4B1.9 (7)
C5—C11—C12—C13178.47 (13)C2B—N3B—C4B—C5B1.6 (9)
C11—C12—C13—C140.5 (2)N3B—C4B—C5B—N1B0.7 (9)
C12—C13—C14—C150.9 (2)C2B—N1B—C5B—C4B0.4 (7)
C13—C14—C15—C161.4 (2)C6B—N1B—C5B—C4B177.7 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N3Aii0.952.553.478 (4)164
Symmetry code: (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N3Ai0.952.553.478 (4)164
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors wish to thank the National Science Foundation (CHE-1213674) and the University of Oklahoma for funds to support this research and to acquire the diffractometer and computers used in this work.

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHiggins, T., Safo, M. K. & Scheidt, W. R. (1991). Inorg. Chim. Acta, 178, 261–267.  CSD CrossRef Web of Science Google Scholar
First citationSafo, M. K., Gupta, G. P., Walker, F. A. & Scheidt, W. R. (1991). J. Am. Chem. Soc. 113, 5497–5510  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543–555.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffen, W. L., Chun, H. K., Hoard, J. L. & Reed, C. A. (1978). 175th National Meeting of the American Chemical Society, Anaheim, California, USA. Abstract.  Google Scholar
First citationWalker, F. A. (2004). Chem. Rev. 104, 589–616.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L. & Deisenhofer, J. (1997). Science, 277, 60–66.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m57-m58
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds