organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o263-o264

Crystal structure of (7-chloro-2-oxo-2H-chromen-4-yl)methyl N,N-di­methyl­carbamodi­thio­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India, bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur-571105, Mysore District, Karnataka, India, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580001, India, dDepartment of Chemistry, Karnatak Science College, Karnatak University, Dharwad, Karnataka 580001, India, and eDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: hcdevarajegowda@ycm.uni-mysore.ac.in

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 5 March 2015; accepted 19 March 2015; online 28 March 2015)

In the title compound, C13H12Cl N O2S2, the 2H-chromene ring system is almost planar, with a maximum deviation of 0.005 (2) Å. The packing features C—H⋯S hydrogen bonds and ππ inter­actions between fused benzene rings of chromene [shortest centroid–centroid distances = 3.6553 (13) and 3.5551 (13) Å].

1. Related literature

For biological applications of coumarins and di­thio­carbamates, see: Boas et al. (2004[Boas, U., Gertz, H., Christensen, J. B. & Heegaard, P. M. H. (2004). Tetrahedron Lett. 45, 269-272.]); D'hooghe & De Kimpe (2006[D'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513-535.]); Fernández et al. (1995[Fernández, J. M. G., Mellet, C. O., Blanco, J. L. J., Mota, J. F., Gadelle, A., Coste-Sarguet, A. & Defaye, J. (1995). Carbohydr. Res. 268, 57-71.]); Rao et al. (1981[Rao, A. K., Raju, M. S. & Raju, K. M. (1981). J. Indian Chem. Soc. 58, 1021-1023.]); Trkovnik et al. (1983[Trkovnik, M. (1983). Rad. Jugosl. Akad. Znan. Iumjet, 2, 203-217.]). For a related structure and the synthesis, see: Mahabaleshwaraiah et al. (2012[Mahabaleshwaraiah, N. M., Ravi, H. R., Vinduvahini, M., Sreepad, H. R. & Kotresh, O. (2012). Acta Cryst. E68, o3001.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H12ClNO2S2

  • Mr = 313.81

  • Monoclinic, P 21 /c

  • a = 9.7244 (4) Å

  • b = 7.1157 (3) Å

  • c = 20.0896 (9) Å

  • β = 94.404 (3)°

  • V = 1386.01 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 16144 measured reflections

  • 4752 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.147

  • S = 1.03

  • 4752 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯S3i 0.97 2.84 3.707 (2) 150
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Synthetic coumarins are widely used as aroma chemicals because of their odour strength, tenacity, stability to alkali and relatively cheap price; applications include their use as a sweetener and fixative (in perfume); fragrance enhancers (for natural essential oils); blenders (in soaps and detergents); aroma enhancers (in tobacco); and for imparting pleasant odours to industrial products. The coumarins have been the subject of extensive studies because of their interesting biological activities and have, in fact, been used as therapeutic agents for the treatment of various diseases. Coumarins show quite diverse biological activities, including anticoagulant, anti-allergic, anthelmintic, diuretic, insecticidal and antibiotic properties (Trkovnik et al., 1983); Rao et al., 1981). The great electrophilicity of the nitrogen atom as compared to that of sulfur makes the latter more acidic and an active centre in the nucleophilic attack. The fact is that the sulfur anion formed is more stabilized by negative charge distribution. Furthermore, functionalized carbamates are an important class of compounds and their medicinal and biological properties warrant study (D'hooghe et al., 2006). Organic dithiocarbamates are valuable synthetic intermediates (Boas et al., 2004), which are ubiquitously found in a variety of biologically active compounds. Functionalization of the carbamate moiety offers an attractive method for the generation of derivatives, which may constitute interesting medicinal and biological properties (Fernández et al., 1995).

The compound herein reported, (7-chloro-2-oxo-2H-chromen-4-yl)methyl dimethylcarbamodithioate (Fig. 1) presents a planar 2H-chromene ring system [maximum deviation: 0.005 (2) Å for atom C13]. The crystal structure shows intermolecular C—H···S bonds·(C16-H16A···S3, H···S= 2.84 Å; C-H···S: 150°) and ππ interactions between fused benzene rings of chromene [shortest centroid–centroid distances = 3.6553 (13) Å and 3.5551 (13) Å]. A packing view is shown in Fig. 2.

Related literature top

For biological applications of coumarins and dithiocarbamates, see: Boas et al. (2004); D'hooghe & De Kimpe (2006); Fernández et al. (1995); Rao et al. (1981); Trkovnik et al. (1983). For a related structure and the synthesis, see: Mahabaleshwaraiah et al. (2012).

Experimental top

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Mahabaleshwaraiah et al., 2012). The compound is recrystallized by ethanol- chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield =72%; m.p.:405–407 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Structure description top

Synthetic coumarins are widely used as aroma chemicals because of their odour strength, tenacity, stability to alkali and relatively cheap price; applications include their use as a sweetener and fixative (in perfume); fragrance enhancers (for natural essential oils); blenders (in soaps and detergents); aroma enhancers (in tobacco); and for imparting pleasant odours to industrial products. The coumarins have been the subject of extensive studies because of their interesting biological activities and have, in fact, been used as therapeutic agents for the treatment of various diseases. Coumarins show quite diverse biological activities, including anticoagulant, anti-allergic, anthelmintic, diuretic, insecticidal and antibiotic properties (Trkovnik et al., 1983); Rao et al., 1981). The great electrophilicity of the nitrogen atom as compared to that of sulfur makes the latter more acidic and an active centre in the nucleophilic attack. The fact is that the sulfur anion formed is more stabilized by negative charge distribution. Furthermore, functionalized carbamates are an important class of compounds and their medicinal and biological properties warrant study (D'hooghe et al., 2006). Organic dithiocarbamates are valuable synthetic intermediates (Boas et al., 2004), which are ubiquitously found in a variety of biologically active compounds. Functionalization of the carbamate moiety offers an attractive method for the generation of derivatives, which may constitute interesting medicinal and biological properties (Fernández et al., 1995).

The compound herein reported, (7-chloro-2-oxo-2H-chromen-4-yl)methyl dimethylcarbamodithioate (Fig. 1) presents a planar 2H-chromene ring system [maximum deviation: 0.005 (2) Å for atom C13]. The crystal structure shows intermolecular C—H···S bonds·(C16-H16A···S3, H···S= 2.84 Å; C-H···S: 150°) and ππ interactions between fused benzene rings of chromene [shortest centroid–centroid distances = 3.6553 (13) Å and 3.5551 (13) Å]. A packing view is shown in Fig. 2.

For biological applications of coumarins and dithiocarbamates, see: Boas et al. (2004); D'hooghe & De Kimpe (2006); Fernández et al. (1995); Rao et al. (1981); Trkovnik et al. (1983). For a related structure and the synthesis, see: Mahabaleshwaraiah et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing view of the title compound. Dashed lines represent intermolecular interactions.
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl N,N-dimethylcarbamodithioate top
Crystal data top
C13H12ClNO2S2Dx = 1.504 Mg m3
Mr = 313.81Melting point: 407 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7244 (4) ÅCell parameters from 2446 reflections
b = 7.1157 (3) Åθ = 2.0–25.0°
c = 20.0896 (9) ŵ = 0.57 mm1
β = 94.404 (3)°T = 296 K
V = 1386.01 (10) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
F(000) = 648
Data collection top
Bruker SMART CCD area-detector
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube2805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 32.2°, θmin = 2.0°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.770, Tmax = 1.000k = 1010
16144 measured reflectionsl = 2730
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.4178P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max = 0.043
174 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H12ClNO2S2V = 1386.01 (10) Å3
Mr = 313.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7244 (4) ŵ = 0.57 mm1
b = 7.1157 (3) ÅT = 296 K
c = 20.0896 (9) Å0.24 × 0.20 × 0.12 mm
β = 94.404 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4752 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
2805 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.029
16144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
4752 reflectionsΔρmin = 0.35 e Å3
174 parameters
Special details top

Experimental. IR (KBr, cm-1): 1722 (C=O), 1381 (C=S), 894(C—N). GCMS: m/e: 313; 1H NMR (400 MHz, CDCl3, \?, p.p.m): 3.38 (s, 3H, N—CH3), 3.47 (s, 3H, N—CH3), 4.80 (s, 2H, C4—CH2), 6.56 (s, 1H, C3—H), 7.45–7.92 (m, 3H, Ar—H). Mol. Formula: C13H12Cl N O2S22; Elemental analysis: C, 49.75; H, 3.85; N, 4.46 (calculated); C, 49.67; H, 3.76; N, 4.39 (found).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17680 (7)0.68940 (10)0.60871 (3)0.0643 (2)
S20.19845 (6)0.93877 (9)0.24696 (3)0.05245 (18)
S30.25794 (7)0.52236 (9)0.23740 (3)0.05581 (19)
O40.27371 (14)0.7395 (2)0.50559 (7)0.0489 (4)
O50.48199 (17)0.7569 (3)0.47037 (9)0.0673 (5)
N60.37617 (18)0.7922 (3)0.17126 (9)0.0522 (5)
C70.0832 (2)0.7267 (3)0.53965 (11)0.0416 (5)
C80.1507 (2)0.7599 (3)0.47806 (12)0.0442 (5)
H80.24650.76390.47300.053*
C90.0740 (2)0.7870 (3)0.42398 (11)0.0413 (5)
H90.11920.80990.38230.050*
C100.07040 (19)0.7808 (3)0.43027 (10)0.0349 (4)
C110.1331 (2)0.7472 (3)0.49375 (10)0.0369 (4)
C120.0577 (2)0.7200 (3)0.54875 (11)0.0442 (5)
H120.10170.69770.59080.053*
C130.15923 (19)0.8083 (3)0.37605 (10)0.0368 (4)
C140.2966 (2)0.8017 (3)0.38965 (11)0.0419 (5)
H140.35290.82100.35490.050*
C150.3606 (2)0.7662 (3)0.45538 (11)0.0455 (5)
C160.0936 (2)0.8373 (4)0.30683 (11)0.0501 (6)
H16A0.01330.91690.30990.060*
H16B0.06090.71640.28980.060*
C170.2867 (2)0.7429 (3)0.21486 (10)0.0414 (5)
C180.4622 (3)0.6497 (5)0.14199 (14)0.0774 (9)
H18A0.52820.60180.17580.116*
H18B0.50980.70530.10680.116*
H18C0.40500.54880.12430.116*
C190.4015 (3)0.9852 (5)0.15168 (14)0.0722 (8)
H19A0.31671.05480.15000.108*
H19B0.43720.98640.10840.108*
H19C0.46731.04180.18370.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0719 (4)0.0596 (4)0.0660 (4)0.0019 (3)0.0351 (3)0.0003 (3)
S20.0520 (4)0.0574 (4)0.0487 (3)0.0071 (3)0.0093 (2)0.0123 (3)
S30.0611 (4)0.0543 (4)0.0515 (4)0.0088 (3)0.0010 (3)0.0002 (3)
O40.0347 (8)0.0685 (11)0.0424 (8)0.0031 (7)0.0036 (6)0.0018 (7)
O50.0337 (9)0.1053 (16)0.0615 (11)0.0061 (9)0.0057 (8)0.0083 (10)
N60.0336 (10)0.0785 (15)0.0446 (10)0.0000 (9)0.0038 (8)0.0131 (10)
C70.0477 (12)0.0289 (10)0.0503 (12)0.0002 (8)0.0180 (9)0.0030 (8)
C80.0338 (11)0.0402 (12)0.0597 (13)0.0004 (8)0.0101 (9)0.0016 (9)
C90.0339 (10)0.0405 (12)0.0492 (12)0.0014 (8)0.0012 (8)0.0022 (9)
C100.0329 (10)0.0290 (9)0.0428 (10)0.0004 (7)0.0030 (8)0.0025 (8)
C110.0337 (10)0.0329 (10)0.0439 (11)0.0015 (7)0.0029 (8)0.0039 (8)
C120.0517 (13)0.0398 (12)0.0414 (11)0.0030 (9)0.0053 (9)0.0024 (9)
C130.0317 (10)0.0375 (11)0.0410 (10)0.0018 (8)0.0016 (8)0.0001 (8)
C140.0342 (10)0.0485 (12)0.0432 (11)0.0004 (9)0.0040 (8)0.0017 (9)
C150.0340 (11)0.0521 (13)0.0503 (12)0.0019 (9)0.0017 (9)0.0057 (10)
C160.0333 (11)0.0751 (17)0.0423 (12)0.0060 (10)0.0052 (9)0.0067 (11)
C170.0291 (10)0.0612 (14)0.0328 (10)0.0022 (9)0.0047 (7)0.0045 (9)
C180.0583 (17)0.120 (3)0.0564 (16)0.0281 (17)0.0192 (13)0.0130 (16)
C190.0536 (16)0.098 (2)0.0651 (17)0.0159 (15)0.0067 (13)0.0305 (16)
Geometric parameters (Å, º) top
Cl1—C71.737 (2)C10—C111.392 (3)
S2—C171.783 (2)C10—C131.454 (3)
S2—C161.788 (2)C11—C121.386 (3)
S3—C171.663 (2)C12—H120.9300
O4—C111.371 (2)C13—C141.343 (3)
O4—C151.378 (3)C13—C161.499 (3)
O5—C151.198 (3)C14—C151.438 (3)
N6—C171.329 (3)C14—H140.9300
N6—C191.455 (4)C16—H16A0.9700
N6—C181.466 (3)C16—H16B0.9700
C7—C121.369 (3)C18—H18A0.9600
C7—C81.376 (3)C18—H18B0.9600
C8—C91.378 (3)C18—H18C0.9600
C8—H80.9300C19—H19A0.9600
C9—C101.401 (3)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C17—S2—C16104.05 (11)C13—C14—H14118.4
C11—O4—C15121.80 (16)C15—C14—H14118.4
C17—N6—C19124.1 (2)O5—C15—O4117.2 (2)
C17—N6—C18120.3 (2)O5—C15—C14126.1 (2)
C19—N6—C18115.5 (2)O4—C15—C14116.74 (18)
C12—C7—C8121.98 (19)C13—C16—S2117.08 (16)
C12—C7—Cl1117.93 (18)C13—C16—H16A108.0
C8—C7—Cl1120.08 (17)S2—C16—H16A108.0
C7—C8—C9118.91 (19)C13—C16—H16B108.0
C7—C8—H8120.5S2—C16—H16B108.0
C9—C8—H8120.5H16A—C16—H16B107.3
C8—C9—C10121.6 (2)N6—C17—S3124.10 (19)
C8—C9—H9119.2N6—C17—S2112.96 (17)
C10—C9—H9119.2S3—C17—S2122.94 (12)
C11—C10—C9116.96 (19)N6—C18—H18A109.5
C11—C10—C13117.78 (17)N6—C18—H18B109.5
C9—C10—C13125.25 (18)H18A—C18—H18B109.5
O4—C11—C12115.97 (18)N6—C18—H18C109.5
O4—C11—C10121.78 (18)H18A—C18—H18C109.5
C12—C11—C10122.25 (19)H18B—C18—H18C109.5
C7—C12—C11118.3 (2)N6—C19—H19A109.5
C7—C12—H12120.9N6—C19—H19B109.5
C11—C12—H12120.9H19A—C19—H19B109.5
C14—C13—C10118.78 (18)N6—C19—H19C109.5
C14—C13—C16122.65 (18)H19A—C19—H19C109.5
C10—C13—C16118.55 (17)H19B—C19—H19C109.5
C13—C14—C15123.11 (19)
C12—C7—C8—C90.0 (3)C11—C10—C13—C16177.7 (2)
Cl1—C7—C8—C9179.30 (16)C9—C10—C13—C162.9 (3)
C7—C8—C9—C100.3 (3)C10—C13—C14—C150.9 (3)
C8—C9—C10—C110.4 (3)C16—C13—C14—C15177.3 (2)
C8—C9—C10—C13179.84 (19)C11—O4—C15—O5180.0 (2)
C15—O4—C11—C12179.28 (19)C11—O4—C15—C140.3 (3)
C15—O4—C11—C100.5 (3)C13—C14—C15—O5179.2 (2)
C9—C10—C11—O4179.57 (18)C13—C14—C15—O40.4 (3)
C13—C10—C11—O40.1 (3)C14—C13—C16—S220.1 (3)
C9—C10—C11—C120.2 (3)C10—C13—C16—S2161.75 (16)
C13—C10—C11—C12179.74 (18)C17—S2—C16—C1385.7 (2)
C8—C7—C12—C110.1 (3)C19—N6—C17—S3179.84 (18)
Cl1—C7—C12—C11179.17 (15)C18—N6—C17—S33.0 (3)
O4—C11—C12—C7179.83 (18)C19—N6—C17—S20.5 (3)
C10—C11—C12—C70.0 (3)C18—N6—C17—S2177.35 (18)
C11—C10—C13—C140.6 (3)C16—S2—C17—N6176.86 (15)
C9—C10—C13—C14178.8 (2)C16—S2—C17—S33.46 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···S3i0.972.843.707 (2)150
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···S3i0.972.843.707 (2)150
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad for the data collection and the UGC, India, for financial assistance.

References

First citationBoas, U., Gertz, H., Christensen, J. B. & Heegaard, P. M. H. (2004). Tetrahedron Lett. 45, 269–272.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationD'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández, J. M. G., Mellet, C. O., Blanco, J. L. J., Mota, J. F., Gadelle, A., Coste-Sarguet, A. & Defaye, J. (1995). Carbohydr. Res. 268, 57–71.  PubMed Google Scholar
First citationMahabaleshwaraiah, N. M., Ravi, H. R., Vinduvahini, M., Sreepad, H. R. & Kotresh, O. (2012). Acta Cryst. E68, o3001.  CSD CrossRef IUCr Journals Google Scholar
First citationRao, A. K., Raju, M. S. & Raju, K. M. (1981). J. Indian Chem. Soc. 58, 1021–1023.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrkovnik, M. (1983). Rad. Jugosl. Akad. Znan. Iumjet, 2, 203–217.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o263-o264
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds