metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m69-m70

Crystal structure of tri­chlorido­(4′-ferrocenyl-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)iridium(III) aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aPhysical Sciences and Engineering Division, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Kingdom of , Saudi Arabia
*Correspondence e-mail: alexander.rothenberger@kaust.edu.sa

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 February 2015; accepted 19 February 2015; online 25 February 2015)

In the title compound, [FeIr(C5H5)(C20H14N3)Cl3]·2CH3CN, the central IrIII atom is sixfold coordinated by three chloride ligands and three terpyridine N atoms in a slightly distorted octa­hedral fashion. The terpyridine ligand is functionalized at the 4′-position with a ferrocenyl group, the latter being in an eclipsed conformation. In the crystal, mol­ecules are stacked in rows parallel to [001], with the aceto­nitrile solvent mol­ecules situated between the rows. An extensive network of intra- and inter­molecular C—H⋯Cl inter­actions is present, stabilizing the three-dimensional structure.

1. Related literature

Complexes of metal ions with ferrocene-substituted terpyridine ligands show inter­esting electron transport dynamics (Sakamoto et al., 2015[Sakamoto, R., Katagiri, S., Maeda, H., Nishimori, Y., Miyashita, S. & Nishi­hara, H. (2015). J. Am. Chem. Soc. 137, 734-741.]), DNA cleavage and anti­cancer activity (Maity et al., 2010[Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632-3641.]) and enhanced electro-optical properties (Wu et al., 2011[Wu, K.-Q., Guo, J., Yan, J.-F., Xie, L.-L., Xu, F.-B., Bai, S., Nockemann, P. & Yuan, Y.-F. (2011). Organometallics, 30, 3504-3511.]). For the preparation of the ferrocenyl­ter­pyridine ligand, see: Constable et al. (1994[Constable, E. C., Edwards, A. J., Martinez-Manez, R., Raithby, P. R. & Cargill Thompson, A. M. W. (1994). Dalton Trans. 5, 645-650.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [FeIr(C5H5)(C20H14N3)Cl3]·2C2H3N

  • Mr = 797.94

  • Monoclinic, P 21 /a

  • a = 11.557 (5) Å

  • b = 21.663 (5) Å

  • c = 11.579 (5) Å

  • β = 105.974 (5)°

  • V = 2787.0 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 150 K

  • 0.30 × 0.23 × 0.20 mm

2.2. Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: numerical (X-AREA and X-RED32; Stoe & Cie, 2013[Stoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.348, Tmax = 0.390

  • 26757 measured reflections

  • 7374 independent reflections

  • 5312 reflections with I > 2σ(I)

  • Rint = 0.069

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 1.02

  • 7374 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl3i 0.98 2.83 3.771 (5) 162
C24—H24A⋯Cl1ii 0.95 2.75 3.701 (9) 174
C6—H6⋯Cl3i 0.95 2.83 3.731 (6) 159
C9—H9B⋯Cl3 0.98 2.99 3.875 (10) 151
C11—H11⋯Cl3i 0.95 2.82 3.711 (5) 157
C17—H17⋯Cl1 0.95 2.90 3.486 (6) 121
C20—H20⋯Cl1 0.95 2.89 3.484 (5) 122
C24—H24A⋯Cl1ii 0.98 2.73 3.701 (8) 174
C19—H19⋯Cl2iii 0.95 2.82 3.716 (6) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x, y, z-1; (iii) -x+1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2013[Stoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL.

Supporting information


Synthesis and crystallization top

IrCl3 (1 mmol) was suspended in 50 ml of methanol and stirred for 20 minutes. 4'-Ferrocenyl-2,2':6',2''-terpyridine (1.2 mmol), dissolved in 3 ml THF, was dropwise added to the IrCl3 suspension and refluxed at 368 K overnight. The reaction mixture was cooled down to room temperature and filtered. The dark blue residue was subsequently washed with methanol and di­ethyl ether. The yield was around 80%. Rhombic dark-violet crystals were grown by diffusion from an aceto­nitrile/di­ethyl ether mixture.

Refinement top

The H atoms were treated as riding and Uiso(H) values set at 1.2 (aromatic) or 1.5 (methyl) Ueq(C).

Related literature top

Complexes of metal ions with ferrocene-substituted terpyridine ligands show interesting electron transport dynamics (Sakamoto et al. (2015), DNA cleavage and anticancer activity (Maity et al., 2010) and enhanced electro-optical properties (Wu et al., 2011). For the preparation of the ferrocenylterpyridine ligand, see: Constable et al. (1994).

Computing details top

Data collection: X-AREA (Stoe, 2013); cell refinement: X-AREA (Stoe, 2013); data reduction: X-AREA (Stoe, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL (Sheldrick, b).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Intra- and intermolecular C—H···Cl interactions in the crystal packing, indicated by dashed-red lines.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along [010].
Trichlorido(4'-ferrocenyl-2,2':6',2''-terpyridine-κ3N,N',N'')iridium(III) acetonitrile disolvate top
Crystal data top
[FeIr(C5H5)(C20H14N3)Cl3]·2C2H3NF(000) = 1552
Mr = 797.94Dx = 1.902 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 11.557 (5) ÅCell parameters from 9378 reflections
b = 21.663 (5) Åθ = 1.8–29.3°
c = 11.579 (5) ŵ = 5.61 mm1
β = 105.974 (5)°T = 150 K
V = 2787.0 (18) Å3Block, dark-violet
Z = 40.30 × 0.23 × 0.20 mm
Data collection top
STOE IPDS 2
diffractometer
7374 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5312 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.069
rotation method scansθmax = 29.2°, θmin = 1.8°
Absorption correction: numerical
(X-AREA and X-RED32; Stoe, 2013)
h = 1515
Tmin = 0.348, Tmax = 0.390k = 2829
26757 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0322P)2 + 2.6254P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7374 reflectionsΔρmax = 1.11 e Å3
354 parametersΔρmin = 1.10 e Å3
Crystal data top
[FeIr(C5H5)(C20H14N3)Cl3]·2C2H3NV = 2787.0 (18) Å3
Mr = 797.94Z = 4
Monoclinic, P21/aMo Kα radiation
a = 11.557 (5) ŵ = 5.61 mm1
b = 21.663 (5) ÅT = 150 K
c = 11.579 (5) Å0.30 × 0.23 × 0.20 mm
β = 105.974 (5)°
Data collection top
STOE IPDS 2
diffractometer
7374 independent reflections
Absorption correction: numerical
(X-AREA and X-RED32; Stoe, 2013)
5312 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.390Rint = 0.069
26757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 1.11 e Å3
7374 reflectionsΔρmin = 1.10 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.26476 (2)0.10206 (2)0.12149 (2)0.02014 (5)
Fe10.62436 (7)0.19070 (3)0.31981 (7)0.02452 (15)
Cl10.13455 (12)0.07759 (6)0.24188 (13)0.0293 (3)
Cl20.42892 (11)0.05633 (6)0.26314 (11)0.0261 (2)
Cl30.10318 (12)0.14691 (6)0.02370 (12)0.0277 (3)
N10.2392 (8)0.1022 (4)0.3477 (7)0.083 (3)
N20.3740 (4)0.12151 (18)0.0261 (4)0.0213 (8)
N30.2439 (4)0.02408 (18)0.0187 (4)0.0229 (8)
N40.3233 (4)0.18687 (18)0.1925 (4)0.0217 (8)
N50.1880 (7)0.0828 (3)0.4257 (6)0.0595 (17)
C10.6807 (5)0.1118 (2)0.2268 (5)0.0264 (10)
H10.64790.06950.24950.032*
C20.3395 (5)0.2744 (2)0.3209 (5)0.0282 (11)
H20.31560.29520.38280.034*
C30.3169 (4)0.0234 (2)0.0569 (5)0.0219 (9)
C40.6388 (5)0.1554 (2)0.1528 (5)0.0235 (10)
C50.4361 (4)0.1751 (2)0.0470 (5)0.0221 (10)
C60.4562 (5)0.2697 (2)0.1801 (5)0.0253 (10)
H60.51330.28750.14460.030*
C70.3932 (5)0.0789 (2)0.0515 (5)0.0224 (10)
C80.4053 (5)0.2128 (2)0.1420 (5)0.0222 (10)
C90.0512 (8)0.0476 (4)0.3117 (9)0.064 (2)
H9A0.02030.05760.37720.095*
H9B0.03990.06200.23540.095*
H9C0.06340.00280.30830.095*
C100.4768 (5)0.0895 (2)0.1144 (5)0.0234 (10)
H100.48920.05990.17030.028*
C110.5210 (5)0.1880 (2)0.0131 (5)0.0236 (10)
H110.56390.22590.00060.028*
C120.7121 (5)0.2094 (2)0.1450 (5)0.0275 (11)
H120.70350.24820.10120.033*
C130.5157 (6)0.2642 (2)0.3859 (6)0.0341 (13)
H130.50500.30180.33990.041*
C140.1662 (5)0.0745 (2)0.0555 (5)0.0313 (12)
H140.11320.10790.05430.038*
C150.5438 (5)0.1451 (2)0.0944 (5)0.0228 (10)
C160.7782 (5)0.1396 (3)0.2599 (5)0.0320 (12)
H160.82450.12030.31190.038*
C170.1695 (5)0.0228 (2)0.0186 (5)0.0253 (10)
H170.11770.02130.06960.030*
C180.4226 (5)0.3002 (2)0.2706 (5)0.0277 (11)
H180.45710.33920.29800.033*
C190.3176 (5)0.0262 (2)0.1311 (5)0.0252 (10)
H190.36920.02650.18240.030*
C200.2910 (5)0.2170 (2)0.2793 (5)0.0267 (10)
H200.23340.19880.31370.032*
C210.7980 (5)0.1994 (3)0.2092 (5)0.0332 (12)
H210.85990.22970.21920.040*
C220.4898 (6)0.1674 (3)0.4711 (5)0.0347 (13)
H220.45830.12490.49470.042*
C230.6027 (6)0.2562 (3)0.4513 (6)0.0365 (13)
H230.66410.28720.45940.044*
C240.3273 (8)0.0102 (4)0.5027 (7)0.058 (2)
H24A0.27890.01100.57460.088*
H24B0.39020.03460.52330.088*
H24C0.36460.02040.44140.088*
C250.4470 (5)0.2092 (3)0.3980 (6)0.0348 (13)
H250.37940.20130.36140.042*
C260.2412 (5)0.0762 (2)0.1299 (6)0.0291 (11)
H260.24090.11100.17990.035*
C270.5857 (6)0.1966 (3)0.5037 (5)0.0358 (13)
H270.63430.17800.55420.043*
C280.2512 (7)0.0504 (3)0.4568 (6)0.0462 (16)
C290.1552 (8)0.0774 (4)0.3329 (8)0.057 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02160 (8)0.01507 (7)0.02675 (8)0.00012 (8)0.01168 (6)0.00098 (8)
Fe10.0263 (4)0.0222 (3)0.0289 (4)0.0001 (3)0.0140 (3)0.0010 (3)
Cl10.0290 (6)0.0285 (6)0.0366 (7)0.0003 (5)0.0193 (6)0.0053 (5)
Cl20.0270 (6)0.0230 (5)0.0295 (6)0.0024 (4)0.0099 (5)0.0016 (4)
Cl30.0282 (6)0.0231 (5)0.0330 (6)0.0048 (5)0.0102 (5)0.0033 (5)
N10.089 (6)0.081 (5)0.073 (5)0.031 (5)0.013 (4)0.022 (5)
N20.022 (2)0.0174 (17)0.026 (2)0.0003 (14)0.0098 (17)0.0027 (15)
N30.026 (2)0.0193 (18)0.026 (2)0.0014 (16)0.0117 (18)0.0014 (16)
N40.025 (2)0.0174 (18)0.026 (2)0.0037 (15)0.0130 (17)0.0025 (15)
N50.074 (5)0.048 (3)0.060 (4)0.007 (3)0.026 (4)0.010 (3)
C10.028 (2)0.025 (3)0.030 (2)0.0002 (19)0.013 (2)0.0027 (19)
C20.039 (3)0.019 (2)0.028 (3)0.007 (2)0.013 (2)0.0005 (19)
C30.022 (2)0.017 (2)0.028 (2)0.0016 (17)0.010 (2)0.0019 (18)
C40.028 (2)0.020 (2)0.026 (2)0.0006 (19)0.014 (2)0.0013 (18)
C50.024 (2)0.0145 (19)0.029 (2)0.0016 (17)0.010 (2)0.0037 (17)
C60.029 (3)0.016 (2)0.032 (3)0.0013 (18)0.012 (2)0.0012 (19)
C70.024 (2)0.019 (2)0.027 (2)0.0020 (18)0.012 (2)0.0027 (18)
C80.026 (2)0.0145 (19)0.027 (2)0.0001 (17)0.009 (2)0.0007 (17)
C90.051 (4)0.057 (5)0.082 (6)0.009 (4)0.016 (4)0.002 (4)
C100.027 (2)0.019 (2)0.028 (2)0.0011 (17)0.012 (2)0.0010 (17)
C110.023 (2)0.018 (2)0.031 (3)0.0020 (18)0.009 (2)0.0004 (19)
C120.027 (3)0.026 (2)0.031 (3)0.0046 (19)0.010 (2)0.004 (2)
C130.042 (3)0.019 (2)0.042 (3)0.007 (2)0.013 (3)0.005 (2)
C140.036 (3)0.019 (2)0.038 (3)0.014 (2)0.008 (3)0.004 (2)
C150.026 (2)0.020 (2)0.025 (2)0.0009 (18)0.011 (2)0.0032 (18)
C160.029 (3)0.037 (3)0.036 (3)0.006 (2)0.018 (2)0.002 (2)
C170.023 (2)0.022 (2)0.033 (3)0.0022 (19)0.012 (2)0.005 (2)
C180.031 (3)0.021 (2)0.031 (3)0.0035 (19)0.009 (2)0.0012 (19)
C190.028 (3)0.020 (2)0.030 (3)0.0042 (19)0.010 (2)0.0033 (19)
C200.029 (3)0.024 (2)0.032 (3)0.000 (2)0.016 (2)0.000 (2)
C210.027 (3)0.042 (3)0.033 (3)0.003 (2)0.012 (2)0.002 (2)
C220.038 (3)0.031 (3)0.034 (3)0.001 (2)0.006 (3)0.000 (2)
C230.037 (3)0.034 (3)0.039 (3)0.002 (2)0.011 (3)0.015 (2)
C240.058 (5)0.067 (5)0.054 (4)0.008 (4)0.023 (4)0.025 (4)
C250.030 (3)0.036 (3)0.041 (3)0.001 (2)0.015 (3)0.006 (2)
C260.032 (3)0.020 (2)0.034 (3)0.004 (2)0.007 (2)0.005 (2)
C270.043 (3)0.044 (3)0.024 (3)0.010 (3)0.014 (3)0.005 (2)
C280.055 (4)0.049 (4)0.036 (3)0.007 (3)0.013 (3)0.004 (3)
C290.060 (5)0.042 (4)0.069 (5)0.009 (4)0.018 (4)0.005 (4)
Geometric parameters (Å, º) top
Ir1—N21.939 (4)C6—H60.9500
Ir1—N32.042 (4)C7—C101.379 (7)
Ir1—N42.050 (4)C9—C291.444 (12)
Ir1—Cl32.3516 (14)C9—H9A0.9800
Ir1—Cl22.3575 (14)C9—H9B0.9800
Ir1—Cl12.3756 (15)C9—H9C0.9800
Fe1—C12.029 (5)C10—C151.416 (7)
Fe1—C122.040 (5)C10—H100.9500
Fe1—C252.040 (6)C11—C151.398 (7)
Fe1—C132.041 (5)C11—H110.9500
Fe1—C42.044 (5)C12—C211.411 (8)
Fe1—C232.046 (6)C12—H121.0000
Fe1—C162.047 (6)C13—C251.416 (8)
Fe1—C272.056 (6)C13—C231.426 (9)
Fe1—C222.059 (6)C13—H131.0000
Fe1—C212.071 (6)C14—C261.380 (9)
N1—C291.163 (11)C14—C171.405 (7)
N2—C71.349 (6)C14—H140.9500
N2—C51.351 (6)C16—C211.416 (8)
N3—C171.331 (6)C16—H161.0000
N3—C31.372 (7)C17—H170.9500
N4—C201.334 (7)C18—H180.9500
N4—C81.364 (6)C19—C261.400 (7)
N5—C281.142 (10)C19—H190.9500
C1—C161.420 (8)C20—H200.9500
C1—C41.445 (7)C21—H211.0000
C1—H11.0000C22—C271.415 (9)
C2—C181.372 (8)C22—C251.419 (8)
C2—C201.395 (7)C22—H221.0000
C2—H20.9500C23—C271.417 (9)
C3—C191.377 (7)C23—H231.0000
C3—C71.483 (7)C24—C281.438 (11)
C4—C121.433 (7)C24—H24A0.9800
C4—C151.457 (7)C24—H24B0.9800
C5—C111.379 (7)C24—H24C0.9800
C5—C81.489 (7)C25—H251.0000
C6—C181.382 (8)C26—H260.9500
C6—C81.386 (7)C27—H271.0000
N2—Ir1—N380.72 (17)N2—C7—C3112.2 (4)
N2—Ir1—N480.75 (17)C10—C7—C3127.4 (5)
N3—Ir1—N4161.46 (17)N4—C8—C6120.9 (5)
N2—Ir1—Cl390.93 (13)N4—C8—C5115.3 (4)
N3—Ir1—Cl388.97 (13)C6—C8—C5123.8 (5)
N4—Ir1—Cl391.49 (12)C29—C9—H9A109.5
N2—Ir1—Cl287.84 (13)C29—C9—H9B109.5
N3—Ir1—Cl290.07 (13)H9A—C9—H9B109.5
N4—Ir1—Cl289.08 (12)C29—C9—H9C109.5
Cl3—Ir1—Cl2178.55 (5)H9A—C9—H9C109.5
N2—Ir1—Cl1178.77 (13)H9B—C9—H9C109.5
N3—Ir1—Cl199.50 (13)C7—C10—C15119.1 (5)
N4—Ir1—Cl199.03 (12)C7—C10—H10120.5
Cl3—Ir1—Cl190.29 (6)C15—C10—H10120.5
Cl2—Ir1—Cl190.94 (6)C5—C11—C15119.8 (4)
C1—Fe1—C1269.0 (2)C5—C11—H11120.1
C1—Fe1—C25122.5 (2)C15—C11—H11120.1
C12—Fe1—C25124.4 (2)C21—C12—C4109.3 (5)
C1—Fe1—C13158.4 (2)C21—C12—Fe171.1 (3)
C12—Fe1—C13107.7 (2)C4—C12—Fe169.6 (3)
C25—Fe1—C1340.6 (2)C21—C12—H12125.3
C1—Fe1—C441.56 (19)C4—C12—H12125.3
C12—Fe1—C441.1 (2)Fe1—C12—H12125.3
C25—Fe1—C4107.7 (2)C25—C13—C23107.7 (5)
C13—Fe1—C4121.9 (2)C25—C13—Fe169.7 (3)
C1—Fe1—C23159.2 (2)C23—C13—Fe169.8 (3)
C12—Fe1—C23121.7 (2)C25—C13—H13126.1
C25—Fe1—C2368.3 (2)C23—C13—H13126.1
C13—Fe1—C2340.8 (3)Fe1—C13—H13126.1
C4—Fe1—C23157.7 (2)C26—C14—C17119.1 (5)
C1—Fe1—C1640.8 (2)C26—C14—H14120.5
C12—Fe1—C1667.9 (2)C17—C14—H14120.5
C25—Fe1—C16158.4 (2)C11—C15—C10118.7 (5)
C13—Fe1—C16159.4 (2)C11—C15—C4121.1 (4)
C4—Fe1—C1668.9 (2)C10—C15—C4120.2 (4)
C23—Fe1—C16123.0 (3)C21—C16—C1109.0 (5)
C1—Fe1—C27123.3 (2)C21—C16—Fe170.8 (3)
C12—Fe1—C27157.3 (2)C1—C16—Fe168.9 (3)
C25—Fe1—C2767.8 (3)C21—C16—H16125.5
C13—Fe1—C2768.1 (2)C1—C16—H16125.5
C4—Fe1—C27160.3 (2)Fe1—C16—H16125.5
C23—Fe1—C2740.4 (3)N3—C17—C14121.2 (5)
C16—Fe1—C27107.8 (2)N3—C17—H17119.4
C1—Fe1—C22107.6 (2)C14—C17—H17119.4
C12—Fe1—C22161.0 (2)C2—C18—C6120.2 (5)
C25—Fe1—C2240.5 (2)C2—C18—H18119.9
C13—Fe1—C2268.2 (2)C6—C18—H18119.9
C4—Fe1—C22124.0 (2)C3—C19—C26119.0 (5)
C23—Fe1—C2268.1 (2)C3—C19—H19120.5
C16—Fe1—C22122.6 (2)C26—C19—H19120.5
C27—Fe1—C2240.2 (3)N4—C20—C2121.8 (5)
C1—Fe1—C2168.5 (2)N4—C20—H20119.1
C12—Fe1—C2140.1 (2)C2—C20—H20119.1
C25—Fe1—C21160.2 (2)C12—C21—C16107.6 (5)
C13—Fe1—C21123.5 (2)C12—C21—Fe168.7 (3)
C4—Fe1—C2168.6 (2)C16—C21—Fe169.0 (3)
C23—Fe1—C21107.2 (2)C12—C21—H21126.2
C16—Fe1—C2140.2 (2)C16—C21—H21126.2
C27—Fe1—C21122.2 (3)Fe1—C21—H21126.2
C22—Fe1—C21157.6 (2)C27—C22—C25107.6 (5)
C7—N2—C5122.1 (4)C27—C22—Fe169.8 (3)
C7—N2—Ir1118.9 (3)C25—C22—Fe169.0 (3)
C5—N2—Ir1118.8 (3)C27—C22—H22126.2
C17—N3—C3120.0 (4)C25—C22—H22126.2
C17—N3—Ir1127.2 (4)Fe1—C22—H22126.2
C3—N3—Ir1112.7 (3)C27—C23—C13107.6 (5)
C20—N4—C8119.6 (4)C27—C23—Fe170.2 (3)
C20—N4—Ir1127.6 (3)C13—C23—Fe169.4 (3)
C8—N4—Ir1112.8 (3)C27—C23—H23126.2
C16—C1—C4107.7 (5)C13—C23—H23126.2
C16—C1—Fe170.3 (3)Fe1—C23—H23126.2
C4—C1—Fe169.8 (3)C28—C24—H24A109.5
C16—C1—H1126.1C28—C24—H24B109.5
C4—C1—H1126.1H24A—C24—H24B109.5
Fe1—C1—H1126.1C28—C24—H24C109.5
C18—C2—C20118.6 (5)H24A—C24—H24C109.5
C18—C2—H2120.7H24B—C24—H24C109.5
C20—C2—H2120.7C13—C25—C22108.5 (5)
N3—C3—C19121.2 (4)C13—C25—Fe169.7 (3)
N3—C3—C7115.3 (4)C22—C25—Fe170.5 (3)
C19—C3—C7123.5 (5)C13—C25—H25125.8
C12—C4—C1106.4 (5)C22—C25—H25125.8
C12—C4—C15127.2 (5)Fe1—C25—H25125.8
C1—C4—C15126.4 (4)C14—C26—C19119.5 (5)
C12—C4—Fe169.3 (3)C14—C26—H26120.3
C1—C4—Fe168.7 (3)C19—C26—H26120.3
C15—C4—Fe1128.4 (4)C22—C27—C23108.6 (5)
N2—C5—C11120.0 (5)C22—C27—Fe170.0 (3)
N2—C5—C8112.3 (4)C23—C27—Fe169.4 (3)
C11—C5—C8127.6 (4)C22—C27—H27125.7
C18—C6—C8119.0 (5)C23—C27—H27125.7
C18—C6—H6120.5Fe1—C27—H27125.7
C8—C6—H6120.5N5—C28—C24176.8 (8)
N2—C7—C10120.4 (4)N1—C29—C9178.6 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl3i0.982.833.771 (5)162
C24—H24A···Cl1ii0.952.753.701 (9)174
C6—H6···Cl3i0.952.833.731 (6)159
C9—H9B···Cl30.982.993.875 (10)151
C11—H11···Cl3i0.952.823.711 (5)157
C17—H17···Cl10.952.903.486 (6)121
C20—H20···Cl10.952.893.484 (5)122
C24—H24A···Cl1ii0.982.733.701 (8)174
C19—H19···Cl2iii0.952.823.716 (6)158
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[FeIr(C5H5)(C20H14N3)Cl3]·2C2H3N
Mr797.94
Crystal system, space groupMonoclinic, P21/a
Temperature (K)150
a, b, c (Å)11.557 (5), 21.663 (5), 11.579 (5)
β (°) 105.974 (5)
V3)2787.0 (18)
Z4
Radiation typeMo Kα
µ (mm1)5.61
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionNumerical
(X-AREA and X-RED32; Stoe, 2013)
Tmin, Tmax0.348, 0.390
No. of measured, independent and
observed [I > 2σ(I)] reflections
26757, 7374, 5312
Rint0.069
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.02
No. of reflections7374
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 1.10

Computer programs: X-AREA (Stoe, 2013), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2006), SHELXL (Sheldrick, b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl3i0.982.833.771 (5)162
C24—H24A···Cl1ii0.952.753.701 (9)174
C6—H6···Cl3i0.952.833.731 (6)158.8
C9—H9B···Cl30.982.993.875 (10)150.8
C11—H11···Cl3i0.952.823.711 (5)156.8
C17—H17···Cl10.952.903.486 (6)121.2
C20—H20···Cl10.952.893.484 (5)121.5
C24—H24A···Cl1ii0.982.733.701 (8)173.7
C19—H19···Cl2iii0.952.823.716 (6)158.1
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) baseline fund BAS/1/1302-01-01.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationConstable, E. C., Edwards, A. J., Martinez-Manez, R., Raithby, P. R. & Cargill Thompson, A. M. W. (1994). Dalton Trans. 5, 645–650.  CSD CrossRef Google Scholar
First citationMaity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632–3641.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakamoto, R., Katagiri, S., Maeda, H., Nishimori, Y., Miyashita, S. & Nishi­hara, H. (2015). J. Am. Chem. Soc. 137, 734–741.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWu, K.-Q., Guo, J., Yan, J.-F., Xie, L.-L., Xu, F.-B., Bai, S., Nockemann, P. & Yuan, Y.-F. (2011). Organometallics, 30, 3504–3511.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m69-m70
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds