metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m67-m68

Crystal structure of 2,2′-bi­pyridine-1,1′-diium tetra­chlorido­zincate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 February 2015; accepted 14 February 2015; online 21 February 2015)

In the crystal structure of the title salt, (C10H10N2)[ZnCl4], the bi­pyridine­diium dication is not planar, with a dihedral angle of 37.21 (9)° between the planes of the two pyridine rings. In the crystal, the slightly distorted [ZnCl4]2− anions are packed into rods parallel to [001], with the organic cations arranged in corrugated layers parallel to (100). Cations and anions are linked through N—H⋯Cl hydrogen bonds, forming chains parallel to [20-1]. Additional C—H⋯Cl inter­actions consolidate the crystal packing.

1. Related literature

For the crystal structure of 4,4′-bi­pyridine-1,1′-diium tetra­chlorido­zincate, see: Gillon et al. (2000[Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X. M., Rodríguez-Martín, Y. & Ruiz-Pérez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897-3905.]). For other bi­pyridine derivatives with a [ZnCl4]2− counter-anion, see: Rice et al. (2002[Rice, C. R., Onions, S., Vidal, N., Wallis, J. D., Senna, M. C., Pilkington, M. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 1985-1997.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C10H10N2)[ZnCl4]

  • Mr = 365.39

  • Monoclinic, P 21 /c

  • a = 7.1059 (4) Å

  • b = 13.6075 (6) Å

  • c = 14.2631 (7) Å

  • β = 100.816 (5)°

  • V = 1354.65 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Eos detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.565, Tmax = 0.654

  • 7435 measured reflections

  • 3115 independent reflections

  • 2717 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.056

  • S = 1.05

  • 3115 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4i 0.86 2.33 3.1058 (15) 150
N2—H2A⋯Cl1ii 0.86 2.26 3.0693 (15) 157
C1—H1⋯Cl2iii 0.93 2.74 3.4842 (19) 137
C3—H3⋯Cl4iv 0.93 2.83 3.664 (2) 150
C10—H10⋯Cl2v 0.93 2.67 3.570 (2) 162
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the crystal structure of 4,4'-bipyridine-4,4'-diium tetrachloridozincate, see: Gillon et al. (2000). For other bipyridine derivatives with a [ZnCl4]2- counter-anion, see: Rice et al. (2002).

Experimental top

Zinc chloride (136 mg, 1 mmol) was dissolved in 20 ml of water. To this solution was added dropwise 2,2'-bipyridine (156 mg, 1 mmol) in 20 ml of an EtOH/HCl mixture (1:9 v/v). The mixture was heated to 333 K for 2–3 hrs and allowed to stand until colorless crystals separated. The crystals were filtered and repeatedly recrystallized by using acidified water.

Refinement top

N and C-bound H atoms were positioned geometrically (N—H = 0.86; C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N, C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular components of the title salt with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along [100].
2,2'-Bipyridine-1,1'-diium tetrachloridozincate top
Crystal data top
(C10H10N2)[ZnCl4]F(000) = 728
Mr = 365.39Dx = 1.791 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 2717 reflections
a = 7.1059 (4) Åθ = 3.7–29.2°
b = 13.6075 (6) ŵ = 2.58 mm1
c = 14.2631 (7) ÅT = 293 K
β = 100.816 (5)°Block, colourless
V = 1354.65 (12) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos detector
3115 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 29.2°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.565, Tmax = 0.654k = 1717
7435 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.1003P]
where P = (Fo2 + 2Fc2)/3
3115 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
(C10H10N2)[ZnCl4]V = 1354.65 (12) Å3
Mr = 365.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1059 (4) ŵ = 2.58 mm1
b = 13.6075 (6) ÅT = 293 K
c = 14.2631 (7) Å0.25 × 0.20 × 0.18 mm
β = 100.816 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos detector
3115 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2717 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.654Rint = 0.024
7435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
3115 reflectionsΔρmin = 0.51 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6920 (3)0.07397 (14)0.51855 (13)0.0181 (4)
H10.67760.04530.57590.022*
C20.7677 (3)0.02053 (14)0.45317 (14)0.0200 (4)
H20.80010.04520.46430.024*
C30.7947 (3)0.06655 (14)0.37010 (14)0.0192 (4)
H30.84920.03210.32560.023*
C40.7409 (3)0.16360 (14)0.35321 (13)0.0164 (4)
H40.75980.19470.29770.020*
C50.6590 (3)0.21376 (13)0.41919 (12)0.0130 (4)
C60.5805 (3)0.31365 (14)0.40546 (12)0.0132 (4)
C70.4136 (3)0.34390 (14)0.43280 (12)0.0159 (4)
H70.34650.30100.46520.019*
C80.3461 (3)0.43815 (15)0.41188 (13)0.0205 (4)
H80.23300.45860.42970.025*
C90.4473 (3)0.50196 (14)0.36437 (13)0.0234 (4)
H90.40410.56580.35060.028*
C100.6122 (3)0.46959 (14)0.33786 (13)0.0225 (4)
H100.68110.51140.30520.027*
N10.6743 (2)0.37817 (11)0.35883 (10)0.0163 (3)
H1A0.77860.35950.34190.020*
N20.6388 (2)0.16722 (11)0.50012 (10)0.0147 (3)
H2A0.58960.19900.54170.018*
Zn10.14622 (3)0.224086 (15)0.198218 (14)0.01454 (7)
Cl10.43041 (7)0.28035 (4)0.16341 (3)0.02205 (12)
Cl20.22538 (7)0.12838 (3)0.32961 (3)0.01744 (10)
Cl30.01698 (8)0.14035 (4)0.07333 (4)0.03026 (13)
Cl40.01829 (7)0.35933 (3)0.23116 (3)0.02098 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (10)0.0151 (9)0.0199 (10)0.0006 (8)0.0003 (8)0.0045 (7)
C20.0127 (10)0.0140 (9)0.0310 (11)0.0012 (8)0.0017 (8)0.0010 (8)
C30.0121 (10)0.0210 (10)0.0250 (10)0.0014 (8)0.0050 (8)0.0068 (8)
C40.0136 (10)0.0189 (10)0.0174 (9)0.0007 (8)0.0047 (7)0.0003 (7)
C50.0104 (9)0.0139 (9)0.0138 (9)0.0023 (7)0.0002 (7)0.0003 (7)
C60.0160 (10)0.0146 (9)0.0081 (8)0.0026 (7)0.0002 (7)0.0004 (7)
C70.0175 (10)0.0158 (9)0.0141 (9)0.0002 (8)0.0027 (7)0.0009 (7)
C80.0213 (11)0.0214 (10)0.0172 (10)0.0039 (8)0.0007 (8)0.0045 (8)
C90.0370 (13)0.0130 (9)0.0170 (10)0.0050 (9)0.0032 (8)0.0000 (8)
C100.0350 (12)0.0164 (10)0.0148 (10)0.0064 (9)0.0015 (8)0.0023 (7)
N10.0186 (9)0.0158 (8)0.0151 (8)0.0026 (7)0.0044 (6)0.0005 (6)
N20.0171 (8)0.0141 (8)0.0132 (8)0.0017 (6)0.0035 (6)0.0009 (6)
Zn10.01358 (12)0.01320 (12)0.01649 (12)0.00066 (8)0.00192 (8)0.00128 (8)
Cl10.0188 (3)0.0326 (3)0.0162 (2)0.0072 (2)0.00697 (18)0.00060 (19)
Cl20.0193 (2)0.0146 (2)0.0184 (2)0.00016 (18)0.00339 (17)0.00387 (17)
Cl30.0305 (3)0.0245 (3)0.0295 (3)0.0056 (2)0.0106 (2)0.0036 (2)
Cl40.0207 (3)0.0164 (2)0.0278 (3)0.00419 (19)0.0097 (2)0.00458 (19)
Geometric parameters (Å, º) top
C1—N21.336 (2)C7—H70.9300
C1—C21.370 (3)C8—C91.383 (3)
C1—H10.9300C8—H80.9300
C2—C31.385 (3)C9—C101.370 (3)
C2—H20.9300C9—H90.9300
C3—C41.383 (3)C10—N11.335 (2)
C3—H30.9300C10—H100.9300
C4—C51.377 (2)N1—H1A0.8600
C4—H40.9300N2—H2A0.8600
C5—N21.348 (2)Zn1—Cl32.2452 (5)
C5—C61.468 (2)Zn1—Cl22.2647 (5)
C6—N11.350 (2)Zn1—Cl42.2760 (5)
C6—C71.379 (2)Zn1—Cl12.2994 (5)
C7—C81.382 (3)
N2—C1—C2120.20 (17)C7—C8—C9119.83 (18)
N2—C1—H1119.9C7—C8—H8120.1
C2—C1—H1119.9C9—C8—H8120.1
C1—C2—C3118.53 (18)C10—C9—C8118.92 (18)
C1—C2—H2120.7C10—C9—H9120.5
C3—C2—H2120.7C8—C9—H9120.5
C4—C3—C2120.15 (17)N1—C10—C9120.09 (18)
C4—C3—H3119.9N1—C10—H10120.0
C2—C3—H3119.9C9—C10—H10120.0
C5—C4—C3119.53 (17)C10—N1—C6122.94 (17)
C5—C4—H4120.2C10—N1—H1A118.5
C3—C4—H4120.2C6—N1—H1A118.5
N2—C5—C4118.61 (16)C1—N2—C5122.91 (16)
N2—C5—C6116.77 (15)C1—N2—H2A118.5
C4—C5—C6124.51 (16)C5—N2—H2A118.5
N1—C6—C7118.37 (17)Cl3—Zn1—Cl2112.08 (2)
N1—C6—C5117.22 (16)Cl3—Zn1—Cl4111.43 (2)
C7—C6—C5124.33 (16)Cl2—Zn1—Cl4110.585 (18)
C6—C7—C8119.84 (18)Cl3—Zn1—Cl1109.97 (2)
C6—C7—H7120.1Cl2—Zn1—Cl1106.16 (2)
C8—C7—H7120.1Cl4—Zn1—Cl1106.33 (2)
N2—C1—C2—C32.6 (3)C5—C6—C7—C8176.39 (17)
C1—C2—C3—C41.8 (3)C6—C7—C8—C90.6 (3)
C2—C3—C4—C50.5 (3)C7—C8—C9—C100.8 (3)
C3—C4—C5—N21.9 (3)C8—C9—C10—N10.7 (3)
C3—C4—C5—C6174.26 (18)C9—C10—N1—C60.5 (3)
N2—C5—C6—N1146.62 (17)C7—C6—N1—C100.2 (3)
C4—C5—C6—N137.1 (3)C5—C6—N1—C10176.69 (16)
N2—C5—C6—C736.7 (3)C2—C1—N2—C51.2 (3)
C4—C5—C6—C7139.56 (19)C4—C5—N2—C11.1 (3)
N1—C6—C7—C80.3 (3)C6—C5—N2—C1175.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.862.333.1058 (15)150
N2—H2A···Cl1ii0.862.263.0693 (15)157
C1—H1···Cl2iii0.932.743.4842 (19)137
C3—H3···Cl4iv0.932.833.664 (2)150
C10—H10···Cl2v0.932.673.570 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.862.333.1058 (15)150
N2—H2A···Cl1ii0.862.263.0693 (15)157
C1—H1···Cl2iii0.932.743.4842 (19)137
C3—H3···Cl4iv0.932.833.664 (2)150
C10—H10···Cl2v0.932.673.570 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

KA is thankful to the CSIR, New Delhi [Lr: No. 01 (2570)/12/EMR-II/3.4.2012], for financial support through a major research project. The authors acknowledge the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X. M., Rodríguez-Martín, Y. & Ruiz-Pérez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897–3905.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRice, C. R., Onions, S., Vidal, N., Wallis, J. D., Senna, M. C., Pilkington, M. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 1985–1997.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m67-m68
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds