organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o193-o194

Crystal structure of 2-methyl­piperazine-1,4-diium bis­­(hydrogen maleate)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna Bizerte, Tunisia, and bDepartment of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, 33101 Tampere, Finland
*Correspondence e-mail: wajda_sta@yahoo.fr

Edited by G. Smith, Queensland University of Technology, Australia (Received 29 January 2015; accepted 13 February 2015; online 21 February 2015)

In the title salt, C5H14N22+·2C4H3O4, the asymmetric unit contains two independent 2-methyl­piperazinium dications, which comprise a racemic pair, and four hydrogen maleate monoanions. In the roughly planar hydrogen maleate anions, intra­molecular O—H⋯O hydrogen bonds generate S(7) rings. In the crystal, the four independent anions are linked to the 2-methyl­piperazinium cations through N—H⋯O hydrogen bonds, forming two-dimensional layered structures lying parallel to (001).

1. Related literature

For maleate geometry and its S(7) ring formation, see: Anitha et al. (2012[Anitha, R., Athimoolam, S., Bahadur, S. A. & Gunasekaran, M. (2012). Acta Cryst. E68, o959-o960.]). For background on 2-methyl­piperazine salts, see: Hajlaoui et al. (2011[Hajlaoui, F., Naili, H., Yahyaoui, S., Turnbull, M., Mhiri, T. & Bataille, T. (2011). Dalton Trans. 40, 11613-11620.]); Wilkinson & Harrison (2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m900-m901.]). For a similar structure, see: Mathlouthi et al. (2014[Mathlouthi, M., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, o1183-o1184.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H14N22+·2C4H3O4

  • Mr = 332.31

  • Triclinic, [P \overline 1]

  • a = 11.4678 (9) Å

  • b = 11.4919 (9) Å

  • c = 13.3404 (13) Å

  • α = 71.692 (8)°

  • β = 75.572 (8)°

  • γ = 74.303 (7)°

  • V = 1580.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 170 K

  • 0.33 × 0.14 × 0.07 mm

2.2. Data collection

  • Agilent SuperNova (single source at offset, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.970, Tmax = 0.990

  • 10102 measured reflections

  • 6990 independent reflections

  • 5127 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 1.06

  • 6990 reflections

  • 451 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4Ci 0.93 (1) 1.91 (2) 2.802 (2) 162 (2)
N1—H1D⋯O1 0.93 (2) 1.89 (2) 2.801 (2) 166 (2)
N2—H2E⋯O1A 0.94 (2) 1.80 (2) 2.723 (2) 168 (2)
N2—H2F⋯O3Bii 0.95 (2) 2.50 (2) 3.187 (2) 129 (2)
N2—H2F⋯O4Bii 0.95 (2) 1.82 (2) 2.760 (2) 169 (2)
N1A—H1E⋯O3 0.96 (1) 2.59 (2) 3.279 (2) 129 (2)
N1A—H1E⋯O4 0.96 (1) 1.86 (2) 2.811 (2) 169 (2)
N1A—H1F⋯O1Ciii 0.92 (2) 1.90 (2) 2.787 (2) 162 (2)
N2A—H2G⋯O4A 0.92 (2) 1.81 (2) 2.710 (2) 164 (2)
N2A—H2H⋯O1Biv 0.95 (2) 1.82 (2) 2.764 (2) 168 (2)
N2A—H2H⋯O2Biv 0.95 (2) 2.51 (2) 3.191 (2) 128 (2)
O2—H2⋯O3 1.15 (3) 1.28 (3) 2.4258 (19) 174 (2)
O2A—H2I⋯O3A 1.21 (2) 1.22 (2) 2.4240 (19) 175 (2)
O3B—H2J⋯O2B 1.18 (2) 1.24 (2) 2.4174 (18) 177 (2)
O2C—H2K⋯O3C 1.20 (2) 1.22 (2) 2.4192 (19) 174 (2)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Our ongoing studies of novel salts of maleic acid with related substances arises from the fact that hydrogen maleate anions in these systems possess short but highly strained hydrogen bonds in salts with racemic amines (Hajlaoui et al., 2011; Wilkinson & Harrison, 2007). We report herein the synthesis and structure of the title hydrogen maleate salt with 2-methylpiperazine, (C5 H14 N2)2+ 2(C4H3O4-).

