research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 324-326

Crystal structure of bis­­(μ2-4-tert-butyl-2-formyl­phenolato)-1:2κ3O1,O2:O1;3:4κ3O1,O2:O1-bis­­(4-tert-butyl-2-formyl­phenolato)-2κ2O1,O2;4κ2O1,O2-di-μ3-methoxido-1:2:3κ3O;1:3:4κ3O-di-μ2-methoxido-1:4κ2O;2:3κ2O-tetra­copper(II)

CROSSMARK_Color_square_no_text.svg

aInstitute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, and bTU Kaiserslautern, Physikalische Chemie, Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
*Correspondence e-mail: prosenc@chemie.uni-kl.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 February 2015; accepted 23 February 2015; online 28 February 2015)

The structure of the title compound, [Cu4(CH3O)4(C11H13O2)4], consists of dimeric dinuclear copper(II) complexes oriented around a centre of inversion. Within each dinuclear fragment, the two CuII atoms are in a distorted square-planar coordination sphere. Two neighbouring fragments are linked by four apical Cu—O contacts, yielding an overall square-pyramidal coordination environment for each of the four CuII atoms. The mol­ecules are arranged in layers parallel to (101). Non-classical C—H⋯O hydrogen-bonding inter­actions are observed between the layers.

1. Chemical context

The title compound was obtained as a by-product in the synthesis of an unsymmetrically substituted copper(II) salophene complex (Kleij et al., 2005[Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626-4634.]). The latter is of inter­est with respect to magnetic properties and cooperative effects between the metal(II) atoms (Kahn et al., 1982[Kahn, O., Galy, J., Journaux, Y., Jaud, J. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 2165-2176.]). In this compound, three types of bridging oxygen ligands are found. The magnetic exchange coupling between the paramagnetic CuII atoms is considered as strong in this type of bridges since the Cu—O—Cu angles are found to be close to 90°. The distances and coordination modes between CuII atoms vary and thus, the compound is a suitable study case for investigating different spin-coupling paths. This knowledge is deemed important for the design of tailor-made magnetic compounds.

[Scheme 1]

2. Structural commentary

The tetra­nuclear copper(II) title compound consists of two dinuclear complex fragments oriented around a centre of inversion. Within each fragment the two CuII atoms are in a distorted square-planar coordination sphere, thereby bridged by two κ2O methoxido ligands. The terminal bidentate 4-tert-butyl-2-formyl­phenolate ligand is coordinating each CuII atom in a manner generating a pseudo-mirror plane perpendicular to the four-membered bis-methoxido dicopper ring in the centre of the fragment. A longer Cu—O bond completes the overall square-pyramidal coordination for each CuII atom and links the two dinuclear fragments together. The distance between the two copper(II) ions Cu1 and Cu2 within the binuclear fragment is 2.9938 (2) Å (Fig. 1[link]) which is in the same range as in related complexes (Kahn et al., 1982[Kahn, O., Galy, J., Journaux, Y., Jaud, J. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 2165-2176.]).

[Figure 1]
Figure 1
The tetra­nuclear mol­ecule in the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 1, −z.]

Short distances Cu1—O1 of 1.9166 (8) Å, Cu1—O2 of 1.9557 (9) Å, Cu1—O5 of 1.9522 (8) Å and Cu1—O6 of 1.9154 (9) Å are found for the Cu1 atom to the basal O atoms within the binuclear fragment. A substanti­ally longer distance of 2.3703 (9) Å is observed for the apical Cu1—O5i [symmetry code: (i) −x + 2, −y + 1, −z] bond to the methoxido ligand of the neighbouring fragment. For the Cu2 atom, the situation is comparable, with slightly shorter Cu—O distances in comparison with Cu1: Cu2—O3 1.8939 (8) Å, Cu2—O4 1.9473 (9) Å, Cu2—O5 1.9455 (8) Å and Cu2—O6 1.9081 (8) Å. The longer distance Cu2—O1i of 2.4994 (9) Å to the phenoxido ligand atom of the neighbouring fragment causes less sterical congestions at the Cu2 atom and thus, appears to be the cause for the shorter basal Cu—O distances.

The binding modes (μ2 versus μ3) of the two methoxido ligands in each fragment can be distinguished by the angles C24—O5—O6 [152.62 (8)°, μ3] versus C23—O6—O5 [173.52 (11)°, μ2] (Fig. 1[link]). Meth­oxy ligand atom O5 is more closely bound to the Cu1i atom, in addition with two short distances to Cu1 and Cu2 (see above), resulting in a more pyramidal-like geometry. This differs to the more trigonal-planar geometry of O6 (see Table 1[link] and Fig. 1[link]) which is not bound to a third Cu atom but has two short distances to Cu1 and Cu2. In the salicyl­aldehyde ligands, the presence of a second metal ion coordinated by the phenoxide O atom has an effect on the phen­yl—O bond length, which is slightly elongated compared to the one in the non-bridging salicyl­aldehyde ligand [1.3075 (13) Å versus 1.2963 (13) Å].

Table 1
Selected bond angles (°)

O3—Cu2—O5 92.75 (4) O5—Cu1—O2 171.62 (4)
O3—Cu2—O4 94.19 (4) O1—Cu1—O5i 88.65 (3)
O3—Cu2—O6 167.56 (4) O1—Cu1—O5 94.74 (3)
O6—Cu2—O4 95.13 (4) O1—Cu1—O2 93.39 (4)
O5—Cu1—O5i 84.34 (3) O2—Cu1—O5i 97.91 (3)
Symmetry code: (i) -x+2, -y+1, -z.

Within the dinuclear fragment, the aromatic rings are tilted by an angle of 24.69 (6)° due to repulsion of the tert-butyl groups.

3. Supra­molecular features

In the crystal, the tetra­nuclear mol­ecules arrange in layers parallel to (101) (Fig. 2[link]). Weak non-classical C—H⋯O inter­actions between the layers (Table 2[link]) help to stabilize the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4ii 0.95 2.57 3.3225 (16) 136
C23—H23B⋯O2 0.98 2.43 3.0607 (18) 122
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound.

4. Synthesis and crystallization

After treatment of 102 mg (0.35 mmol) 4-Br-salicyl-2-(2-amino)­phenyl­imine with 113 mg of copper(II)acetate monohydrate (0.445 mmol), 1 ml tri­ethyl­amine in 10 ml THF, and 65.5 mg (0.368 mmol) 4-tert-butyl­salicyl­aldehyde in 10 ml THF, the mixture was stirred for 22 h at room temperature. Addition of hexane yielded the title compound as a dark crystalline material from the reaction mixture (11.7 mg, 0.011 mmol, 8%).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of all H atoms were calculated according to the geometry of the parent C atom and refined using a riding model with C—H distances of 0.95 Å and Uiso(H) = 1.5Ueq(C) for sp2 C atoms and of 0.98 Å and Uiso(H) = 1.5Ueq(C) for sp3 C atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu4(CH3O)4(C11H13O2)4]
Mr 1087.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.6863 (1), 20.8460 (2), 13.1387 (1)
β (°) 109.29
V3) 2504.05 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.73
Crystal size (mm) 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.919, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 105316, 9505, 7960
Rint 0.036
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.00
No. of reflections 9505
No. of parameters 297
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS98 and SHELXL98 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The title compound was obtained as a by-product in the synthesis of an unsymmetrically substituted copper(II) salophene complex (Kleij et al., 2005). The latter is of inter­est with respect to magnetic properties and cooperative effects between the metal(II) atoms (Kahn et al., 1982). In this compound, three types of bridging oxygen ligands are found. The magnetic exchange coupling between the paramagnetic CuII atoms is considered as strong in this type of bridges since the Cu—O—Cu angles are found to be close to 90°. The distances and coordination modes between CuII atoms vary and thus, the compound is a suitable study case for investigating different spin-coupling paths. This knowledge is deemed important for the design of tailor-made magnetic compounds.

Structural commentary top

The tetra­nuclear copper(II) title compound consists of two dinuclear complex fragments oriented around a centre of inversion. Within each fragment the two CuII atoms are in a distorted square-planar coordination sphere, thereby bridged by two κ2O methoxide ligands. The terminal bidentate 4-tert-butyl-2-formyl­phenolate ligand is coordinating to each CuII atom in a manner generating a pseudo-mirror plane perpendicular to the four-membered bis-methoxido dicopper ring in the centre of the fragment. A longer Cu—O bond completes the overall square-pyramidal coordination for each CuII atom and links the two dinuclear fragments together. The distance between the two copper(II) ions Cu1 and Cu2 within the binuclear fragment is 2.9938 (2) Å (Fig. 1) which is in the same range as in related complexes (Kahn et al., 1982).

Short distances Cu1—O1 of 1.9166 (8) Å, Cu1—O2 of 1.9557 (9) Å, Cu1—O5 of 1.9522 (8) Å and Cu1—O6 of 1.9154 (9) Å are found for the Cu1 atom to the basal O atoms within the binuclear fragment. A substanti­ally longer distance of 2.3703 (9) Å is observed for the apical Cu1—O5i symmetry code: (i) -x + 2, -y + 1, -z] bond to the methoxido ligand of the neighbouring fragment. For the Cu2 atom, the situation is comparable, with slightly shorter Cu—O distances in comparison with Cu1: Cu2—O3 1.8939 (8) Å, Cu2—O4 1.9473 (9) Å, Cu2—O5 1.9455 (8) Å and Cu2—O6 1.9081 (8) Å. The longer distance Cu2—O1i of 2.4994 (9) Å to the phenoxido ligand atom of the neighbouring fragment causes less sterical congestions at the Cu2 atom and thus, appears to be the cause for the shorter basal Cu—O distances.

The binding modes (µ2 versus µ3) of the two methoxido ligands in each fragment can be distinguished by the angles C24—O5—O6 [152.62 (8)°, µ3] versus C23—O6—O5 [173.52 (11)°, µ2] (Fig. 1). Meth­oxy ligand atom O5 is more closely bound to the Cu1i atom, in addition with two short distances to Cu1 and Cu2 (see above), resulting in a more pyramidal-like geometry. This differs to the more trigonal-planar geometry of O6 (see Table 1 and Fig. 1) which is not bound to a third Cu atom but has two short distances to Cu1 and Cu2. In the salicyl­aldehyde ligands, the presence of a second metal ion coordinated by the phenoxide O atom has an effect on the phenyl—O bond length, which is slightly elongated compared to the one in the non-bridging salicyl­aldehyde ligand [1.3075 (13) Å versus 1.2963 (13) Å].

Within the dinuclear fragment, the aromatic rings are tilted by an angle of 24.69 (6)° due to repulsion of the tert-butyl groups.

Supra­molecular features top

In the crystal, the tetra­nuclear molecules arrange in a layers parallel to (101) (Fig. 2). Weak non-classical C—H···O inter­actions between the layers (Table 2) help to stabilize the crystal packing.

Synthesis and crystallization top

After treatment of 102 mg (0.35 mmol) 4-Br-salicycl-2-(2-amino)­phenyl­imine with 113 mg of copper(II) acetate dihydrate (0.445 mmol), 1 ml tri­ethyl­amine in 10 ml THF, and 65.5 mg (0.368 mmol) 4-tert-butyl­salicyl­aldehyde in 10 ml THF, the mixture was stirred for 22 h at room temperature. Addition of hexane yielded the title compound as a dark crystalline material from the reaction mixture (11.7 mg, 0.011 mmol, 8%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of all H atoms were calculated according to the geometry of the parent C atom and refined using a riding model with C—H distances of 0.95 Å and Uiso(H) = 1.5Ueq(C) for sp2 C atoms and of 0.98 Å and Uiso(H) = 1.5Ueq(C) for sp3 C atoms.

Related literature top

For related literature, see: Kahn et al. (1982); Kleij et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS98 (Sheldrick, 2008); program(s) used to refine structure: SHELXL98 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The tetranuclear molecule in the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) -x + 2, -y + 1, -z.]
[Figure 2] Fig. 2. A packing diagram of the title compound.
Bis(µ2-4-tert-butyl-2-formylphenolato)-1:2κ3O1,O2:O1;3:4κ3O1,O2:O1-bis(4-tert-butyl-2-formylphenolato)-2κ2O1,O2;4κ2O1,O2-di-µ3-methoxido-1:2:3κ3O;1:3:4κ3O-di-µ2-methoxido-1:4κ2O;2:3κ2O-tetracopper(II) top
Crystal data top
[Cu4(CH3O)4(C11H13O2)4]F(000) = 1128
Mr = 1087.15Dx = 1.442 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6863 (1) ÅCell parameters from 32205 reflections
b = 20.8460 (2) Åθ = 2.3–37.5°
c = 13.1387 (1) ŵ = 1.73 mm1
β = 109.29°T = 100 K
V = 2504.05 (4) Å3Rhomb, green
Z = 20.10 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
7960 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.036
ϕ and ω scansθmax = 33.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.919, Tmax = 1k = 3232
105316 measured reflectionsl = 2019
9505 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1362P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
9505 reflectionsΔρmax = 1.02 e Å3
297 parametersΔρmin = 0.32 e Å3
0 restraints
Crystal data top
[Cu4(CH3O)4(C11H13O2)4]V = 2504.05 (4) Å3
Mr = 1087.15Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6863 (1) ŵ = 1.73 mm1
b = 20.8460 (2) ÅT = 100 K
c = 13.1387 (1) Å0.10 × 0.10 × 0.10 mm
β = 109.29°
Data collection top
Bruker APEXII CCD
diffractometer
9505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7960 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1Rint = 0.036
105316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 1.02 e Å3
9505 reflectionsΔρmin = 0.32 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu21.13038 (2)0.38778 (2)0.05553 (2)0.01384 (4)
Cu11.00190 (2)0.50442 (2)0.12264 (2)0.01311 (4)
O50.94839 (9)0.43609 (4)0.01506 (7)0.01477 (15)
O10.81072 (9)0.54209 (4)0.07888 (7)0.01482 (15)
O21.08134 (10)0.56551 (4)0.24050 (7)0.01891 (17)
O31.04828 (9)0.32248 (4)0.04680 (7)0.01587 (15)
O41.32461 (10)0.34946 (4)0.10451 (7)0.01933 (17)
C171.26704 (13)0.25959 (5)0.01668 (9)0.01470 (19)
C121.11526 (12)0.27283 (5)0.06732 (9)0.01403 (19)
C10.76032 (13)0.57743 (5)0.14096 (9)0.01445 (19)
C60.84991 (13)0.60899 (5)0.23581 (10)0.01488 (19)
C151.24880 (14)0.15844 (5)0.11608 (10)0.0174 (2)
C161.33003 (14)0.20284 (6)0.04410 (10)0.0175 (2)
H161.43200.19570.01120.021*
C181.35947 (14)0.30001 (6)0.06423 (10)0.0186 (2)
H181.45980.28820.09120.022*
C71.00511 (13)0.60300 (6)0.27384 (10)0.0180 (2)
H71.05660.63070.33120.022*
C141.09802 (14)0.17270 (6)0.16606 (10)0.0176 (2)
H141.03900.14300.21680.021*
C131.03372 (13)0.22738 (6)0.14445 (10)0.0171 (2)
H130.93290.23500.18170.021*
C240.80626 (13)0.40993 (6)0.03192 (10)0.0180 (2)
H24A0.80220.38530.09640.027*
H24B0.73440.44480.05190.027*
H24C0.78400.38160.02020.027*
C50.78601 (13)0.64841 (6)0.29670 (10)0.0174 (2)
H50.84850.67030.35810.021*
C40.63767 (13)0.65593 (6)0.27013 (11)0.0191 (2)
C20.60768 (14)0.58699 (6)0.11255 (11)0.0206 (2)
H20.54380.56740.04920.025*
C191.30872 (15)0.09499 (6)0.14322 (11)0.0223 (2)
C80.56409 (15)0.69417 (7)0.33745 (12)0.0246 (3)
C30.55021 (14)0.62421 (7)0.17531 (12)0.0238 (3)
H30.44700.62890.15410.029*
C90.67686 (17)0.72717 (8)0.43383 (13)0.0312 (3)
H9A0.73870.69460.48120.047*
H9B0.62600.75200.47400.047*
H9C0.73790.75600.40780.047*
C211.23665 (18)0.03915 (6)0.10276 (14)0.0311 (3)
H21A1.26040.04240.02440.047*
H21B1.27330.00170.12050.047*
H21C1.13030.04110.13760.047*
C221.27128 (19)0.08979 (7)0.26595 (12)0.0314 (3)
H22A1.16490.09170.30070.047*
H22B1.30820.04900.28370.047*
H22C1.31690.12540.29180.047*
C110.4717 (2)0.64811 (9)0.38021 (15)0.0387 (4)
H11A0.39800.62730.31940.058*
H11B0.42300.67230.42260.058*
H11C0.53540.61540.42590.058*
C201.47517 (17)0.08965 (7)0.09101 (14)0.0320 (3)
H20A1.52240.12510.11590.048*
H20B1.50850.04870.11140.048*
H20C1.50110.09170.01240.048*
C100.46362 (19)0.74557 (8)0.26739 (15)0.0382 (4)
H10A0.52080.77390.23710.057*
H10B0.41950.77080.31160.057*
H10C0.38630.72490.20870.057*
O61.17413 (10)0.45210 (4)0.16493 (7)0.01948 (17)
C231.31150 (16)0.46434 (7)0.24317 (13)0.0322 (3)
H23A1.33710.42900.29530.048*
H23B1.30700.50450.28070.048*
H23C1.38590.46800.20790.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.01494 (7)0.01153 (6)0.01431 (7)0.00242 (4)0.00386 (5)0.00174 (4)
Cu10.01398 (7)0.01176 (6)0.01379 (7)0.00176 (4)0.00484 (5)0.00189 (4)
O50.0127 (3)0.0129 (3)0.0187 (4)0.0002 (3)0.0052 (3)0.0033 (3)
O10.0153 (4)0.0148 (3)0.0154 (4)0.0016 (3)0.0064 (3)0.0025 (3)
O20.0165 (4)0.0197 (4)0.0196 (4)0.0029 (3)0.0047 (3)0.0058 (3)
O30.0157 (4)0.0129 (3)0.0185 (4)0.0012 (3)0.0049 (3)0.0023 (3)
O40.0188 (4)0.0167 (4)0.0186 (4)0.0045 (3)0.0009 (3)0.0052 (3)
C170.0160 (5)0.0131 (4)0.0136 (5)0.0017 (4)0.0029 (4)0.0010 (4)
C120.0161 (5)0.0127 (4)0.0135 (5)0.0006 (4)0.0052 (4)0.0008 (3)
C10.0166 (5)0.0119 (4)0.0164 (5)0.0001 (4)0.0075 (4)0.0010 (4)
C60.0159 (5)0.0132 (4)0.0167 (5)0.0000 (4)0.0069 (4)0.0018 (4)
C150.0208 (5)0.0138 (5)0.0169 (5)0.0030 (4)0.0053 (4)0.0016 (4)
C160.0187 (5)0.0151 (5)0.0169 (5)0.0040 (4)0.0034 (4)0.0012 (4)
C180.0174 (5)0.0176 (5)0.0179 (5)0.0044 (4)0.0018 (4)0.0025 (4)
C70.0172 (5)0.0179 (5)0.0182 (5)0.0004 (4)0.0048 (4)0.0050 (4)
C140.0210 (5)0.0139 (5)0.0170 (5)0.0004 (4)0.0048 (4)0.0025 (4)
C130.0164 (5)0.0154 (5)0.0177 (5)0.0003 (4)0.0031 (4)0.0017 (4)
C240.0146 (5)0.0169 (5)0.0227 (6)0.0030 (4)0.0066 (4)0.0054 (4)
C50.0190 (5)0.0159 (5)0.0181 (5)0.0004 (4)0.0074 (4)0.0050 (4)
C40.0178 (5)0.0185 (5)0.0234 (6)0.0009 (4)0.0101 (4)0.0065 (4)
C20.0153 (5)0.0228 (6)0.0238 (6)0.0008 (4)0.0066 (4)0.0086 (4)
C190.0255 (6)0.0154 (5)0.0245 (6)0.0037 (4)0.0060 (5)0.0052 (4)
C80.0208 (6)0.0257 (6)0.0307 (7)0.0018 (5)0.0131 (5)0.0121 (5)
C30.0149 (5)0.0273 (6)0.0303 (7)0.0008 (5)0.0088 (5)0.0110 (5)
C90.0269 (7)0.0343 (7)0.0351 (8)0.0009 (6)0.0138 (6)0.0185 (6)
C210.0357 (8)0.0146 (5)0.0403 (8)0.0035 (5)0.0090 (6)0.0005 (5)
C220.0397 (8)0.0278 (7)0.0271 (7)0.0032 (6)0.0117 (6)0.0116 (5)
C110.0411 (9)0.0407 (9)0.0477 (10)0.0119 (7)0.0328 (8)0.0192 (7)
C200.0277 (7)0.0237 (6)0.0412 (9)0.0087 (5)0.0069 (6)0.0094 (6)
C100.0335 (8)0.0349 (8)0.0453 (10)0.0127 (6)0.0119 (7)0.0121 (7)
O60.0181 (4)0.0183 (4)0.0179 (4)0.0058 (3)0.0003 (3)0.0057 (3)
C230.0245 (7)0.0295 (7)0.0308 (7)0.0102 (5)0.0069 (5)0.0140 (6)
Geometric parameters (Å, º) top
Cu2—Cu12.9938 (2)C24—H24C0.9800
Cu2—O51.9455 (8)C5—H50.9500
Cu2—O31.8939 (8)C5—C41.3710 (17)
Cu2—O41.9473 (9)C4—C81.5303 (17)
Cu2—O61.9081 (8)C4—C31.4177 (18)
Cu2—O1i2.4994 (9)C2—H20.9500
Cu1—O5i2.3703 (9)C2—C31.3766 (17)
Cu1—O51.9522 (8)C19—C211.540 (2)
Cu1—O11.9166 (8)C19—C221.535 (2)
Cu1—O21.9557 (9)C19—C201.534 (2)
Cu1—O61.9154 (9)C8—C91.535 (2)
O5—C241.4186 (14)C8—C111.540 (2)
O5—O62.4342 (12)C8—C101.533 (2)
O1—C11.3075 (13)C3—H30.9500
O2—C71.2497 (14)C9—H9A0.9800
O3—C121.2963 (13)C9—H9B0.9800
O4—C181.2550 (14)C9—H9C0.9800
C17—C121.4262 (16)C21—H21A0.9800
C17—C161.4307 (16)C21—H21B0.9800
C17—C181.4187 (16)C21—H21C0.9800
C12—C131.4211 (16)C22—H22A0.9800
C1—C61.4228 (16)C22—H22B0.9800
C1—C21.4143 (17)C22—H22C0.9800
C6—C71.4244 (17)C11—H11A0.9800
C6—C51.4232 (16)C11—H11B0.9800
C15—C161.3705 (16)C11—H11C0.9800
C15—C141.4209 (17)C20—H20A0.9800
C15—C191.5331 (17)C20—H20B0.9800
C16—H160.9500C20—H20C0.9800
C18—H180.9500C10—H10A0.9800
C7—H70.9500C10—H10B0.9800
C14—H140.9500C10—H10C0.9800
C14—C131.3728 (16)O6—C231.4102 (16)
C13—H130.9500C23—H23A0.9800
C24—H24A0.9800C23—H23B0.9800
C24—H24B0.9800C23—H23C0.9800
O5—Cu2—Cu139.90 (2)H24A—C24—H24C109.5
O5—Cu2—O4172.71 (4)H24B—C24—H24C109.5
O3—Cu2—Cu1132.45 (3)C6—C5—H5118.8
O3—Cu2—O592.75 (4)C4—C5—C6122.46 (11)
O3—Cu2—O494.19 (4)C4—C5—H5118.8
O3—Cu2—O6167.56 (4)C5—C4—C8124.16 (11)
O4—Cu2—Cu1133.32 (3)C5—C4—C3116.24 (11)
O6—Cu2—Cu138.55 (3)C3—C4—C8119.58 (11)
O6—Cu2—O578.34 (4)C1—C2—H2119.5
O6—Cu2—O495.13 (4)C3—C2—C1121.04 (11)
O5i—Cu1—Cu289.49 (2)C3—C2—H2119.5
O5—Cu1—Cu239.74 (2)C15—C19—C21108.80 (11)
O5—Cu1—O5i84.34 (3)C15—C19—C22109.21 (11)
O5—Cu1—O2171.62 (4)C15—C19—C20112.42 (11)
O1—Cu1—Cu2134.34 (3)C22—C19—C21109.42 (12)
O1—Cu1—O5i88.65 (3)C20—C19—C21108.68 (12)
O1—Cu1—O594.74 (3)C20—C19—C22108.26 (13)
O1—Cu1—O293.39 (4)C4—C8—C9111.71 (11)
O2—Cu1—Cu2131.99 (3)C4—C8—C11108.89 (11)
O2—Cu1—O5i97.91 (3)C4—C8—C10109.96 (12)
O6—Cu1—Cu238.38 (3)C9—C8—C11108.63 (13)
O6—Cu1—O578.00 (4)C10—C8—C9108.64 (12)
O6—Cu1—O5i98.18 (4)C10—C8—C11108.95 (14)
O6—Cu1—O1169.41 (4)C4—C3—H3118.4
O6—Cu1—O293.66 (4)C2—C3—C4123.15 (12)
Cu2—O5—Cu1i94.89 (3)C2—C3—H3118.4
Cu2—O5—Cu1100.36 (4)C8—C9—H9A109.5
Cu2—O5—O650.15 (3)C8—C9—H9B109.5
Cu1—O5—Cu1i95.66 (3)C8—C9—H9C109.5
Cu1—O5—O650.33 (3)H9A—C9—H9B109.5
Cu1i—O5—O6101.01 (4)H9A—C9—H9C109.5
C24—O5—Cu2125.55 (7)H9B—C9—H9C109.5
C24—O5—Cu1i106.36 (7)C19—C21—H21A109.5
C24—O5—Cu1125.65 (7)C19—C21—H21B109.5
C24—O5—O6152.62 (8)C19—C21—H21C109.5
Cu1—O1—Cu2i91.61 (3)H21A—C21—H21B109.5
C1—O1—Cu2i109.30 (7)H21A—C21—H21C109.5
C1—O1—Cu1124.52 (7)H21B—C21—H21C109.5
C7—O2—Cu1124.15 (8)C19—C22—H22A109.5
C12—O3—Cu2126.86 (8)C19—C22—H22B109.5
C18—O4—Cu2124.25 (8)C19—C22—H22C109.5
C12—C17—C16120.14 (10)H22A—C22—H22B109.5
C18—C17—C12122.20 (10)H22A—C22—H22C109.5
C18—C17—C16117.62 (10)H22B—C22—H22C109.5
O3—C12—C17124.55 (10)C8—C11—H11A109.5
O3—C12—C13118.83 (10)C8—C11—H11B109.5
C13—C12—C17116.62 (10)C8—C11—H11C109.5
O1—C1—C6124.16 (10)H11A—C11—H11B109.5
O1—C1—C2119.21 (10)H11A—C11—H11C109.5
C2—C1—C6116.61 (10)H11B—C11—H11C109.5
C1—C6—C7122.30 (10)C19—C20—H20A109.5
C1—C6—C5120.44 (11)C19—C20—H20B109.5
C5—C6—C7117.25 (11)C19—C20—H20C109.5
C16—C15—C14116.48 (10)H20A—C20—H20B109.5
C16—C15—C19124.61 (11)H20A—C20—H20C109.5
C14—C15—C19118.90 (11)H20B—C20—H20C109.5
C17—C16—H16118.8C8—C10—H10A109.5
C15—C16—C17122.46 (11)C8—C10—H10B109.5
C15—C16—H16118.8C8—C10—H10C109.5
O4—C18—C17127.79 (11)H10A—C10—H10B109.5
O4—C18—H18116.1H10A—C10—H10C109.5
C17—C18—H18116.1H10B—C10—H10C109.5
O2—C7—C6127.53 (11)Cu2—O6—Cu1103.07 (4)
O2—C7—H7116.2Cu2—O6—O551.51 (3)
C6—C7—H7116.2Cu1—O6—O551.67 (3)
C15—C14—H14118.5C23—O6—Cu2126.69 (8)
C13—C14—C15123.05 (11)C23—O6—Cu1129.06 (8)
C13—C14—H14118.5C23—O6—O5173.52 (11)
C12—C13—H13119.4O6—C23—H23A109.5
C14—C13—C12121.19 (11)O6—C23—H23B109.5
C14—C13—H13119.4O6—C23—H23C109.5
O5—C24—H24A109.5H23A—C23—H23B109.5
O5—C24—H24B109.5H23A—C23—H23C109.5
O5—C24—H24C109.5H23B—C23—H23C109.5
H24A—C24—H24B109.5
Cu2i—O1—C1—C686.12 (12)C16—C17—C18—O4175.35 (13)
Cu2i—O1—C1—C292.26 (11)C16—C15—C14—C130.50 (19)
Cu2—O3—C12—C171.66 (17)C16—C15—C19—C21113.59 (15)
Cu2—O3—C12—C13177.57 (8)C16—C15—C19—C22127.03 (14)
Cu2—O4—C18—C175.2 (2)C16—C15—C19—C206.85 (19)
Cu1—Cu2—O3—C12178.29 (8)C18—C17—C12—O31.37 (19)
Cu1—O1—C1—C619.97 (15)C18—C17—C12—C13177.88 (11)
Cu1—O1—C1—C2161.65 (9)C18—C17—C16—C15175.79 (12)
Cu1—O2—C7—C60.60 (19)C7—C6—C5—C4177.61 (12)
O5—Cu2—O3—C12177.23 (9)C14—C15—C16—C172.34 (19)
O1—C1—C6—C72.07 (18)C14—C15—C19—C2164.86 (15)
O1—C1—C6—C5177.80 (11)C14—C15—C19—C2254.53 (16)
O1—C1—C2—C3179.56 (12)C14—C15—C19—C20174.71 (13)
O3—C12—C13—C14177.39 (11)C5—C6—C7—O2170.95 (12)
O4—Cu2—O3—C120.55 (10)C5—C4—C8—C94.2 (2)
C17—C12—C13—C141.90 (17)C5—C4—C8—C11115.78 (15)
C12—C17—C16—C152.07 (19)C5—C4—C8—C10124.91 (15)
C12—C17—C18—O42.5 (2)C5—C4—C3—C20.8 (2)
C1—C6—C7—O29.2 (2)C2—C1—C6—C7179.51 (12)
C1—C6—C5—C42.52 (18)C2—C1—C6—C50.62 (17)
C1—C2—C3—C41.0 (2)C19—C15—C16—C17176.13 (12)
C6—C1—C2—C31.06 (19)C19—C15—C14—C13178.07 (12)
C6—C5—C4—C8175.75 (12)C8—C4—C3—C2177.58 (14)
C6—C5—C4—C32.52 (19)C3—C4—C8—C9177.58 (14)
C15—C14—C13—C121.66 (19)C3—C4—C8—C1162.44 (18)
C16—C17—C12—O3179.13 (11)C3—C4—C8—C1056.87 (17)
C16—C17—C12—C130.12 (17)O6—Cu2—O3—C12138.98 (16)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4ii0.952.573.3225 (16)136
C23—H23B···O20.982.433.0607 (18)122
Symmetry code: (ii) x1/2, y+1/2, z1/2.
Selected geometric parameters (Å, º) top
O6—C231.4102 (16)
O3—Cu2—O592.75 (4)O5—Cu1—O2171.62 (4)
O3—Cu2—O494.19 (4)O1—Cu1—O5i88.65 (3)
O3—Cu2—O6167.56 (4)O1—Cu1—O594.74 (3)
O6—Cu2—O495.13 (4)O1—Cu1—O293.39 (4)
O5—Cu1—O5i84.34 (3)O2—Cu1—O5i97.91 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4ii0.952.573.3225 (16)136
C23—H23B···O20.982.433.0607 (18)122
Symmetry code: (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu4(CH3O)4(C11H13O2)4]
Mr1087.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.6863 (1), 20.8460 (2), 13.1387 (1)
β (°) 109.29
V3)2504.05 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
105316, 9505, 7960
Rint0.036
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.00
No. of reflections9505
No. of parameters297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS98 (Sheldrick, 2008), SHELXL98 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The Deutsche Forschungsgemeinschaft (collaborative research center SFB668-TP A4) is gratefully acknowledged for funding.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKahn, O., Galy, J., Journaux, Y., Jaud, J. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 2165–2176.  CSD CrossRef CAS Web of Science Google Scholar
First citationKleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626–4634.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 324-326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds