metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m77-m78

Crystal structure of bis­­(di­methyl­ammonium) hexa­aqua­cobalt(II) bis­­(sulfate) dihydrate

CROSSMARK_Color_square_no_text.svg

aInstitut für Kristallographie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de

Edited by U. Flörke, University of Paderborn, Germany (Received 5 February 2015; accepted 18 February 2015; online 4 March 2015)

The title salt, (C2H8N)2[Co(H2O)6)](SO4)2·2H2O, is isotypic with (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O. The Co—O bond lengths in the [Co(H2O)6]2+ complex cation show very similar distances as in the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 [average 2.093 (17) Å], but are significantly longer than in the isotypic NiII compound (Δd ≃ 0.04 Å). The cobalt cation reaches an overall bond-valence sum of 1.97 valence units. The S—O distances are nearly equal, ranging from 1.454 (4) to 1.470 (3) Å [mean 1.465 (12) Å]; however, the O—S—O angles vary clearly from 108.1 (2) to 110.2 (2)° [average bond angle 109.5 (9)°]. The non-coordinating water mol­ecules and di­methyl­ammonium cations connect the sulfate tetrahedra and the [Co(H2O)6]2+ octa­hedron via O—H⋯O and N—H⋯O hydrogen bonds of weak up to medium strength into a three-dimensional framework whereby the complex metal cations and sulfate anions are arranged in sheets parallel to (001).

1. Related literature

For the synthesis and coordination geometry of the isotypic structure (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, see: Held (2014[Held, P. (2014). Acta Cryst. E70, 403-405.]). For the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2, see: Grimes et al. (1963[Grimes, N. W., Kay, H. F. & Webb, M. W. (1963). Acta Cryst. 16, 823-829.]). For the bond-valence-sum method, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C2H8N)2[Co(H2O)6](SO4)2·2H2O

  • Mr = 487.37

  • Orthorhombic, P b c a

  • a = 8.975 (5) Å

  • b = 13.268 (5) Å

  • c = 16.528 (5) Å

  • V = 1968.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 K

  • 0.30 × 0.27 × 0.24 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.903, Tmax = 1.000

  • 3383 measured reflections

  • 1733 independent reflections

  • 936 reflections with I > 2σ(I)

  • Rint = 0.077

  • 3 standard reflections every 100 reflections intensity decay: 1.5%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 0.98

  • 1733 reflections

  • 148 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2i 0.82 (6) 1.91 (6) 2.724 (6) 169 (5)
O5—H52⋯O8 0.84 (7) 1.97 (8) 2.806 (7) 171 (7)
O6—H61⋯O3ii 0.85 (7) 1.85 (7) 2.687 (6) 173 (6)
O6—H62⋯O1 0.69 (5) 2.08 (5) 2.740 (6) 161 (6)
O7—H71⋯O4iii 0.74 (6) 2.01 (6) 2.740 (6) 173 (6)
O7—H72⋯O1iv 0.72 (4) 2.04 (4) 2.756 (6) 176 (5)
O8—H81⋯O3iii 0.71 (6) 2.32 (6) 2.975 (7) 154 (7)
O8—H82⋯O2v 0.83 (6) 2.02 (6) 2.849 (6) 169 (7)
N3—H3A⋯O6iv 0.90 2.63 3.265 (6) 128
N3—H3B⋯O4vi 0.90 2.00 2.823 (6) 152
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2011[Dowty, E. (2011). ATOMS. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Refinement top

All H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares refinement, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water molecules were refined with a distance restraint of O—H = 0.84 Å and individual Uiso values for each H atom.

Related literature top

For the synthesis and coordination geometry of the isotypic structure (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, see: Held (2014). For the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 , see: Grimes et al. (1963). For the bond-valence-sum method, see: Brown & Altermatt (1985).

Structure description top

For the synthesis and coordination geometry of the isotypic structure (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, see: Held (2014). For the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 , see: Grimes et al. (1963). For the bond-valence-sum method, see: Brown & Altermatt (1985).

Refinement details top

All H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares refinement, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water molecules were refined with a distance restraint of O—H = 0.84 Å and individual Uiso values for each H atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y + 1, -z - 1.]
[Figure 2] Fig. 2. (100)-projection of the crystal structure of the title compound. Colour scheme: S (yellow), Co (red), O (blue), N (orange), C (grey), H (colourless), H···O bonds up to 1.8 Å are given as red dashed lines, and from 1.85 to 2.7 Å as light-blue dashed lines.
Bis(dimethylammonium) hexaaquacobalt(II) bis(sulfate) dihydrate top
Crystal data top
(C2H8N)2[Co(H2O)6](SO4)2·2H2OF(000) = 1028
Mr = 487.37Dx = 1.645 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.975 (5) Åθ = 12.0–20.8°
b = 13.268 (5) ŵ = 1.16 mm1
c = 16.528 (5) ÅT = 295 K
V = 1968.2 (15) Å3Parallelepiped, light blue
Z = 40.30 × 0.27 × 0.24 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
936 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.903, Tmax = 1.000l = 1919
3383 measured reflections3 standard reflections every 100 reflections
1733 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0529P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1733 reflectionsΔρmax = 0.41 e Å3
148 parametersΔρmin = 0.37 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (6)
Crystal data top
(C2H8N)2[Co(H2O)6](SO4)2·2H2OV = 1968.2 (15) Å3
Mr = 487.37Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.975 (5) ŵ = 1.16 mm1
b = 13.268 (5) ÅT = 295 K
c = 16.528 (5) Å0.30 × 0.27 × 0.24 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
936 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.077
Tmin = 0.903, Tmax = 1.0003 standard reflections every 100 reflections
3383 measured reflections intensity decay: 1.5%
1733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.41 e Å3
1733 reflectionsΔρmin = 0.37 e Å3
148 parameters
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.00000.50000.50000.0278 (3)
S10.44510 (13)0.65726 (9)0.59555 (8)0.0319 (3)
O10.3702 (4)0.6999 (2)0.5243 (2)0.0466 (10)
O20.3355 (4)0.6107 (3)0.6497 (2)0.0419 (9)
O30.5255 (5)0.7366 (3)0.6378 (2)0.0634 (12)
O40.5493 (5)0.5793 (3)0.5696 (3)0.0791 (15)
O50.0505 (5)0.4446 (3)0.3854 (2)0.0422 (10)
H510.136 (7)0.422 (4)0.380 (3)0.040 (18)*
H520.010 (8)0.403 (5)0.365 (5)0.11 (3)*
O60.1413 (5)0.6068 (3)0.4439 (3)0.0391 (10)
H610.103 (8)0.653 (5)0.415 (4)0.09 (3)*
H620.198 (6)0.620 (4)0.470 (3)0.03 (2)*
O70.1808 (5)0.4036 (3)0.5066 (3)0.0444 (10)
H710.251 (7)0.412 (4)0.484 (3)0.037 (19)*
H720.172 (5)0.350 (3)0.512 (3)0.021 (16)*
O80.1675 (5)0.3224 (4)0.3135 (3)0.0558 (13)
H810.245 (7)0.326 (5)0.322 (4)0.06 (2)*
H820.174 (8)0.348 (5)0.268 (4)0.09 (3)*
N30.0327 (6)0.1120 (3)0.3563 (3)0.0567 (14)
H3A0.10160.15410.37690.068*
H3B0.01870.06220.39250.068*
C10.0909 (10)0.0689 (5)0.2833 (4)0.094 (3)
H1A0.18250.03440.29500.141*
H1B0.10920.12140.24460.141*
H1C0.02010.02190.26150.141*
C20.1060 (7)0.1669 (5)0.3473 (4)0.074 (2)
H2A0.14500.18330.39980.111*
H2B0.17670.12600.31870.111*
H2C0.08830.22790.31750.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0269 (5)0.0257 (4)0.0309 (4)0.0003 (5)0.0026 (5)0.0010 (5)
S10.0249 (6)0.0340 (6)0.0368 (7)0.0010 (6)0.0005 (6)0.0065 (6)
O10.055 (2)0.042 (2)0.044 (2)0.0080 (19)0.0180 (18)0.0107 (17)
O20.0289 (19)0.052 (2)0.045 (2)0.0104 (17)0.0059 (17)0.0093 (18)
O30.084 (3)0.060 (2)0.047 (2)0.034 (3)0.023 (2)0.0151 (19)
O40.063 (3)0.067 (3)0.108 (4)0.026 (2)0.042 (3)0.032 (3)
O50.034 (2)0.053 (2)0.040 (2)0.004 (2)0.002 (2)0.0102 (19)
O60.035 (2)0.039 (2)0.043 (2)0.004 (2)0.007 (2)0.007 (2)
O70.035 (2)0.036 (3)0.062 (3)0.007 (2)0.012 (2)0.010 (2)
O80.035 (3)0.093 (4)0.039 (3)0.004 (3)0.001 (2)0.009 (3)
N30.069 (4)0.047 (3)0.054 (3)0.005 (3)0.018 (3)0.004 (2)
C10.135 (8)0.056 (4)0.090 (6)0.016 (5)0.054 (5)0.009 (4)
C20.057 (4)0.084 (5)0.080 (5)0.005 (4)0.007 (4)0.016 (4)
Geometric parameters (Å, º) top
Co—O7i2.069 (4)O7—H710.74 (6)
Co—O72.069 (4)O7—H720.72 (4)
Co—O5i2.081 (4)O8—H810.71 (6)
Co—O52.081 (4)O8—H820.83 (6)
Co—O62.116 (4)N3—C11.434 (7)
Co—O6i2.116 (4)N3—C21.450 (7)
S1—O31.454 (4)N3—H3A0.9000
S1—O41.459 (4)N3—H3B0.9000
S1—O21.467 (3)C1—H1A0.9600
S1—O11.470 (3)C1—H1B0.9600
O5—H510.82 (6)C1—H1C0.9600
O5—H520.84 (7)C2—H2A0.9600
O6—H610.85 (7)C2—H2B0.9600
O6—H620.69 (5)C2—H2C0.9600
O7i—Co—O7180.0 (3)Co—O6—H62109 (4)
O7i—Co—O5i90.04 (18)H61—O6—H62119 (6)
O7—Co—O5i89.96 (18)Co—O7—H71123 (4)
O7i—Co—O589.96 (18)Co—O7—H72122 (4)
O7—Co—O590.04 (18)H71—O7—H72109 (6)
O5i—Co—O5180.000 (1)H81—O8—H8295 (7)
O7i—Co—O691.87 (19)C1—N3—C2115.3 (5)
O7—Co—O688.13 (19)C1—N3—H3A108.5
O5i—Co—O691.80 (18)C2—N3—H3A108.5
O5—Co—O688.20 (18)C1—N3—H3B108.5
O7i—Co—O6i88.13 (19)C2—N3—H3B108.5
O7—Co—O6i91.87 (19)H3A—N3—H3B107.5
O5i—Co—O6i88.20 (18)N3—C1—H1A109.5
O5—Co—O6i91.80 (18)N3—C1—H1B109.5
O6—Co—O6i180.0H1A—C1—H1B109.5
O3—S1—O4109.6 (3)N3—C1—H1C109.5
O3—S1—O2110.1 (2)H1A—C1—H1C109.5
O4—S1—O2108.1 (2)H1B—C1—H1C109.5
O3—S1—O1109.5 (2)N3—C2—H2A109.5
O4—S1—O1109.3 (3)N3—C2—H2B109.5
O2—S1—O1110.2 (2)H2A—C2—H2B109.5
Co—O5—H51116 (4)N3—C2—H2C109.5
Co—O5—H52117 (5)H2A—C2—H2C109.5
H51—O5—H52108 (6)H2B—C2—H2C109.5
Co—O6—H61119 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.82 (6)1.91 (6)2.724 (6)169 (5)
O5—H52···O80.84 (7)1.97 (8)2.806 (7)171 (7)
O6—H61···O3ii0.85 (7)1.85 (7)2.687 (6)173 (6)
O6—H62···O10.69 (5)2.08 (5)2.740 (6)161 (6)
O7—H71···O4iii0.74 (6)2.01 (6)2.740 (6)173 (6)
O7—H72···O1iv0.72 (4)2.04 (4)2.756 (6)176 (5)
O8—H81···O3iii0.71 (6)2.32 (6)2.975 (7)154 (7)
O8—H82···O2v0.83 (6)2.02 (6)2.849 (6)169 (7)
N3—H3A···O6iv0.902.633.265 (6)128
N3—H3B···O4vi0.902.002.823 (6)152
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.82 (6)1.91 (6)2.724 (6)169 (5)
O5—H52···O80.84 (7)1.97 (8)2.806 (7)171 (7)
O6—H61···O3ii0.85 (7)1.85 (7)2.687 (6)173 (6)
O6—H62···O10.69 (5)2.08 (5)2.740 (6)161 (6)
O7—H71···O4iii0.74 (6)2.01 (6)2.740 (6)173 (6)
O7—H72···O1iv0.72 (4)2.04 (4)2.756 (6)176 (5)
O8—H81···O3iii0.71 (6)2.32 (6)2.975 (7)154 (7)
O8—H82···O2v0.83 (6)2.02 (6)2.849 (6)169 (7)
N3—H3A···O6iv0.902.633.265 (6)127.8
N3—H3B···O4vi0.902.002.823 (6)151.5
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2011). ATOMS. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationGrimes, N. W., Kay, H. F. & Webb, M. W. (1963). Acta Cryst. 16, 823–829.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHeld, P. (2014). Acta Cryst. E70, 403–405.  CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages m77-m78
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds