metal-organic compounds
κ4N]magnesium
of diaqua[5,10,15,20-tetrakis(4-bromophenyl)porphyrinato-aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, bCentre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS–Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and cInstitute of Sciences Chimiques of Rennes, Ingénierie Chimique et Molécules pour le vivant, UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
*Correspondence e-mail: nesamiri@gmail.com
The title compound, [Mg(C44H24Br4N4)(H2O)2] or [Mg(TBrPP)(H2O)2], where TBrPP is the 5,10,15,20-tetrakis(4-bromophenyl)porphyrinato ligand, was obtained unintentionally as a by-product of the reaction of the [Mg(TBrPP)] complex with an excess of dimethylglyoxime in dichloromethane. The entire molecule exhibits symmetry 4/m. In the except for two C atoms of the phenyl ring, all other atoms lie on special positions. The MgII atom is situated at a site with symmetry 4/m, while the N and the C atoms of the porphyrin macrocycle, as well as two C atoms of the phenyl ring and the Br atom lie in the mirror plane containing the porphyrin core. The H atoms of the axially bonded water molecule are incompatible with the fourfold rotation axis and are disordered over two sites. In the crystal, molecules are packed in rows along [001]. Weak intermolecular C—H⋯π and C—H⋯Br interactions, as well as O—H⋯Br hydrogen bonds, stabilize the crystal packing.
Keywords: crystal structure; magnesium porphyrin complex; O—H⋯Br hydrogen bonds; C—H⋯Br interactions; C—H⋯π interactions.
CCDC reference: 1050856
1. Related literature
For general background to magnesium porphyrin species and their applications, see: Ghosh et al. (2010). For the synthesis of the [MgII(TPP)(H2O)] complex (TPP is the 5,10,15,20-tetraphenylporphyrinate ligand), see: Timkovich & Tulinsky (1969). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are six magnesium porphyrin structures with aqua ligands deposited. Four from these structures are monoaqua species, derived from [Mg(TOMePP)(H2O)] (TOMePP is the 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinate ligand; Yang & Jacobson, 1991) and one is a diaqua derivative, [Mg(TPP)(H2O)2]·(18-C-6) where 18-C-6 is 18-crown-6 ether (Ezzayani et al., 2013). For the related porphyrin species [Mg(TPP)(4-pic)2] (4-pic = 4-picoline) and [Mg(TPP)(H2O)], see: McKee et al. (1984) and Ong et al. (1986), respectively. The H atom position of the aqua axial ligand was calculated with the program CALC-OH (Nardelli, 1999).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1050856
10.1107/S2056989015003722/wm5127sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015003722/wm5127Isup2.hkl
To a solution of [Mg(TBrPP)] (15 mg, 0.015 mmol) in dichloromethane (10 ml) was added an excess of dimethylglyoxime (50 mg, 0.431 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution gradually changed from purple to blue–purple. Black coloured crystals of the title complex were obtained by diffusion of n-hexane through the dichloromethane solution. The two water molecules coordinating to the magnesium atom most probably originated from the undistilled dichloromethane solvent.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atom position of the axially bonded aqua ligand was calculated with the CALC-OH program (Nardelli, 1999). The molecular symmetry of the water molecule is not compatible with the fourfold axis, hence the occupancy of this H atom was fixed to 0.5.
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of the molecular structure of [Mg(C44H24N4Br4)(H2O)2] showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. | |
Fig. 2. A portion of the crystal packing of the title complex, viewed down [001], showing C—H···π interactions (dotted light-blue lines) and C—H···Br and O—H···Br hydrogen bonds (dashed pink lines). |
[Mg(C44H24Br4N4)(H2O)2] | Dx = 1.589 Mg m−3 |
Mr = 988.65 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/m | Cell parameters from 1411 reflections |
Hall symbol: -I 4 | θ = 2.6–26.9° |
a = 14.8313 (10) Å | µ = 3.95 mm−1 |
c = 9.3966 (8) Å | T = 150 K |
V = 2066.9 (2) Å3 | Prism, black |
Z = 2 | 0.37 × 0.27 × 0.14 mm |
F(000) = 976 |
Bruker APEXII diffractometer | 940 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −14→19 |
Tmin = 0.409, Tmax = 0.575 | k = −18→18 |
4471 measured reflections | l = −5→12 |
1248 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.9155P] where P = (Fo2 + 2Fc2)/3 |
1248 reflections | (Δ/σ)max = 0.009 |
81 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Mg(C44H24Br4N4)(H2O)2] | Z = 2 |
Mr = 988.65 | Mo Kα radiation |
Tetragonal, I4/m | µ = 3.95 mm−1 |
a = 14.8313 (10) Å | T = 150 K |
c = 9.3966 (8) Å | 0.37 × 0.27 × 0.14 mm |
V = 2066.9 (2) Å3 |
Bruker APEXII diffractometer | 1248 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 940 reflections with I > 2σ(I) |
Tmin = 0.409, Tmax = 0.575 | Rint = 0.034 |
4471 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.50 e Å−3 |
1248 reflections | Δρmin = −0.34 e Å−3 |
81 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg | 0.5 | 0.5 | 0.5 | 0.0248 (5) | |
O1 | 0.5 | 0.5 | 0.2636 (4) | 0.0376 (9) | |
H1O1 | 0.473 (4) | 0.560 (3) | 0.210 (6) | 0.045* | 0.5 |
N1 | 0.46158 (17) | 0.36592 (17) | 0.5 | 0.0192 (6) | |
C1 | 0.3751 (2) | 0.3337 (2) | 0.5 | 0.0183 (7) | |
C2 | 0.3771 (2) | 0.2366 (2) | 0.5 | 0.0195 (7) | |
H2 | 0.3262 | 0.1977 | 0.5 | 0.023* | |
C3 | 0.4643 (2) | 0.2109 (2) | 0.5 | 0.0219 (7) | |
H3 | 0.4865 | 0.1508 | 0.5 | 0.026* | |
C4 | 0.5177 (2) | 0.2931 (2) | 0.5 | 0.0196 (7) | |
C5 | 0.2966 (2) | 0.3872 (2) | 0.5 | 0.0179 (7) | |
C11 | 0.2081 (2) | 0.33768 (19) | 0.5 | 0.0192 (7) | |
C12 | 0.16663 (16) | 0.31403 (16) | 0.6263 (3) | 0.0307 (6) | |
H12 | 0.1942 | 0.3299 | 0.714 | 0.037* | |
C13 | 0.08517 (16) | 0.26732 (17) | 0.6273 (3) | 0.0324 (6) | |
H13 | 0.0572 | 0.2512 | 0.7146 | 0.039* | |
C14 | 0.0463 (2) | 0.2451 (2) | 0.5 | 0.0229 (7) | |
Br1 | −0.06342 (2) | 0.17805 (2) | 0.5 | 0.03531 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg | 0.0142 (7) | 0.0142 (7) | 0.0461 (16) | 0 | 0 | 0 |
O1 | 0.0376 (13) | 0.0376 (13) | 0.038 (2) | 0 | 0 | 0 |
N1 | 0.0124 (13) | 0.0162 (14) | 0.0290 (16) | −0.0007 (10) | 0 | 0 |
C1 | 0.0169 (16) | 0.0150 (16) | 0.0231 (18) | −0.0024 (12) | 0 | 0 |
C2 | 0.0199 (16) | 0.0152 (15) | 0.0233 (18) | −0.0031 (12) | 0 | 0 |
C3 | 0.0246 (17) | 0.0137 (15) | 0.0274 (19) | 0.0007 (13) | 0 | 0 |
C4 | 0.0186 (16) | 0.0167 (16) | 0.0234 (18) | −0.0014 (13) | 0 | 0 |
C5 | 0.0164 (16) | 0.0165 (16) | 0.0209 (18) | −0.0009 (13) | 0 | 0 |
C11 | 0.0166 (16) | 0.0114 (15) | 0.0296 (19) | 0.0002 (12) | 0 | 0 |
C12 | 0.0260 (13) | 0.0389 (15) | 0.0272 (14) | −0.0117 (11) | 0.0002 (11) | −0.0054 (12) |
C13 | 0.0295 (14) | 0.0356 (15) | 0.0321 (15) | −0.0096 (11) | 0.0095 (12) | −0.0013 (12) |
C14 | 0.0158 (16) | 0.0129 (16) | 0.040 (2) | −0.0010 (12) | 0 | 0 |
Br1 | 0.01523 (19) | 0.0223 (2) | 0.0684 (3) | −0.00419 (14) | 0 | 0 |
Mg—N1i | 2.069 (2) | C3—C4 | 1.454 (4) |
Mg—N1 | 2.069 (2) | C3—H3 | 0.95 |
Mg—N1ii | 2.069 (2) | C4—C5iii | 1.412 (4) |
Mg—N1iii | 2.069 (2) | C5—C4i | 1.412 (4) |
Mg—O1ii | 2.221 (4) | C5—C11 | 1.504 (4) |
Mg—O1 | 2.221 (4) | C11—C12 | 1.382 (3) |
O1—H1O1 | 1.10 (5) | C11—C12iv | 1.382 (3) |
N1—C4 | 1.363 (4) | C12—C13 | 1.393 (3) |
N1—C1 | 1.368 (4) | C12—H12 | 0.95 |
C1—C5 | 1.409 (4) | C13—C14 | 1.369 (3) |
C1—C2 | 1.440 (4) | C13—H13 | 0.95 |
C2—C3 | 1.348 (4) | C14—C13iv | 1.369 (3) |
C2—H2 | 0.95 | C14—Br1 | 1.906 (3) |
N1i—Mg—N1 | 89.998 (2) | N1—C4—C3 | 109.4 (3) |
N1—Mg—N1ii | 180.00 (14) | C5iii—C4—C3 | 125.1 (3) |
O1ii—Mg—O1 | 180 | C1—C5—C4i | 126.4 (3) |
Mg—O1—H1O1 | 117 (3) | C1—C5—C11 | 116.5 (3) |
C4—N1—C1 | 107.1 (2) | C4i—C5—C11 | 117.1 (3) |
C4—N1—Mg | 126.4 (2) | C12—C11—C12iv | 118.3 (3) |
C1—N1—Mg | 126.5 (2) | C12—C11—C5 | 120.85 (15) |
N1—C1—C5 | 125.3 (3) | C12iv—C11—C5 | 120.85 (15) |
N1—C1—C2 | 109.3 (3) | C11—C12—C13 | 121.3 (2) |
C5—C1—C2 | 125.5 (3) | C11—C12—H12 | 119.4 |
C3—C2—C1 | 107.6 (3) | C13—C12—H12 | 119.4 |
C3—C2—H2 | 126.2 | C14—C13—C12 | 118.7 (2) |
C1—C2—H2 | 126.2 | C14—C13—H13 | 120.7 |
C2—C3—C4 | 106.6 (3) | C12—C13—H13 | 120.7 |
C2—C3—H3 | 126.7 | C13—C14—C13iv | 121.9 (3) |
C4—C3—H3 | 126.7 | C13—C14—Br1 | 119.04 (15) |
N1—C4—C5iii | 125.5 (3) | C13iv—C14—Br1 | 119.05 (15) |
N1i—Mg—N1—C4 | 180 | C1—N1—C4—C3 | 0 |
N1iii—Mg—N1—C4 | 0 | Mg—N1—C4—C3 | 180 |
O1ii—Mg—N1—C4 | −90 | C2—C3—C4—N1 | 0 |
O1—Mg—N1—C4 | 90 | C2—C3—C4—C5iii | 180 |
N1i—Mg—N1—C1 | 0 | N1—C1—C5—C4i | 0 |
N1iii—Mg—N1—C1 | 180 | C2—C1—C5—C4i | 180 |
O1ii—Mg—N1—C1 | 90 | N1—C1—C5—C11 | 180 |
O1—Mg—N1—C1 | −90 | C2—C1—C5—C11 | 0 |
C4—N1—C1—C5 | 180 | C1—C5—C11—C12 | 89.7 (3) |
Mg—N1—C1—C5 | 0 | C4i—C5—C11—C12 | −90.3 (3) |
C4—N1—C1—C2 | 0 | C1—C5—C11—C12iv | −89.7 (3) |
Mg—N1—C1—C2 | 180 | C4i—C5—C11—C12iv | 90.3 (3) |
N1—C1—C2—C3 | 0 | C12iv—C11—C12—C13 | 0.2 (5) |
C5—C1—C2—C3 | 180 | C5—C11—C12—C13 | −179.3 (2) |
C1—C2—C3—C4 | 0 | C11—C12—C13—C14 | −0.1 (4) |
C1—N1—C4—C5iii | 180 | C12—C13—C14—C13iv | 0.1 (5) |
Mg—N1—C4—C5iii | 0 | C12—C13—C14—Br1 | 178.2 (2) |
Symmetry codes: (i) y, −x+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −y+1, x, z; (iv) x, y, −z+1. |
Cg1 is the centroid of the N1/C1–C4 pyrrole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1v | 0.95 | 2.74 | 3.615 (3) | 153 |
O1—H1O1···Br1vi | 1.10 (5) | 2.69 (5) | 3.741 (3) | 159 (4) |
C2—H2···Br1vii | 0.95 | 2.97 | 3.914 (3) | 175 (1) |
Symmetry codes: (v) y, −x, −z; (vi) x+1/2, y+1/2, z−1/2; (vii) y, −x, z. |
Cg1 is the centroid of the N1/C1–C4 pyrrole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.95 | 2.74 | 3.615 (3) | 153 |
O1—H1O1···Br1ii | 1.10 (5) | 2.69 (5) | 3.741 (3) | 159 (4) |
C2—H2···Br1iii | 0.95 | 2.966 | 3.914 (3) | 175.2 (2) |
Symmetry codes: (i) y, −x, −z; (ii) x+1/2, y+1/2, z−1/2; (iii) y, −x, z. |
Acknowledgements
The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ezzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114–m115. CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). Inorg. Chem. 49, 8287–8297. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
McKee, V., Choon, O. C. & Rodley, G. A. (1984). Inorg. Chem. 23, 4242–4248. CSD CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ong, C. C., McKee, V. & Rodley, G. A. (1986). Inorg. Chim. Acta, 123, L11–L14. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Timkovich, R. & Tulinsky, A. (1969). J. Am. Chem. Soc. 91, 4430–4432. CSD CrossRef CAS Web of Science Google Scholar
Yang, S. & Jacobson, R. A. (1991). Inorg. Chim. Acta, 190, 129–134. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.