research communications
μ2-4-tert-butyl-2-formylphenolato)-1:2κ3O1,O2:O1;3:4κ3O1,O2:O1-bis(4-tert-butyl-2-formylphenolato)-2κ2O1,O2;4κ2O1,O2-di-μ3-methoxido-1:2:3κ3O;1:3:4κ3O-di-μ2-methoxido-1:4κ2O;2:3κ2O-tetracopper(II)
of bis(aInstitute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, and bTU Kaiserslautern, Physikalische Chemie, Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
*Correspondence e-mail: prosenc@chemie.uni-kl.de
The structure of the title compound, [Cu4(CH3O)4(C11H13O2)4], consists of dimeric dinuclear copper(II) complexes oriented around a centre of inversion. Within each dinuclear fragment, the two CuII atoms are in a distorted square-planar coordination sphere. Two neighbouring fragments are linked by four apical Cu—O contacts, yielding an overall square-pyramidal coordination environment for each of the four CuII atoms. The molecules are arranged in layers parallel to (101). Non-classical C—H⋯O hydrogen-bonding interactions are observed between the layers.
Keywords: crystal structure; copper(II); tetranuclear complex; hydrogen bonding.
CCDC reference: 1050914
1. Chemical context
The title compound was obtained as a by-product in the synthesis of an unsymmetrically substituted copper(II) salophene complex (Kleij et al., 2005). The latter is of interest with respect to magnetic properties and cooperative effects between the metal(II) atoms (Kahn et al., 1982). In this compound, three types of bridging oxygen ligands are found. The magnetic exchange coupling between the paramagnetic CuII atoms is considered as strong in this type of bridges since the Cu—O—Cu angles are found to be close to 90°. The distances and coordination modes between CuII atoms vary and thus, the compound is a suitable study case for investigating different spin-coupling paths. This knowledge is deemed important for the design of tailor-made magnetic compounds.
2. Structural commentary
The tetranuclear copper(II) title compound consists of two dinuclear complex fragments oriented around a centre of inversion. Within each fragment the two CuII atoms are in a distorted square-planar coordination sphere, thereby bridged by two κ2O methoxido ligands. The terminal bidentate 4-tert-butyl-2-formylphenolate ligand is coordinating each CuII atom in a manner generating a pseudo-mirror plane perpendicular to the four-membered bis-methoxido dicopper ring in the centre of the fragment. A longer Cu—O bond completes the overall square-pyramidal coordination for each CuII atom and links the two dinuclear fragments together. The distance between the two copper(II) ions Cu1 and Cu2 within the binuclear fragment is 2.9938 (2) Å (Fig. 1) which is in the same range as in related complexes (Kahn et al., 1982).
Short distances Cu1—O1 of 1.9166 (8) Å, Cu1—O2 of 1.9557 (9) Å, Cu1—O5 of 1.9522 (8) Å and Cu1—O6 of 1.9154 (9) Å are found for the Cu1 atom to the basal O atoms within the binuclear fragment. A substantially longer distance of 2.3703 (9) Å is observed for the apical Cu1—O5i [symmetry code: (i) −x + 2, −y + 1, −z] bond to the methoxido ligand of the neighbouring fragment. For the Cu2 atom, the situation is comparable, with slightly shorter Cu—O distances in comparison with Cu1: Cu2—O3 1.8939 (8) Å, Cu2—O4 1.9473 (9) Å, Cu2—O5 1.9455 (8) Å and Cu2—O6 1.9081 (8) Å. The longer distance Cu2—O1i of 2.4994 (9) Å to the phenoxido ligand atom of the neighbouring fragment causes less sterical congestions at the Cu2 atom and thus, appears to be the cause for the shorter basal Cu—O distances.
The binding modes (μ2 versus μ3) of the two methoxido ligands in each fragment can be distinguished by the angles C24—O5—O6 [152.62 (8)°, μ3] versus C23—O6—O5 [173.52 (11)°, μ2] (Fig. 1). Methoxy ligand atom O5 is more closely bound to the Cu1i atom, in addition with two short distances to Cu1 and Cu2 (see above), resulting in a more pyramidal-like geometry. This differs to the more trigonal-planar geometry of O6 (see Table 1 and Fig. 1) which is not bound to a third Cu atom but has two short distances to Cu1 and Cu2. In the salicylaldehyde ligands, the presence of a second metal ion coordinated by the phenoxide O atom has an effect on the phenyl—O bond length, which is slightly elongated compared to the one in the non-bridging salicylaldehyde ligand [1.3075 (13) Å versus 1.2963 (13) Å].
Within the dinuclear fragment, the aromatic rings are tilted by an angle of 24.69 (6)° due to repulsion of the tert-butyl groups.
3. Supramolecular features
In the crystal, the tetranuclear molecules arrange in layers parallel to (101) (Fig. 2). Weak non-classical C—H⋯O interactions between the layers (Table 2) help to stabilize the crystal packing.
4. Synthesis and crystallization
After treatment of 102 mg (0.35 mmol) 4-Br-salicyl-2-(2-amino)phenylimine with 113 mg of copper(II)acetate monohydrate (0.445 mmol), 1 ml triethylamine in 10 ml THF, and 65.5 mg (0.368 mmol) 4-tert-butylsalicylaldehyde in 10 ml THF, the mixture was stirred for 22 h at room temperature. Addition of hexane yielded the title compound as a dark crystalline material from the reaction mixture (11.7 mg, 0.011 mmol, 8%).
5. Refinement
Crystal data, data collection and structure . The positions of all H atoms were calculated according to the geometry of the parent C atom and refined using a riding model with C—H distances of 0.95 Å and Uiso(H) = 1.5Ueq(C) for sp2 C atoms and of 0.98 Å and Uiso(H) = 1.5Ueq(C) for sp3 C atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1050914
10.1107/S205698901500376X/wm5122sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500376X/wm5122Isup2.hkl
The title compound was obtained as a by-product in the synthesis of an unsymmetrically substituted copper(II) salophene complex (Kleij et al., 2005). The latter is of interest with respect to magnetic properties and cooperative effects between the metal(II) atoms (Kahn et al., 1982). In this compound, three types of bridging oxygen ligands are found. The magnetic exchange coupling between the paramagnetic CuII atoms is considered as strong in this type of bridges since the Cu—O—Cu angles are found to be close to 90°. The distances and coordination modes between CuII atoms vary and thus, the compound is a suitable study case for investigating different spin-coupling paths. This knowledge is deemed important for the design of tailor-made magnetic compounds.
The tetranuclear copper(II) title compound consists of two dinuclear complex fragments oriented around a centre of inversion. Within each fragment the two CuII atoms are in a distorted square-planar coordination sphere, thereby bridged by two κ2O methoxide ligands. The terminal bidentate 4-tert-butyl-2-formylphenolate ligand is coordinating to each CuII atom in a manner generating a pseudo-mirror plane perpendicular to the four-membered bis-methoxido dicopper ring in the centre of the fragment. A longer Cu—O bond completes the overall square-pyramidal coordination for each CuII atom and links the two dinuclear fragments together. The distance between the two copper(II) ions Cu1 and Cu2 within the binuclear fragment is 2.9938 (2) Å (Fig. 1) which is in the same range as in related complexes (Kahn et al., 1982).
Short distances Cu1—O1 of 1.9166 (8) Å, Cu1—O2 of 1.9557 (9) Å, Cu1—O5 of 1.9522 (8) Å and Cu1—O6 of 1.9154 (9) Å are found for the Cu1 atom to the basal O atoms within the binuclear fragment. A substantially longer distance of 2.3703 (9) Å is observed for the apical Cu1—O5i symmetry code: (i) -x + 2, -y + 1, -z] bond to the methoxido ligand of the neighbouring fragment. For the Cu2 atom, the situation is comparable, with slightly shorter Cu—O distances in comparison with Cu1: Cu2—O3 1.8939 (8) Å, Cu2—O4 1.9473 (9) Å, Cu2—O5 1.9455 (8) Å and Cu2—O6 1.9081 (8) Å. The longer distance Cu2—O1i of 2.4994 (9) Å to the phenoxido ligand atom of the neighbouring fragment causes less sterical congestions at the Cu2 atom and thus, appears to be the cause for the shorter basal Cu—O distances.
The binding modes (µ2 versus µ3) of the two methoxido ligands in each fragment can be distinguished by the angles C24—O5—O6 [152.62 (8)°, µ3] versus C23—O6—O5 [173.52 (11)°, µ2] (Fig. 1). Methoxy ligand atom O5 is more closely bound to the Cu1i atom, in addition with two short distances to Cu1 and Cu2 (see above), resulting in a more pyramidal-like geometry. This differs to the more trigonal-planar geometry of O6 (see Table 1 and Fig. 1) which is not bound to a third Cu atom but has two short distances to Cu1 and Cu2. In the salicylaldehyde ligands, the presence of a second metal ion coordinated by the phenoxide O atom has an effect on the phenyl—O bond length, which is slightly elongated compared to the one in the non-bridging salicylaldehyde ligand [1.3075 (13) Å versus 1.2963 (13) Å].
Within the dinuclear fragment, the aromatic rings are tilted by an angle of 24.69 (6)° due to repulsion of the tert-butyl groups.
In the crystal, the tetranuclear molecules arrange in a layers parallel to (101) (Fig. 2). Weak non-classical C—H···O interactions between the layers (Table 2) help to stabilize the crystal packing.
After treatment of 102 mg (0.35 mmol) 4-Br-salicycl-2-(2-amino)phenylimine with 113 mg of copper(II) acetate dihydrate (0.445 mmol), 1 ml triethylamine in 10 ml THF, and 65.5 mg (0.368 mmol) 4-tert-butylsalicylaldehyde in 10 ml THF, the mixture was stirred for 22 h at room temperature. Addition of hexane yielded the title compound as a dark crystalline material from the reaction mixture (11.7 mg, 0.011 mmol, 8%).
Crystal data, data collection and structure
details are summarized in Table 3. The positions of all H atoms were calculated according to the geometry of the parent C atom and refined using a riding model with C—H distances of 0.95 Å and Uiso(H) = 1.5Ueq(C) for sp2 C atoms and of 0.98 Å and Uiso(H) = 1.5Ueq(C) for sp3 C atoms.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS98 (Sheldrick, 2008); program(s) used to refine structure: SHELXL98 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The tetranuclear molecule in the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) -x + 2, -y + 1, -z.] | |
Fig. 2. A packing diagram of the title compound. |
[Cu4(CH3O)4(C11H13O2)4] | F(000) = 1128 |
Mr = 1087.15 | Dx = 1.442 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6863 (1) Å | Cell parameters from 32205 reflections |
b = 20.8460 (2) Å | θ = 2.3–37.5° |
c = 13.1387 (1) Å | µ = 1.73 mm−1 |
β = 109.29° | T = 100 K |
V = 2504.05 (4) Å3 | Rhomb, green |
Z = 2 | 0.10 × 0.10 × 0.10 mm |
Bruker APEXII CCD diffractometer | 7960 reflections with I > 2σ(I) |
Radiation source: micro-focus | Rint = 0.036 |
ϕ and ω scans | θmax = 33.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.919, Tmax = 1 | k = −32→32 |
105316 measured reflections | l = −20→19 |
9505 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1362P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
9505 reflections | Δρmax = 1.02 e Å−3 |
297 parameters | Δρmin = −0.32 e Å−3 |
0 restraints |
[Cu4(CH3O)4(C11H13O2)4] | V = 2504.05 (4) Å3 |
Mr = 1087.15 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.6863 (1) Å | µ = 1.73 mm−1 |
b = 20.8460 (2) Å | T = 100 K |
c = 13.1387 (1) Å | 0.10 × 0.10 × 0.10 mm |
β = 109.29° |
Bruker APEXII CCD diffractometer | 9505 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 7960 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 1 | Rint = 0.036 |
105316 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.02 e Å−3 |
9505 reflections | Δρmin = −0.32 e Å−3 |
297 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu2 | 1.13038 (2) | 0.38778 (2) | 0.05553 (2) | 0.01384 (4) | |
Cu1 | 1.00190 (2) | 0.50442 (2) | 0.12264 (2) | 0.01311 (4) | |
O5 | 0.94839 (9) | 0.43609 (4) | 0.01506 (7) | 0.01477 (15) | |
O1 | 0.81072 (9) | 0.54209 (4) | 0.07888 (7) | 0.01482 (15) | |
O2 | 1.08134 (10) | 0.56551 (4) | 0.24050 (7) | 0.01891 (17) | |
O3 | 1.04828 (9) | 0.32248 (4) | −0.04680 (7) | 0.01587 (15) | |
O4 | 1.32461 (10) | 0.34946 (4) | 0.10451 (7) | 0.01933 (17) | |
C17 | 1.26704 (13) | 0.25959 (5) | −0.01668 (9) | 0.01470 (19) | |
C12 | 1.11526 (12) | 0.27283 (5) | −0.06732 (9) | 0.01403 (19) | |
C1 | 0.76032 (13) | 0.57743 (5) | 0.14096 (9) | 0.01445 (19) | |
C6 | 0.84991 (13) | 0.60899 (5) | 0.23581 (10) | 0.01488 (19) | |
C15 | 1.24880 (14) | 0.15844 (5) | −0.11608 (10) | 0.0174 (2) | |
C16 | 1.33003 (14) | 0.20284 (6) | −0.04410 (10) | 0.0175 (2) | |
H16 | 1.4320 | 0.1957 | −0.0112 | 0.021* | |
C18 | 1.35947 (14) | 0.30001 (6) | 0.06423 (10) | 0.0186 (2) | |
H18 | 1.4598 | 0.2882 | 0.0912 | 0.022* | |
C7 | 1.00511 (13) | 0.60300 (6) | 0.27384 (10) | 0.0180 (2) | |
H7 | 1.0566 | 0.6307 | 0.3312 | 0.022* | |
C14 | 1.09802 (14) | 0.17270 (6) | −0.16606 (10) | 0.0176 (2) | |
H14 | 1.0390 | 0.1430 | −0.2168 | 0.021* | |
C13 | 1.03372 (13) | 0.22738 (6) | −0.14445 (10) | 0.0171 (2) | |
H13 | 0.9329 | 0.2350 | −0.1817 | 0.021* | |
C24 | 0.80626 (13) | 0.40993 (6) | −0.03192 (10) | 0.0180 (2) | |
H24A | 0.8022 | 0.3853 | −0.0964 | 0.027* | |
H24B | 0.7344 | 0.4448 | −0.0519 | 0.027* | |
H24C | 0.7840 | 0.3816 | 0.0202 | 0.027* | |
C5 | 0.78601 (13) | 0.64841 (6) | 0.29670 (10) | 0.0174 (2) | |
H5 | 0.8485 | 0.6703 | 0.3581 | 0.021* | |
C4 | 0.63767 (13) | 0.65593 (6) | 0.27013 (11) | 0.0191 (2) | |
C2 | 0.60768 (14) | 0.58699 (6) | 0.11255 (11) | 0.0206 (2) | |
H2 | 0.5438 | 0.5674 | 0.0492 | 0.025* | |
C19 | 1.30872 (15) | 0.09499 (6) | −0.14322 (11) | 0.0223 (2) | |
C8 | 0.56409 (15) | 0.69417 (7) | 0.33745 (12) | 0.0246 (3) | |
C3 | 0.55021 (14) | 0.62421 (7) | 0.17531 (12) | 0.0238 (3) | |
H3 | 0.4470 | 0.6289 | 0.1541 | 0.029* | |
C9 | 0.67686 (17) | 0.72717 (8) | 0.43383 (13) | 0.0312 (3) | |
H9A | 0.7387 | 0.6946 | 0.4812 | 0.047* | |
H9B | 0.6260 | 0.7520 | 0.4740 | 0.047* | |
H9C | 0.7379 | 0.7560 | 0.4078 | 0.047* | |
C21 | 1.23665 (18) | 0.03915 (6) | −0.10276 (14) | 0.0311 (3) | |
H21A | 1.2604 | 0.0424 | −0.0244 | 0.047* | |
H21B | 1.2733 | −0.0017 | −0.1205 | 0.047* | |
H21C | 1.1303 | 0.0411 | −0.1376 | 0.047* | |
C22 | 1.27128 (19) | 0.08979 (7) | −0.26595 (12) | 0.0314 (3) | |
H22A | 1.1649 | 0.0917 | −0.3007 | 0.047* | |
H22B | 1.3082 | 0.0490 | −0.2837 | 0.047* | |
H22C | 1.3169 | 0.1254 | −0.2918 | 0.047* | |
C11 | 0.4717 (2) | 0.64811 (9) | 0.38021 (15) | 0.0387 (4) | |
H11A | 0.3980 | 0.6273 | 0.3194 | 0.058* | |
H11B | 0.4230 | 0.6723 | 0.4226 | 0.058* | |
H11C | 0.5354 | 0.6154 | 0.4259 | 0.058* | |
C20 | 1.47517 (17) | 0.08965 (7) | −0.09101 (14) | 0.0320 (3) | |
H20A | 1.5224 | 0.1251 | −0.1159 | 0.048* | |
H20B | 1.5085 | 0.0487 | −0.1114 | 0.048* | |
H20C | 1.5011 | 0.0917 | −0.0124 | 0.048* | |
C10 | 0.46362 (19) | 0.74557 (8) | 0.26739 (15) | 0.0382 (4) | |
H10A | 0.5208 | 0.7739 | 0.2371 | 0.057* | |
H10B | 0.4195 | 0.7708 | 0.3116 | 0.057* | |
H10C | 0.3863 | 0.7249 | 0.2087 | 0.057* | |
O6 | 1.17413 (10) | 0.45210 (4) | 0.16493 (7) | 0.01948 (17) | |
C23 | 1.31150 (16) | 0.46434 (7) | 0.24317 (13) | 0.0322 (3) | |
H23A | 1.3371 | 0.4290 | 0.2953 | 0.048* | |
H23B | 1.3070 | 0.5045 | 0.2807 | 0.048* | |
H23C | 1.3859 | 0.4680 | 0.2079 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu2 | 0.01494 (7) | 0.01153 (6) | 0.01431 (7) | 0.00242 (4) | 0.00386 (5) | −0.00174 (4) |
Cu1 | 0.01398 (7) | 0.01176 (6) | 0.01379 (7) | 0.00176 (4) | 0.00484 (5) | −0.00189 (4) |
O5 | 0.0127 (3) | 0.0129 (3) | 0.0187 (4) | −0.0002 (3) | 0.0052 (3) | −0.0033 (3) |
O1 | 0.0153 (4) | 0.0148 (3) | 0.0154 (4) | 0.0016 (3) | 0.0064 (3) | −0.0025 (3) |
O2 | 0.0165 (4) | 0.0197 (4) | 0.0196 (4) | 0.0029 (3) | 0.0047 (3) | −0.0058 (3) |
O3 | 0.0157 (4) | 0.0129 (3) | 0.0185 (4) | 0.0012 (3) | 0.0049 (3) | −0.0023 (3) |
O4 | 0.0188 (4) | 0.0167 (4) | 0.0186 (4) | 0.0045 (3) | 0.0009 (3) | −0.0052 (3) |
C17 | 0.0160 (5) | 0.0131 (4) | 0.0136 (5) | 0.0017 (4) | 0.0029 (4) | −0.0010 (4) |
C12 | 0.0161 (5) | 0.0127 (4) | 0.0135 (5) | 0.0006 (4) | 0.0052 (4) | 0.0008 (3) |
C1 | 0.0166 (5) | 0.0119 (4) | 0.0164 (5) | 0.0001 (4) | 0.0075 (4) | −0.0010 (4) |
C6 | 0.0159 (5) | 0.0132 (4) | 0.0167 (5) | 0.0000 (4) | 0.0069 (4) | −0.0018 (4) |
C15 | 0.0208 (5) | 0.0138 (5) | 0.0169 (5) | 0.0030 (4) | 0.0053 (4) | −0.0016 (4) |
C16 | 0.0187 (5) | 0.0151 (5) | 0.0169 (5) | 0.0040 (4) | 0.0034 (4) | −0.0012 (4) |
C18 | 0.0174 (5) | 0.0176 (5) | 0.0179 (5) | 0.0044 (4) | 0.0018 (4) | −0.0025 (4) |
C7 | 0.0172 (5) | 0.0179 (5) | 0.0182 (5) | 0.0004 (4) | 0.0048 (4) | −0.0050 (4) |
C14 | 0.0210 (5) | 0.0139 (5) | 0.0170 (5) | −0.0004 (4) | 0.0048 (4) | −0.0025 (4) |
C13 | 0.0164 (5) | 0.0154 (5) | 0.0177 (5) | 0.0003 (4) | 0.0031 (4) | −0.0017 (4) |
C24 | 0.0146 (5) | 0.0169 (5) | 0.0227 (6) | −0.0030 (4) | 0.0066 (4) | −0.0054 (4) |
C5 | 0.0190 (5) | 0.0159 (5) | 0.0181 (5) | −0.0004 (4) | 0.0074 (4) | −0.0050 (4) |
C4 | 0.0178 (5) | 0.0185 (5) | 0.0234 (6) | −0.0009 (4) | 0.0101 (4) | −0.0065 (4) |
C2 | 0.0153 (5) | 0.0228 (6) | 0.0238 (6) | −0.0008 (4) | 0.0066 (4) | −0.0086 (4) |
C19 | 0.0255 (6) | 0.0154 (5) | 0.0245 (6) | 0.0037 (4) | 0.0060 (5) | −0.0052 (4) |
C8 | 0.0208 (6) | 0.0257 (6) | 0.0307 (7) | −0.0018 (5) | 0.0131 (5) | −0.0121 (5) |
C3 | 0.0149 (5) | 0.0273 (6) | 0.0303 (7) | −0.0008 (5) | 0.0088 (5) | −0.0110 (5) |
C9 | 0.0269 (7) | 0.0343 (7) | 0.0351 (8) | −0.0009 (6) | 0.0138 (6) | −0.0185 (6) |
C21 | 0.0357 (8) | 0.0146 (5) | 0.0403 (8) | 0.0035 (5) | 0.0090 (6) | 0.0005 (5) |
C22 | 0.0397 (8) | 0.0278 (7) | 0.0271 (7) | 0.0032 (6) | 0.0117 (6) | −0.0116 (5) |
C11 | 0.0411 (9) | 0.0407 (9) | 0.0477 (10) | −0.0119 (7) | 0.0328 (8) | −0.0192 (7) |
C20 | 0.0277 (7) | 0.0237 (6) | 0.0412 (9) | 0.0087 (5) | 0.0069 (6) | −0.0094 (6) |
C10 | 0.0335 (8) | 0.0349 (8) | 0.0453 (10) | 0.0127 (6) | 0.0119 (7) | −0.0121 (7) |
O6 | 0.0181 (4) | 0.0183 (4) | 0.0179 (4) | 0.0058 (3) | 0.0003 (3) | −0.0057 (3) |
C23 | 0.0245 (7) | 0.0295 (7) | 0.0308 (7) | 0.0102 (5) | −0.0069 (5) | −0.0140 (6) |
Cu2—Cu1 | 2.9938 (2) | C24—H24C | 0.9800 |
Cu2—O5 | 1.9455 (8) | C5—H5 | 0.9500 |
Cu2—O3 | 1.8939 (8) | C5—C4 | 1.3710 (17) |
Cu2—O4 | 1.9473 (9) | C4—C8 | 1.5303 (17) |
Cu2—O6 | 1.9081 (8) | C4—C3 | 1.4177 (18) |
Cu2—O1i | 2.4994 (9) | C2—H2 | 0.9500 |
Cu1—O5i | 2.3703 (9) | C2—C3 | 1.3766 (17) |
Cu1—O5 | 1.9522 (8) | C19—C21 | 1.540 (2) |
Cu1—O1 | 1.9166 (8) | C19—C22 | 1.535 (2) |
Cu1—O2 | 1.9557 (9) | C19—C20 | 1.534 (2) |
Cu1—O6 | 1.9154 (9) | C8—C9 | 1.535 (2) |
O5—C24 | 1.4186 (14) | C8—C11 | 1.540 (2) |
O5—O6 | 2.4342 (12) | C8—C10 | 1.533 (2) |
O1—C1 | 1.3075 (13) | C3—H3 | 0.9500 |
O2—C7 | 1.2497 (14) | C9—H9A | 0.9800 |
O3—C12 | 1.2963 (13) | C9—H9B | 0.9800 |
O4—C18 | 1.2550 (14) | C9—H9C | 0.9800 |
C17—C12 | 1.4262 (16) | C21—H21A | 0.9800 |
C17—C16 | 1.4307 (16) | C21—H21B | 0.9800 |
C17—C18 | 1.4187 (16) | C21—H21C | 0.9800 |
C12—C13 | 1.4211 (16) | C22—H22A | 0.9800 |
C1—C6 | 1.4228 (16) | C22—H22B | 0.9800 |
C1—C2 | 1.4143 (17) | C22—H22C | 0.9800 |
C6—C7 | 1.4244 (17) | C11—H11A | 0.9800 |
C6—C5 | 1.4232 (16) | C11—H11B | 0.9800 |
C15—C16 | 1.3705 (16) | C11—H11C | 0.9800 |
C15—C14 | 1.4209 (17) | C20—H20A | 0.9800 |
C15—C19 | 1.5331 (17) | C20—H20B | 0.9800 |
C16—H16 | 0.9500 | C20—H20C | 0.9800 |
C18—H18 | 0.9500 | C10—H10A | 0.9800 |
C7—H7 | 0.9500 | C10—H10B | 0.9800 |
C14—H14 | 0.9500 | C10—H10C | 0.9800 |
C14—C13 | 1.3728 (16) | O6—C23 | 1.4102 (16) |
C13—H13 | 0.9500 | C23—H23A | 0.9800 |
C24—H24A | 0.9800 | C23—H23B | 0.9800 |
C24—H24B | 0.9800 | C23—H23C | 0.9800 |
O5—Cu2—Cu1 | 39.90 (2) | H24A—C24—H24C | 109.5 |
O5—Cu2—O4 | 172.71 (4) | H24B—C24—H24C | 109.5 |
O3—Cu2—Cu1 | 132.45 (3) | C6—C5—H5 | 118.8 |
O3—Cu2—O5 | 92.75 (4) | C4—C5—C6 | 122.46 (11) |
O3—Cu2—O4 | 94.19 (4) | C4—C5—H5 | 118.8 |
O3—Cu2—O6 | 167.56 (4) | C5—C4—C8 | 124.16 (11) |
O4—Cu2—Cu1 | 133.32 (3) | C5—C4—C3 | 116.24 (11) |
O6—Cu2—Cu1 | 38.55 (3) | C3—C4—C8 | 119.58 (11) |
O6—Cu2—O5 | 78.34 (4) | C1—C2—H2 | 119.5 |
O6—Cu2—O4 | 95.13 (4) | C3—C2—C1 | 121.04 (11) |
O5i—Cu1—Cu2 | 89.49 (2) | C3—C2—H2 | 119.5 |
O5—Cu1—Cu2 | 39.74 (2) | C15—C19—C21 | 108.80 (11) |
O5—Cu1—O5i | 84.34 (3) | C15—C19—C22 | 109.21 (11) |
O5—Cu1—O2 | 171.62 (4) | C15—C19—C20 | 112.42 (11) |
O1—Cu1—Cu2 | 134.34 (3) | C22—C19—C21 | 109.42 (12) |
O1—Cu1—O5i | 88.65 (3) | C20—C19—C21 | 108.68 (12) |
O1—Cu1—O5 | 94.74 (3) | C20—C19—C22 | 108.26 (13) |
O1—Cu1—O2 | 93.39 (4) | C4—C8—C9 | 111.71 (11) |
O2—Cu1—Cu2 | 131.99 (3) | C4—C8—C11 | 108.89 (11) |
O2—Cu1—O5i | 97.91 (3) | C4—C8—C10 | 109.96 (12) |
O6—Cu1—Cu2 | 38.38 (3) | C9—C8—C11 | 108.63 (13) |
O6—Cu1—O5 | 78.00 (4) | C10—C8—C9 | 108.64 (12) |
O6—Cu1—O5i | 98.18 (4) | C10—C8—C11 | 108.95 (14) |
O6—Cu1—O1 | 169.41 (4) | C4—C3—H3 | 118.4 |
O6—Cu1—O2 | 93.66 (4) | C2—C3—C4 | 123.15 (12) |
Cu2—O5—Cu1i | 94.89 (3) | C2—C3—H3 | 118.4 |
Cu2—O5—Cu1 | 100.36 (4) | C8—C9—H9A | 109.5 |
Cu2—O5—O6 | 50.15 (3) | C8—C9—H9B | 109.5 |
Cu1—O5—Cu1i | 95.66 (3) | C8—C9—H9C | 109.5 |
Cu1—O5—O6 | 50.33 (3) | H9A—C9—H9B | 109.5 |
Cu1i—O5—O6 | 101.01 (4) | H9A—C9—H9C | 109.5 |
C24—O5—Cu2 | 125.55 (7) | H9B—C9—H9C | 109.5 |
C24—O5—Cu1i | 106.36 (7) | C19—C21—H21A | 109.5 |
C24—O5—Cu1 | 125.65 (7) | C19—C21—H21B | 109.5 |
C24—O5—O6 | 152.62 (8) | C19—C21—H21C | 109.5 |
Cu1—O1—Cu2i | 91.61 (3) | H21A—C21—H21B | 109.5 |
C1—O1—Cu2i | 109.30 (7) | H21A—C21—H21C | 109.5 |
C1—O1—Cu1 | 124.52 (7) | H21B—C21—H21C | 109.5 |
C7—O2—Cu1 | 124.15 (8) | C19—C22—H22A | 109.5 |
C12—O3—Cu2 | 126.86 (8) | C19—C22—H22B | 109.5 |
C18—O4—Cu2 | 124.25 (8) | C19—C22—H22C | 109.5 |
C12—C17—C16 | 120.14 (10) | H22A—C22—H22B | 109.5 |
C18—C17—C12 | 122.20 (10) | H22A—C22—H22C | 109.5 |
C18—C17—C16 | 117.62 (10) | H22B—C22—H22C | 109.5 |
O3—C12—C17 | 124.55 (10) | C8—C11—H11A | 109.5 |
O3—C12—C13 | 118.83 (10) | C8—C11—H11B | 109.5 |
C13—C12—C17 | 116.62 (10) | C8—C11—H11C | 109.5 |
O1—C1—C6 | 124.16 (10) | H11A—C11—H11B | 109.5 |
O1—C1—C2 | 119.21 (10) | H11A—C11—H11C | 109.5 |
C2—C1—C6 | 116.61 (10) | H11B—C11—H11C | 109.5 |
C1—C6—C7 | 122.30 (10) | C19—C20—H20A | 109.5 |
C1—C6—C5 | 120.44 (11) | C19—C20—H20B | 109.5 |
C5—C6—C7 | 117.25 (11) | C19—C20—H20C | 109.5 |
C16—C15—C14 | 116.48 (10) | H20A—C20—H20B | 109.5 |
C16—C15—C19 | 124.61 (11) | H20A—C20—H20C | 109.5 |
C14—C15—C19 | 118.90 (11) | H20B—C20—H20C | 109.5 |
C17—C16—H16 | 118.8 | C8—C10—H10A | 109.5 |
C15—C16—C17 | 122.46 (11) | C8—C10—H10B | 109.5 |
C15—C16—H16 | 118.8 | C8—C10—H10C | 109.5 |
O4—C18—C17 | 127.79 (11) | H10A—C10—H10B | 109.5 |
O4—C18—H18 | 116.1 | H10A—C10—H10C | 109.5 |
C17—C18—H18 | 116.1 | H10B—C10—H10C | 109.5 |
O2—C7—C6 | 127.53 (11) | Cu2—O6—Cu1 | 103.07 (4) |
O2—C7—H7 | 116.2 | Cu2—O6—O5 | 51.51 (3) |
C6—C7—H7 | 116.2 | Cu1—O6—O5 | 51.67 (3) |
C15—C14—H14 | 118.5 | C23—O6—Cu2 | 126.69 (8) |
C13—C14—C15 | 123.05 (11) | C23—O6—Cu1 | 129.06 (8) |
C13—C14—H14 | 118.5 | C23—O6—O5 | 173.52 (11) |
C12—C13—H13 | 119.4 | O6—C23—H23A | 109.5 |
C14—C13—C12 | 121.19 (11) | O6—C23—H23B | 109.5 |
C14—C13—H13 | 119.4 | O6—C23—H23C | 109.5 |
O5—C24—H24A | 109.5 | H23A—C23—H23B | 109.5 |
O5—C24—H24B | 109.5 | H23A—C23—H23C | 109.5 |
O5—C24—H24C | 109.5 | H23B—C23—H23C | 109.5 |
H24A—C24—H24B | 109.5 | ||
Cu2i—O1—C1—C6 | −86.12 (12) | C16—C17—C18—O4 | −175.35 (13) |
Cu2i—O1—C1—C2 | 92.26 (11) | C16—C15—C14—C13 | −0.50 (19) |
Cu2—O3—C12—C17 | −1.66 (17) | C16—C15—C19—C21 | 113.59 (15) |
Cu2—O3—C12—C13 | 177.57 (8) | C16—C15—C19—C22 | −127.03 (14) |
Cu2—O4—C18—C17 | −5.2 (2) | C16—C15—C19—C20 | −6.85 (19) |
Cu1—Cu2—O3—C12 | −178.29 (8) | C18—C17—C12—O3 | 1.37 (19) |
Cu1—O1—C1—C6 | 19.97 (15) | C18—C17—C12—C13 | −177.88 (11) |
Cu1—O1—C1—C2 | −161.65 (9) | C18—C17—C16—C15 | 175.79 (12) |
Cu1—O2—C7—C6 | 0.60 (19) | C7—C6—C5—C4 | −177.61 (12) |
O5—Cu2—O3—C12 | 177.23 (9) | C14—C15—C16—C17 | 2.34 (19) |
O1—C1—C6—C7 | −2.07 (18) | C14—C15—C19—C21 | −64.86 (15) |
O1—C1—C6—C5 | 177.80 (11) | C14—C15—C19—C22 | 54.53 (16) |
O1—C1—C2—C3 | −179.56 (12) | C14—C15—C19—C20 | 174.71 (13) |
O3—C12—C13—C14 | −177.39 (11) | C5—C6—C7—O2 | 170.95 (12) |
O4—Cu2—O3—C12 | −0.55 (10) | C5—C4—C8—C9 | 4.2 (2) |
C17—C12—C13—C14 | 1.90 (17) | C5—C4—C8—C11 | −115.78 (15) |
C12—C17—C16—C15 | −2.07 (19) | C5—C4—C8—C10 | 124.91 (15) |
C12—C17—C18—O4 | 2.5 (2) | C5—C4—C3—C2 | 0.8 (2) |
C1—C6—C7—O2 | −9.2 (2) | C2—C1—C6—C7 | 179.51 (12) |
C1—C6—C5—C4 | 2.52 (18) | C2—C1—C6—C5 | −0.62 (17) |
C1—C2—C3—C4 | 1.0 (2) | C19—C15—C16—C17 | −176.13 (12) |
C6—C1—C2—C3 | −1.06 (19) | C19—C15—C14—C13 | 178.07 (12) |
C6—C5—C4—C8 | 175.75 (12) | C8—C4—C3—C2 | −177.58 (14) |
C6—C5—C4—C3 | −2.52 (19) | C3—C4—C8—C9 | −177.58 (14) |
C15—C14—C13—C12 | −1.66 (19) | C3—C4—C8—C11 | 62.44 (18) |
C16—C17—C12—O3 | 179.13 (11) | C3—C4—C8—C10 | −56.87 (17) |
C16—C17—C12—C13 | −0.12 (17) | O6—Cu2—O3—C12 | −138.98 (16) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O4ii | 0.95 | 2.57 | 3.3225 (16) | 136 |
C23—H23B···O2 | 0.98 | 2.43 | 3.0607 (18) | 122 |
Symmetry code: (ii) x−1/2, −y+1/2, z−1/2. |
O6—C23 | 1.4102 (16) | ||
O3—Cu2—O5 | 92.75 (4) | O5—Cu1—O2 | 171.62 (4) |
O3—Cu2—O4 | 94.19 (4) | O1—Cu1—O5i | 88.65 (3) |
O3—Cu2—O6 | 167.56 (4) | O1—Cu1—O5 | 94.74 (3) |
O6—Cu2—O4 | 95.13 (4) | O1—Cu1—O2 | 93.39 (4) |
O5—Cu1—O5i | 84.34 (3) | O2—Cu1—O5i | 97.91 (3) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O4ii | 0.95 | 2.57 | 3.3225 (16) | 136 |
C23—H23B···O2 | 0.98 | 2.43 | 3.0607 (18) | 122 |
Symmetry code: (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu4(CH3O)4(C11H13O2)4] |
Mr | 1087.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.6863 (1), 20.8460 (2), 13.1387 (1) |
β (°) | 109.29 |
V (Å3) | 2504.05 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.73 |
Crystal size (mm) | 0.10 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.919, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 105316, 9505, 7960 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.769 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.071, 1.00 |
No. of reflections | 9505 |
No. of parameters | 297 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −0.32 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS98 (Sheldrick, 2008), SHELXL98 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
The Deutsche Forschungsgemeinschaft (collaborative research center SFB668-TP A4) is gratefully acknowledged for funding.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kahn, O., Galy, J., Journaux, Y., Jaud, J. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 2165–2176. CSD CrossRef CAS Web of Science Google Scholar
Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626–4634. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.