As shown in Fig. 1, the asymmetric unit of the title salt contains two independent 2-methylpipirazinium dications which form a racemic pair [C1(R) and C1A(S)] and four hydrogen maleate anions. In the planar hydrogen maleate anions, short intramolecular O—H···O hydrogen bonds (Table 1) generate S(7) rings. This is common in many structures of maleic acid as the cis disposition of the alkene places hydrogen-bonding donors and acceptors in close proximity (Mathlouthi et al., 2014).

In the crystal (Fig. 2), the piperazinium groups of the cation are hydrogen-bonded to the carboxylate O atoms of the anion via N—H···O hydrogen bonds, forming a two-dimensional network. The four maleate anions (C6–C9), (C6A–C9A), (C6B–C9B) and (C6C–C9C) are connected to the organic cations, forming two-dimensional layers lying parallel to (001) (Fig. 3).

In the cation, the piperazinium rings adopt distorted chair conformations [puckering parameters Q, θ, and ϕ = 0.574 (2) Å, 1.11 (1)° and 73.6 (1)° for the first cation and = 0.577 (2) Å, 1.83 (2)° and 73.83 (1) for the second] (Cremer & Pople, 1975).

Related literature top

For maleate geometry and its S(7) ring formation, see: Anitha et al. (2012). For background on 2-methylpiperazine salts, see: Hajlaoui et al. (2011); Wilkinson & Harrison (2007). For a similar structure, see: Mathlouthi et al. (2014). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of maleic acid (1M) and 2-methylpiperazine dissolved in ethanol (molar ratio 1:1:1) was stirred for 2 h and then kept at room temperature. Transparent crystals of the title compound were obtained one week later.

Refinement top

All H atoms bonded to C atoms of organic cations were positioned geometrically and treated as riding on their parent atoms, [C—H = 0.99 Å] with Uiso(H) = 1.2 Ueq(C). H-atoms attached to O and N atoms were located in difference Fourier maps and the positional paramaters for those attached to O were refined, with Uiso(H) = 1.5 Ueq(O) while the N—H bond distances were allowed to ride with N—H restrained at 0.91 (2) Å and Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008, 2015) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The two dications and the four anions in the asymmetric unit of the title salt, with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a layerered structure of the title compound along the c axis showing the two-dimensional layers lying parallel to the (001) plane. Hydrogen bonds are denoted by dashed lines.
[Figure 3] Fig. 3. The structure of the title compound viewed along the b axis.
2-Methylpiperazine-1,4-diium bis(cis-3-carboxyprop-2-enoate) top
Crystal data top
C5H14N22+·2C4H3O4Z = 4
Mr = 332.31F(000) = 704
Triclinic, P1Dx = 1.396 Mg m3
a = 11.4678 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4919 (9) ÅCell parameters from 3309 reflections
c = 13.3404 (13) Åθ = 2.2–28.5°
α = 71.692 (8)°µ = 0.12 mm1
β = 75.572 (8)°T = 170 K
γ = 74.303 (7)°Prism, colourless
V = 1580.7 (2) Å30.33 × 0.14 × 0.07 mm
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
6990 independent reflections
Mirror monochromator5127 reflections with I > 2σ(I)
Detector resolution: 16.0107 pixels mm-1Rint = 0.020
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1414
Tmin = 0.970, Tmax = 0.990k = 1511
10102 measured reflectionsl = 1718
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2961P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6990 reflectionsΔρmax = 0.27 e Å3
451 parametersΔρmin = 0.23 e Å3
Crystal data top
C5H14N22+·2C4H3O4γ = 74.303 (7)°
Mr = 332.31V = 1580.7 (2) Å3
Triclinic, P1Z = 4
a = 11.4678 (9) ÅMo Kα radiation
b = 11.4919 (9) ŵ = 0.12 mm1
c = 13.3404 (13) ÅT = 170 K
α = 71.692 (8)°0.33 × 0.14 × 0.07 mm
β = 75.572 (8)°
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
6990 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
5127 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.990Rint = 0.020
10102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0498 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
6990 reflectionsΔρmin = 0.23 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47112 (14)0.07313 (15)0.24023 (13)0.0264 (3)
H1C0.4636 (18)0.1306 (16)0.2079 (15)0.032*
H1D0.5432 (16)0.0963 (18)0.2683 (15)0.032*
N20.24684 (15)0.10974 (15)0.21164 (13)0.0289 (4)
H2E0.2571 (19)0.1670 (17)0.2438 (15)0.035*
H2F0.1734 (16)0.1357 (18)0.1822 (15)0.035*
C10.36652 (17)0.06564 (18)0.33304 (15)0.0285 (4)
H10.37640.00680.37040.034*
C20.24641 (17)0.01499 (18)0.29123 (16)0.0303 (4)
H2A0.23390.07450.25690.036*
H2B0.17730.00680.35190.036*
C30.35045 (17)0.10233 (19)0.11976 (16)0.0317 (4)
H3A0.35050.18680.06980.038*
H3B0.33980.04710.08030.038*
C40.47168 (17)0.05140 (18)0.15914 (16)0.0306 (4)
H4A0.53940.04200.09770.037*
H4B0.48630.11120.19190.037*
C50.3686 (2)0.19420 (19)0.41174 (17)0.0389 (5)
H5A0.44740.22450.43720.058*
H5B0.35880.25260.37590.058*
H5C0.30110.18850.47290.058*
N1A0.94928 (15)0.40524 (14)0.23662 (13)0.0261 (3)
H1E0.9556 (18)0.3171 (14)0.2709 (15)0.031*
H1F1.0225 (15)0.4310 (18)0.2052 (15)0.031*
N2A0.78144 (15)0.64376 (15)0.20796 (14)0.0290 (4)
H2G0.7075 (15)0.6198 (19)0.2407 (16)0.035*
H2H0.7684 (19)0.7327 (14)0.1807 (15)0.035*
C1A0.89052 (18)0.46035 (17)0.32972 (15)0.0294 (4)
H1A0.81120.43210.36350.035*
C2A0.86258 (18)0.60249 (17)0.28913 (16)0.0306 (4)
H2C0.82160.63960.35000.037*
H2D0.94040.63220.25670.037*
C3A0.83774 (19)0.58864 (17)0.11580 (15)0.0319 (4)
H3C0.91370.61980.07750.038*
H3D0.77980.61500.06500.038*
C4A0.86848 (18)0.44718 (17)0.15408 (15)0.0289 (4)
H4C0.79160.41550.18530.035*
H4D0.91100.41200.09240.035*
C5A0.9731 (2)0.4155 (2)0.41267 (18)0.0428 (5)
H5D0.98920.32370.43730.064*
H5E0.93250.45060.47380.064*
H5F1.05110.44290.38070.064*
O10.66248 (13)0.15326 (13)0.35791 (11)0.0348 (3)
O20.66093 (13)0.04943 (13)0.30938 (12)0.0395 (4)
H20.720 (2)0.116 (2)0.3089 (19)0.059*
O30.79597 (13)0.18044 (12)0.30752 (11)0.0354 (3)
O40.97246 (13)0.15407 (12)0.35879 (11)0.0326 (3)
C60.70396 (18)0.06453 (18)0.35806 (15)0.0296 (4)
C70.80662 (18)0.09258 (18)0.41811 (15)0.0319 (4)
H70.82160.17510.46400.038*
C80.88045 (18)0.02073 (18)0.41771 (15)0.0306 (4)
H80.94040.06030.46260.037*
C90.88357 (18)0.11290 (17)0.35741 (15)0.0276 (4)
O1A0.26932 (14)0.25263 (14)0.33171 (12)0.0416 (4)
O2A0.42635 (13)0.33042 (13)0.22241 (11)0.0342 (3)
H2I0.493 (2)0.398 (2)0.2194 (18)0.051*
O3A0.55889 (13)0.46177 (13)0.22439 (11)0.0342 (3)
O4A0.58356 (13)0.55559 (14)0.33715 (12)0.0396 (4)
C6A0.35063 (19)0.31324 (18)0.31199 (16)0.0311 (4)
C7A0.3585 (2)0.36602 (19)0.39852 (16)0.0355 (5)
H7A0.30160.34530.46320.043*
C8A0.43201 (19)0.43722 (19)0.40013 (16)0.0334 (5)
H8A0.41930.45890.46570.040*
C9A0.53077 (18)0.48811 (18)0.31542 (16)0.0300 (4)
O1B0.73978 (12)0.10379 (12)0.10276 (11)0.0303 (3)
O2B0.91092 (12)0.12659 (12)0.16097 (11)0.0346 (3)
H2J0.980 (2)0.060 (2)0.1591 (18)0.052*
O3B1.04304 (13)0.00525 (12)0.16145 (11)0.0340 (3)
O4B1.05050 (12)0.20575 (12)0.10410 (11)0.0294 (3)
C6B0.82359 (17)0.05937 (17)0.11055 (15)0.0258 (4)
C7B0.81991 (18)0.07654 (17)0.05890 (16)0.0307 (4)
H7B0.75520.11820.01930.037*
C8B0.89284 (18)0.14906 (17)0.05930 (16)0.0307 (4)
H8B0.87150.23410.02010.037*
C9B1.00213 (16)0.11871 (17)0.11108 (14)0.0243 (4)
O1C0.16316 (13)0.47339 (14)0.10385 (12)0.0409 (4)
O2C0.18351 (13)0.57671 (13)0.21065 (11)0.0367 (3)
H2K0.250 (2)0.640 (2)0.2150 (18)0.055*
O3C0.31604 (13)0.70898 (14)0.20988 (11)0.0373 (3)
O4C0.47555 (14)0.78285 (14)0.10389 (12)0.0417 (4)
C6C0.21839 (17)0.53961 (18)0.12438 (15)0.0295 (4)
C7C0.32705 (17)0.57784 (17)0.04445 (15)0.0282 (4)
H7C0.34740.54500.01620.034*
C8C0.40062 (17)0.65074 (17)0.04398 (15)0.0279 (4)
H8C0.46460.66140.01690.033*
C9C0.39798 (18)0.71797 (18)0.12411 (16)0.0299 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0202 (8)0.0294 (8)0.0316 (9)0.0010 (7)0.0068 (7)0.0129 (7)
N20.0219 (8)0.0305 (9)0.0368 (9)0.0005 (7)0.0096 (7)0.0133 (7)
C10.0240 (10)0.0335 (10)0.0285 (10)0.0021 (8)0.0043 (8)0.0126 (8)
C20.0242 (10)0.0337 (10)0.0330 (11)0.0051 (8)0.0030 (8)0.0115 (9)
C30.0263 (10)0.0364 (11)0.0326 (11)0.0048 (8)0.0070 (8)0.0096 (9)
C40.0251 (10)0.0321 (10)0.0349 (11)0.0045 (8)0.0061 (8)0.0098 (9)
C50.0362 (12)0.0397 (12)0.0357 (12)0.0023 (9)0.0057 (10)0.0083 (10)
N1A0.0256 (8)0.0214 (8)0.0313 (9)0.0044 (7)0.0039 (7)0.0084 (7)
N2A0.0267 (9)0.0212 (8)0.0373 (10)0.0047 (7)0.0024 (7)0.0082 (7)
C1A0.0339 (11)0.0275 (10)0.0278 (10)0.0070 (8)0.0033 (8)0.0099 (8)
C2A0.0314 (10)0.0274 (10)0.0347 (11)0.0053 (8)0.0043 (9)0.0126 (8)
C3A0.0361 (11)0.0268 (10)0.0311 (11)0.0056 (8)0.0049 (9)0.0071 (8)
C4A0.0304 (10)0.0263 (10)0.0322 (10)0.0046 (8)0.0079 (8)0.0102 (8)
C5A0.0502 (14)0.0408 (12)0.0428 (13)0.0060 (10)0.0181 (11)0.0137 (10)
O10.0325 (8)0.0370 (8)0.0390 (8)0.0134 (6)0.0114 (6)0.0064 (6)
O20.0367 (8)0.0336 (8)0.0508 (9)0.0078 (7)0.0212 (7)0.0039 (7)
O30.0345 (8)0.0281 (7)0.0428 (8)0.0056 (6)0.0155 (7)0.0026 (6)
O40.0360 (8)0.0271 (7)0.0389 (8)0.0095 (6)0.0129 (6)0.0074 (6)
C60.0275 (10)0.0338 (11)0.0275 (10)0.0095 (8)0.0040 (8)0.0060 (8)
C70.0343 (11)0.0312 (10)0.0310 (11)0.0114 (9)0.0124 (9)0.0003 (8)
C80.0323 (11)0.0313 (10)0.0280 (10)0.0071 (8)0.0123 (9)0.0021 (8)
C90.0309 (10)0.0287 (10)0.0245 (10)0.0066 (8)0.0058 (8)0.0082 (8)
O1A0.0520 (10)0.0429 (9)0.0386 (8)0.0252 (8)0.0034 (7)0.0133 (7)
O2A0.0387 (8)0.0358 (8)0.0315 (8)0.0115 (6)0.0028 (6)0.0131 (6)
O3A0.0295 (7)0.0452 (8)0.0301 (7)0.0117 (6)0.0009 (6)0.0142 (6)
O4A0.0345 (8)0.0514 (9)0.0414 (8)0.0197 (7)0.0025 (7)0.0184 (7)
C6A0.0373 (11)0.0271 (10)0.0301 (11)0.0092 (9)0.0068 (9)0.0063 (8)
C7A0.0437 (12)0.0416 (12)0.0248 (10)0.0203 (10)0.0005 (9)0.0085 (9)
C8A0.0390 (12)0.0409 (12)0.0253 (10)0.0163 (9)0.0037 (9)0.0104 (9)
C9A0.0263 (10)0.0320 (10)0.0322 (11)0.0040 (8)0.0075 (8)0.0092 (9)
O1B0.0281 (7)0.0263 (7)0.0397 (8)0.0068 (6)0.0095 (6)0.0099 (6)
O2B0.0296 (7)0.0244 (7)0.0501 (9)0.0057 (6)0.0167 (7)0.0026 (6)
O3B0.0320 (8)0.0244 (7)0.0487 (9)0.0039 (6)0.0201 (7)0.0057 (6)
O4B0.0255 (7)0.0275 (7)0.0369 (8)0.0070 (6)0.0064 (6)0.0091 (6)
C6B0.0253 (10)0.0259 (9)0.0266 (10)0.0043 (7)0.0031 (8)0.0094 (8)
C7B0.0295 (10)0.0258 (10)0.0372 (11)0.0042 (8)0.0155 (9)0.0028 (8)
C8B0.0314 (11)0.0222 (9)0.0374 (11)0.0042 (8)0.0151 (9)0.0004 (8)
C9B0.0216 (9)0.0262 (9)0.0255 (9)0.0046 (7)0.0022 (7)0.0091 (8)
O1C0.0358 (8)0.0560 (10)0.0394 (8)0.0223 (7)0.0057 (7)0.0146 (7)
O2C0.0316 (8)0.0453 (9)0.0355 (8)0.0138 (7)0.0037 (6)0.0167 (7)
O3C0.0392 (8)0.0422 (8)0.0353 (8)0.0133 (7)0.0011 (7)0.0189 (7)
O4C0.0528 (10)0.0419 (9)0.0391 (8)0.0253 (8)0.0023 (7)0.0140 (7)
C6C0.0253 (10)0.0316 (10)0.0311 (10)0.0040 (8)0.0086 (8)0.0067 (8)
C7C0.0287 (10)0.0294 (10)0.0258 (10)0.0027 (8)0.0063 (8)0.0079 (8)
C8C0.0273 (10)0.0295 (10)0.0253 (10)0.0046 (8)0.0037 (8)0.0070 (8)
C9C0.0322 (11)0.0266 (10)0.0314 (11)0.0059 (8)0.0075 (9)0.0071 (8)
Geometric parameters (Å, º) top
N1—C41.499 (2)O2—C61.287 (2)
N1—C11.500 (2)O2—H21.15 (3)
N1—H1C0.926 (14)O3—C91.281 (2)
N1—H1D0.932 (15)O3—H21.28 (3)
N2—C31.485 (2)O4—C91.241 (2)
N2—C21.492 (2)C6—C71.495 (3)
N2—H2E0.936 (15)C7—C81.331 (3)
N2—H2F0.953 (15)C7—H70.9500
C1—C21.514 (3)C8—C91.499 (3)
C1—C51.518 (3)C8—H80.9500
C1—H11.0000O1A—C6A1.240 (2)
C2—H2A0.9900O2A—C6A1.284 (2)
C2—H2B0.9900O2A—H2I1.21 (2)
C3—C41.510 (3)O3A—C9A1.286 (2)
C3—H3A0.9900O3A—H2I1.22 (2)
C3—H3B0.9900O4A—C9A1.239 (2)
C4—H4A0.9900C6A—C7A1.493 (3)
C4—H4B0.9900C7A—C8A1.332 (3)
C5—H5A0.9800C7A—H7A0.9500
C5—H5B0.9800C8A—C9A1.486 (3)
C5—H5C0.9800C8A—H8A0.9500
N1A—C4A1.496 (2)O1B—C6B1.242 (2)
N1A—C1A1.498 (2)O2B—C6B1.282 (2)
N1A—H1E0.962 (14)O2B—H2J1.24 (2)
N1A—H1F0.921 (15)O3B—C9B1.284 (2)
N2A—C3A1.484 (2)O3B—H2J1.18 (2)
N2A—C2A1.485 (2)O4B—C9B1.238 (2)
N2A—H2G0.923 (15)C6B—C7B1.490 (3)
N2A—H2H0.954 (15)C7B—C8B1.333 (2)
C1A—C5A1.512 (3)C7B—H7B0.9500
C1A—C2A1.520 (3)C8B—C9B1.488 (3)
C1A—H1A1.0000C8B—H8B0.9500
C2A—H2C0.9900O1C—C6C1.238 (2)
C2A—H2D0.9900O2C—C6C1.286 (2)
C3A—C4A1.512 (3)O2C—H2K1.20 (2)
C3A—H3C0.9900O3C—C9C1.283 (2)
C3A—H3D0.9900O3C—H2K1.22 (2)
C4A—H4C0.9900O4C—C9C1.238 (2)
C4A—H4D0.9900C6C—C7C1.491 (3)
C5A—H5D0.9800C7C—C8C1.338 (2)
C5A—H5E0.9800C7C—H7C0.9500
C5A—H5F0.9800C8C—C9C1.493 (3)
O1—C61.237 (2)C8C—H8C0.9500
C4—N1—C1111.81 (14)C4A—C3A—H3D109.6
C4—N1—H1C109.4 (12)H3C—C3A—H3D108.1
C1—N1—H1C108.5 (13)N1A—C4A—C3A110.55 (15)
C4—N1—H1D107.7 (12)N1A—C4A—H4C109.5
C1—N1—H1D106.4 (12)C3A—C4A—H4C109.5
H1C—N1—H1D113.1 (17)N1A—C4A—H4D109.5
C3—N2—C2111.34 (15)C3A—C4A—H4D109.5
C3—N2—H2E107.0 (13)H4C—C4A—H4D108.1
C2—N2—H2E110.0 (12)C1A—C5A—H5D109.5
C3—N2—H2F106.1 (12)C1A—C5A—H5E109.5
C2—N2—H2F108.9 (12)H5D—C5A—H5E109.5
H2E—N2—H2F113.4 (17)C1A—C5A—H5F109.5
N1—C1—C2109.12 (15)H5D—C5A—H5F109.5
N1—C1—C5109.79 (15)H5E—C5A—H5F109.5
C2—C1—C5111.37 (16)C6—O2—H2111.4 (12)
N1—C1—H1108.8C9—O3—H2111.6 (11)
C2—C1—H1108.8O1—C6—O2122.17 (17)
C5—C1—H1108.8O1—C6—C7118.00 (17)
N2—C2—C1110.87 (16)O2—C6—C7119.83 (17)
N2—C2—H2A109.5C8—C7—C6130.47 (18)
C1—C2—H2A109.5C8—C7—H7114.8
N2—C2—H2B109.5C6—C7—H7114.8
C1—C2—H2B109.5C7—C8—C9129.97 (18)
H2A—C2—H2B108.1C7—C8—H8115.0
N2—C3—C4110.34 (15)C9—C8—H8115.0
N2—C3—H3A109.6O4—C9—O3122.40 (17)
C4—C3—H3A109.6O4—C9—C8117.61 (17)
N2—C3—H3B109.6O3—C9—C8119.99 (17)
C4—C3—H3B109.6C6A—O2A—H2I111.0 (11)
H3A—C3—H3B108.1C9A—O3A—H2I111.4 (11)
N1—C4—C3110.65 (16)O1A—C6A—O2A122.80 (18)
N1—C4—H4A109.5O1A—C6A—C7A116.90 (18)
C3—C4—H4A109.5O2A—C6A—C7A120.29 (18)
N1—C4—H4B109.5C8A—C7A—C6A130.79 (19)
C3—C4—H4B109.5C8A—C7A—H7A114.6
H4A—C4—H4B108.1C6A—C7A—H7A114.6
C1—C5—H5A109.5C7A—C8A—C9A130.13 (18)
C1—C5—H5B109.5C7A—C8A—H8A114.9
H5A—C5—H5B109.5C9A—C8A—H8A114.9
C1—C5—H5C109.5O4A—C9A—O3A122.54 (19)
H5A—C5—H5C109.5O4A—C9A—C8A116.96 (17)
H5B—C5—H5C109.5O3A—C9A—C8A120.50 (17)
C4A—N1A—C1A111.40 (14)C6B—O2B—H2J109.4 (11)
C4A—N1A—H1E110.4 (12)C9B—O3B—H2J109.6 (11)
C1A—N1A—H1E101.4 (12)O1B—C6B—O2B122.06 (17)
C4A—N1A—H1F108.5 (12)O1B—C6B—C7B117.68 (16)
C1A—N1A—H1F108.9 (12)O2B—C6B—C7B120.26 (16)
H1E—N1A—H1F116.1 (18)C8B—C7B—C6B130.34 (17)
C3A—N2A—C2A111.72 (15)C8B—C7B—H7B114.8
C3A—N2A—H2G109.8 (13)C6B—C7B—H7B114.8
C2A—N2A—H2G108.4 (13)C7B—C8B—C9B130.62 (17)
C3A—N2A—H2H107.6 (12)C7B—C8B—H8B114.7
C2A—N2A—H2H109.1 (12)C9B—C8B—H8B114.7
H2G—N2A—H2H110.3 (18)O4B—C9B—O3B122.09 (16)
N1A—C1A—C5A110.46 (16)O4B—C9B—C8B117.92 (16)
N1A—C1A—C2A109.13 (15)O3B—C9B—C8B119.99 (16)
C5A—C1A—C2A111.50 (16)C6C—O2C—H2K111.3 (11)
N1A—C1A—H1A108.6C9C—O3C—H2K111.7 (11)
C5A—C1A—H1A108.6O1C—C6C—O2C121.98 (18)
C2A—C1A—H1A108.6O1C—C6C—C7C117.87 (17)
N2A—C2A—C1A110.29 (15)O2C—C6C—C7C120.14 (17)
N2A—C2A—H2C109.6C8C—C7C—C6C130.72 (18)
C1A—C2A—H2C109.6C8C—C7C—H7C114.6
N2A—C2A—H2D109.6C6C—C7C—H7C114.6
C1A—C2A—H2D109.6C7C—C8C—C9C130.18 (18)
H2C—C2A—H2D108.1C7C—C8C—H8C114.9
N2A—C3A—C4A110.50 (15)C9C—C8C—H8C114.9
N2A—C3A—H3C109.6O4C—C9C—O3C122.04 (18)
C4A—C3A—H3C109.6O4C—C9C—C8C117.88 (18)
N2A—C3A—H3D109.6O3C—C9C—C8C120.08 (17)
C4—N1—C1—C256.7 (2)C6—C7—C8—C90.8 (4)
C4—N1—C1—C5179.01 (15)C7—C8—C9—O4170.0 (2)
C3—N2—C2—C158.3 (2)C7—C8—C9—O310.4 (3)
N1—C1—C2—N257.02 (19)O1A—C6A—C7A—C8A177.6 (2)
C5—C1—C2—N2178.38 (15)O2A—C6A—C7A—C8A2.9 (3)
C2—N2—C3—C457.0 (2)C6A—C7A—C8A—C9A0.2 (4)
C1—N1—C4—C356.6 (2)C7A—C8A—C9A—O4A178.0 (2)
N2—C3—C4—N155.7 (2)C7A—C8A—C9A—O3A2.2 (3)
C4A—N1A—C1A—C5A179.32 (16)O1B—C6B—C7B—C8B176.1 (2)
C4A—N1A—C1A—C2A57.8 (2)O2B—C6B—C7B—C8B3.9 (3)
C3A—N2A—C2A—C1A58.2 (2)C6B—C7B—C8B—C9B0.1 (4)
N1A—C1A—C2A—N2A57.7 (2)C7B—C8B—C9B—O4B176.0 (2)
C5A—C1A—C2A—N2A179.99 (16)C7B—C8B—C9B—O3B3.6 (3)
C2A—N2A—C3A—C4A56.7 (2)O1C—C6C—C7C—C8C177.83 (19)
C1A—N1A—C4A—C3A57.0 (2)O2C—C6C—C7C—C8C1.2 (3)
N2A—C3A—C4A—N1A55.4 (2)C6C—C7C—C8C—C9C0.1 (3)
O1—C6—C7—C8167.9 (2)C7C—C8C—C9C—O4C178.34 (19)
O2—C6—C7—C812.7 (3)C7C—C8C—C9C—O3C0.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4Ci0.93 (1)1.91 (2)2.802 (2)162 (2)
N1—H1D···O10.93 (2)1.89 (2)2.801 (2)166 (2)
N2—H2E···O1A0.94 (2)1.80 (2)2.723 (2)168 (2)
N2—H2F···O3Bii0.95 (2)2.50 (2)3.187 (2)129 (2)
N2—H2F···O4Bii0.95 (2)1.82 (2)2.760 (2)169 (2)
N1A—H1E···O30.96 (1)2.59 (2)3.279 (2)129 (2)
N1A—H1E···O40.96 (1)1.86 (2)2.811 (2)169 (2)
N1A—H1F···O1Ciii0.92 (2)1.90 (2)2.787 (2)162 (2)
N2A—H2G···O4A0.92 (2)1.81 (2)2.710 (2)164 (2)
N2A—H2H···O1Biv0.95 (2)1.82 (2)2.764 (2)168 (2)
N2A—H2H···O2Biv0.95 (2)2.51 (2)3.191 (2)128 (2)
O2—H2···O31.15 (3)1.28 (3)2.4258 (19)174 (2)
O2A—H2I···O3A1.21 (2)1.22 (2)2.4240 (19)175 (2)
O3B—H2J···O2B1.18 (2)1.24 (2)2.4174 (18)177 (2)
O2C—H2K···O3C1.20 (2)1.22 (2)2.4192 (19)174 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4Ci0.926 (14)1.906 (16)2.802 (2)162.1 (18)
N1—H1D···O10.932 (15)1.888 (15)2.801 (2)165.8 (18)
N2—H2E···O1A0.936 (15)1.801 (15)2.723 (2)167.9 (18)
N2—H2F···O3Bii0.953 (15)2.498 (18)3.187 (2)129.2 (15)
N2—H2F···O4Bii0.953 (15)1.820 (15)2.760 (2)168.5 (18)
N1A—H1E···O30.962 (14)2.585 (18)3.279 (2)129.2 (15)
N1A—H1E···O40.962 (14)1.860 (15)2.811 (2)169.3 (17)
N1A—H1F···O1Ciii0.921 (15)1.896 (16)2.787 (2)162.3 (18)
N2A—H2G···O4A0.923 (15)1.811 (16)2.710 (2)164.0 (19)
N2A—H2H···O1Biv0.954 (15)1.824 (15)2.764 (2)167.7 (18)
N2A—H2H···O2Biv0.954 (15)2.510 (18)3.191 (2)128.3 (15)
O2—H2···O31.15 (3)1.28 (3)2.4258 (19)174 (2)
O2A—H2I···O3A1.21 (2)1.22 (2)2.4240 (19)175 (2)
O3B—H2J···O2B1.18 (2)1.24 (2)2.4174 (18)177 (2)
O2C—H2K···O3C1.20 (2)1.22 (2)2.4192 (19)174 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAnitha, R., Athimoolam, S., Bahadur, S. A. & Gunasekaran, M. (2012). Acta Cryst. E68, o959–o960.  CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHajlaoui, F., Naili, H., Yahyaoui, S., Turnbull, M., Mhiri, T. & Bataille, T. (2011). Dalton Trans. 40, 11613–11620.  CSD CrossRef CAS PubMed Google Scholar
First citationMathlouthi, M., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, o1183–o1184.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m900–m901.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o193-o194
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds