metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m73-m74

Crystal structure of di­aqua­[5,10,15,20-tetra­kis­(4-bromo­phen­yl)porphyrinato-κ4N]magnesium

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, bCentre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS–Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and cInstitute of Sciences Chimiques of Rennes, Ingénierie Chimique et Molécules pour le vivant, UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
*Correspondence e-mail: nesamiri@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 February 2015; accepted 23 February 2015; online 28 February 2015)

The title compound, [Mg(C44H24Br4N4)(H2O)2] or [Mg(TBrPP)(H2O)2], where TBrPP is the 5,10,15,20-tetra­kis­(4-bromo­phen­yl)porphyrinato ligand, was obtained unintentionally as a by-product of the reaction of the [Mg(TBrPP)] complex with an excess of di­methyl­glyoxime in di­chloro­methane. The entire mol­ecule exhibits point group symmetry 4/m. In the asymmetric unit, except for two C atoms of the phenyl ring, all other atoms lie on special positions. The MgII atom is situated at a site with symmetry 4/m, while the N and the C atoms of the porphyrin macrocycle, as well as two C atoms of the phenyl ring and the Br atom lie in the mirror plane containing the porphyrin core. The H atoms of the axially bonded water mol­ecule are incompatible with the fourfold rotation axis and are disordered over two sites. In the crystal, mol­ecules are packed in rows along [001]. Weak inter­molecular C—H⋯π and C—H⋯Br inter­actions, as well as O—H⋯Br hydrogen bonds, stabilize the crystal packing.

1. Related literature

For general background to magnesium porphyrin species and their applications, see: Ghosh et al. (2010[Ghosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). Inorg. Chem. 49, 8287-8297.]). For the synthesis of the [MgII(TPP)(H2O)] complex (TPP is the 5,10,15,20-tetra­phenyl­porphyrinate ligand), see: Timkovich & Tulinsky (1969[Timkovich, R. & Tulinsky, A. (1969). J. Am. Chem. Soc. 91, 4430-4432.]). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), there are six magnesium porphyrin structures with aqua ligands deposited. Four from these structures are mono­aqua species, derived from [Mg(TOMePP)(H2O)] (TOMePP is the 5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porphyrinate ligand; Yang & Jacobson, 1991[Yang, S. & Jacobson, R. A. (1991). Inorg. Chim. Acta, 190, 129-134.]) and one is a di­aqua derivative, [Mg(TPP)(H2O)2]·(18-C-6) where 18-C-6 is 18-crown-6 ether (Ezzayani et al., 2013[Ezzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114-m115.]). For the related porphyrin species [Mg(TPP)(4-pic)2] (4-pic = 4-picoline) and [Mg(TPP)(H2O)], see: McKee et al. (1984[McKee, V., Choon, O. C. & Rodley, G. A. (1984). Inorg. Chem. 23, 4242-4248.]) and Ong et al. (1986[Ong, C. C., McKee, V. & Rodley, G. A. (1986). Inorg. Chim. Acta, 123, L11-L14.]), respectively. The H atom position of the aqua axial ligand was calculated with the program CALC-OH (Nardelli, 1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mg(C44H24Br4N4)(H2O)2]

  • Mr = 988.65

  • Tetragonal, I 4/m

  • a = 14.8313 (10) Å

  • c = 9.3966 (8) Å

  • V = 2066.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.95 mm−1

  • T = 150 K

  • 0.37 × 0.27 × 0.14 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.409, Tmax = 0.575

  • 4471 measured reflections

  • 1248 independent reflections

  • 940 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.06

  • 1248 reflections

  • 81 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C4 pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.74 3.615 (3) 153
O1—H1O1⋯Br1ii 1.10 (5) 2.69 (5) 3.741 (3) 159 (4)
C2—H2⋯Br1iii 0.95 2.97 3.914 (3) 175 (1)
Symmetry codes: (i) y, -x, -z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) y, -x, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and crystallization top

To a solution of [Mg(TBrPP)] (15 mg, 0.015 mmol) in di­chloro­methane (10 ml) was added an excess of di­methyl­glyoxime (50 mg, 0.431 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution gradually changed from purple to blue–purple. Black coloured crystals of the title complex were obtained by diffusion of n-hexane through the di­chloro­methane solution. The two water molecules coordinating to the magnesium atom most probably originated from the undistilled di­chloro­methane solvent.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atom position of the axially bonded aqua ligand was calculated with the CALC-OH program (Nardelli, 1999). The molecular symmetry of the water molecule is not compatible with the fourfold axis, hence the occupancy of this H atom was fixed to 0.5.

Related literature top

For general background to magnesium porphyrin species and their applications, see: Ghosh et al. (2010). For the synthesis of the [MgII(TPP)(H2O)] complex (TPP is the 5,10,15,20-tetraphenylporphyrinate ligand), see: Timkovich & Tulinsky (1969). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are six magnesium porphyrin structures with aqua ligands deposited. Four from these structures are monoaqua species, derived from [Mg(TOMePP)(H2O)] (TOMePP is the 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinate ligand; Yang & Jacobson, 1991) and one is a diaqua derivative, [Mg(TPP)(H2O)2]·(18-C-6) where 18-C-6 is 18-crown-6 ether (Ezzayani et al., 2013). For the related porphyrin species [Mg(TPP)(4-pic)2] (4-pic = 4-picoline) and [Mg(TPP)(H2O)], see: McKee et al. (1984) and Ong et al. (1986), respectively. The H atom position of the aqua axial ligand was calculated with the program CALC-OH (Nardelli, 1999).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of [Mg(C44H24N4Br4)(H2O)2] showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing of the title complex, viewed down [001], showing C—H···π interactions (dotted light-blue lines) and C—H···Br and O—H···Br hydrogen bonds (dashed pink lines).
Diaqua[5,10,15,20-tetrakis(4–bromophenyl)porphyrinato-κ4N]magnesium top
Crystal data top
[Mg(C44H24Br4N4)(H2O)2]Dx = 1.589 Mg m3
Mr = 988.65Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mCell parameters from 1411 reflections
Hall symbol: -I 4θ = 2.6–26.9°
a = 14.8313 (10) ŵ = 3.95 mm1
c = 9.3966 (8) ÅT = 150 K
V = 2066.9 (2) Å3Prism, black
Z = 20.37 × 0.27 × 0.14 mm
F(000) = 976
Data collection top
Bruker APEXII
diffractometer
940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1419
Tmin = 0.409, Tmax = 0.575k = 1818
4471 measured reflectionsl = 512
1248 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.9155P]
where P = (Fo2 + 2Fc2)/3
1248 reflections(Δ/σ)max = 0.009
81 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mg(C44H24Br4N4)(H2O)2]Z = 2
Mr = 988.65Mo Kα radiation
Tetragonal, I4/mµ = 3.95 mm1
a = 14.8313 (10) ÅT = 150 K
c = 9.3966 (8) Å0.37 × 0.27 × 0.14 mm
V = 2066.9 (2) Å3
Data collection top
Bruker APEXII
diffractometer
1248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
940 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.575Rint = 0.034
4471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
1248 reflectionsΔρmin = 0.34 e Å3
81 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg0.50.50.50.0248 (5)
O10.50.50.2636 (4)0.0376 (9)
H1O10.473 (4)0.560 (3)0.210 (6)0.045*0.5
N10.46158 (17)0.36592 (17)0.50.0192 (6)
C10.3751 (2)0.3337 (2)0.50.0183 (7)
C20.3771 (2)0.2366 (2)0.50.0195 (7)
H20.32620.19770.50.023*
C30.4643 (2)0.2109 (2)0.50.0219 (7)
H30.48650.15080.50.026*
C40.5177 (2)0.2931 (2)0.50.0196 (7)
C50.2966 (2)0.3872 (2)0.50.0179 (7)
C110.2081 (2)0.33768 (19)0.50.0192 (7)
C120.16663 (16)0.31403 (16)0.6263 (3)0.0307 (6)
H120.19420.32990.7140.037*
C130.08517 (16)0.26732 (17)0.6273 (3)0.0324 (6)
H130.05720.25120.71460.039*
C140.0463 (2)0.2451 (2)0.50.0229 (7)
Br10.06342 (2)0.17805 (2)0.50.03531 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0142 (7)0.0142 (7)0.0461 (16)000
O10.0376 (13)0.0376 (13)0.038 (2)000
N10.0124 (13)0.0162 (14)0.0290 (16)0.0007 (10)00
C10.0169 (16)0.0150 (16)0.0231 (18)0.0024 (12)00
C20.0199 (16)0.0152 (15)0.0233 (18)0.0031 (12)00
C30.0246 (17)0.0137 (15)0.0274 (19)0.0007 (13)00
C40.0186 (16)0.0167 (16)0.0234 (18)0.0014 (13)00
C50.0164 (16)0.0165 (16)0.0209 (18)0.0009 (13)00
C110.0166 (16)0.0114 (15)0.0296 (19)0.0002 (12)00
C120.0260 (13)0.0389 (15)0.0272 (14)0.0117 (11)0.0002 (11)0.0054 (12)
C130.0295 (14)0.0356 (15)0.0321 (15)0.0096 (11)0.0095 (12)0.0013 (12)
C140.0158 (16)0.0129 (16)0.040 (2)0.0010 (12)00
Br10.01523 (19)0.0223 (2)0.0684 (3)0.00419 (14)00
Geometric parameters (Å, º) top
Mg—N1i2.069 (2)C3—C41.454 (4)
Mg—N12.069 (2)C3—H30.95
Mg—N1ii2.069 (2)C4—C5iii1.412 (4)
Mg—N1iii2.069 (2)C5—C4i1.412 (4)
Mg—O1ii2.221 (4)C5—C111.504 (4)
Mg—O12.221 (4)C11—C121.382 (3)
O1—H1O11.10 (5)C11—C12iv1.382 (3)
N1—C41.363 (4)C12—C131.393 (3)
N1—C11.368 (4)C12—H120.95
C1—C51.409 (4)C13—C141.369 (3)
C1—C21.440 (4)C13—H130.95
C2—C31.348 (4)C14—C13iv1.369 (3)
C2—H20.95C14—Br11.906 (3)
N1i—Mg—N189.998 (2)N1—C4—C3109.4 (3)
N1—Mg—N1ii180.00 (14)C5iii—C4—C3125.1 (3)
O1ii—Mg—O1180C1—C5—C4i126.4 (3)
Mg—O1—H1O1117 (3)C1—C5—C11116.5 (3)
C4—N1—C1107.1 (2)C4i—C5—C11117.1 (3)
C4—N1—Mg126.4 (2)C12—C11—C12iv118.3 (3)
C1—N1—Mg126.5 (2)C12—C11—C5120.85 (15)
N1—C1—C5125.3 (3)C12iv—C11—C5120.85 (15)
N1—C1—C2109.3 (3)C11—C12—C13121.3 (2)
C5—C1—C2125.5 (3)C11—C12—H12119.4
C3—C2—C1107.6 (3)C13—C12—H12119.4
C3—C2—H2126.2C14—C13—C12118.7 (2)
C1—C2—H2126.2C14—C13—H13120.7
C2—C3—C4106.6 (3)C12—C13—H13120.7
C2—C3—H3126.7C13—C14—C13iv121.9 (3)
C4—C3—H3126.7C13—C14—Br1119.04 (15)
N1—C4—C5iii125.5 (3)C13iv—C14—Br1119.05 (15)
N1i—Mg—N1—C4180C1—N1—C4—C30
N1iii—Mg—N1—C40Mg—N1—C4—C3180
O1ii—Mg—N1—C490C2—C3—C4—N10
O1—Mg—N1—C490C2—C3—C4—C5iii180
N1i—Mg—N1—C10N1—C1—C5—C4i0
N1iii—Mg—N1—C1180C2—C1—C5—C4i180
O1ii—Mg—N1—C190N1—C1—C5—C11180
O1—Mg—N1—C190C2—C1—C5—C110
C4—N1—C1—C5180C1—C5—C11—C1289.7 (3)
Mg—N1—C1—C50C4i—C5—C11—C1290.3 (3)
C4—N1—C1—C20C1—C5—C11—C12iv89.7 (3)
Mg—N1—C1—C2180C4i—C5—C11—C12iv90.3 (3)
N1—C1—C2—C30C12iv—C11—C12—C130.2 (5)
C5—C1—C2—C3180C5—C11—C12—C13179.3 (2)
C1—C2—C3—C40C11—C12—C13—C140.1 (4)
C1—N1—C4—C5iii180C12—C13—C14—C13iv0.1 (5)
Mg—N1—C4—C5iii0C12—C13—C14—Br1178.2 (2)
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z+1; (iii) y+1, x, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C4 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1v0.952.743.615 (3)153
O1—H1O1···Br1vi1.10 (5)2.69 (5)3.741 (3)159 (4)
C2—H2···Br1vii0.952.973.914 (3)175 (1)
Symmetry codes: (v) y, x, z; (vi) x+1/2, y+1/2, z1/2; (vii) y, x, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C4 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.743.615 (3)153
O1—H1O1···Br1ii1.10 (5)2.69 (5)3.741 (3)159 (4)
C2—H2···Br1iii0.952.9663.914 (3)175.2 (2)
Symmetry codes: (i) y, x, z; (ii) x+1/2, y+1/2, z1/2; (iii) y, x, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEzzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114–m115.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). Inorg. Chem. 49, 8287–8297.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationMcKee, V., Choon, O. C. & Rodley, G. A. (1984). Inorg. Chem. 23, 4242–4248.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOng, C. C., McKee, V. & Rodley, G. A. (1986). Inorg. Chim. Acta, 123, L11–L14.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimkovich, R. & Tulinsky, A. (1969). J. Am. Chem. Soc. 91, 4430–4432.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, S. & Jacobson, R. A. (1991). Inorg. Chim. Acta, 190, 129–134.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m73-m74
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds