metal-organic compounds
of bis(dimethylammonium) hexaaquacobalt(II) bis(sulfate) dihydrate
aInstitut für Kristallographie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de
The title salt, (C2H8N)2[Co(H2O)6)](SO4)2·2H2O, is isotypic with (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O. The Co—O bond lengths in the [Co(H2O)6]2+ complex cation show very similar distances as in the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 [average 2.093 (17) Å], but are significantly longer than in the isotypic NiII compound (Δd ≃ 0.04 Å). The cobalt cation reaches an overall bond-valence sum of 1.97 valence units. The S—O distances are nearly equal, ranging from 1.454 (4) to 1.470 (3) Å [mean 1.465 (12) Å]; however, the O—S—O angles vary clearly from 108.1 (2) to 110.2 (2)° [average bond angle 109.5 (9)°]. The non-coordinating water molecules and dimethylammonium cations connect the sulfate tetrahedra and the [Co(H2O)6]2+ octahedron via O—H⋯O and N—H⋯O hydrogen bonds of weak up to medium strength into a three-dimensional framework whereby the complex metal cations and sulfate anions are arranged in sheets parallel to (001).
Keywords: crystal structure; dimethylammonium salt; hexaaquacobalt(II) salt; sulfate; hydrogen bonding.
CCDC reference: 1050102
1. Related literature
For the synthesis and coordination geometry of the isotypic structure (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, see: Held (2014). For the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2, see: Grimes et al. (1963). For the bond-valence-sum method, see: Brown & Altermatt (1985).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2011); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1050102
10.1107/S2056989015003400/fk2085sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015003400/fk2085Isup2.hkl
All H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares
with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water molecules were refined with a distance restraint of O—H = 0.84 Å and individual Uiso values for each H atom.For the synthesis and coordination geometry of the isotypic structure (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, see: Held (2014). For the related Tutton salt (NH4)2[Co(H2O)6)](SO4)2 , see: Grimes et al. (1963). For the bond-valence-sum method, see: Brown & Altermatt (1985).
detailsAll H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares
with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water molecules were refined with a distance restraint of O—H = 0.84 Å and individual Uiso values for each H atom.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell
CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The molecular entities in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y + 1, -z - 1.] | |
Fig. 2. (100)-projection of the crystal structure of the title compound. Colour scheme: S (yellow), Co (red), O (blue), N (orange), C (grey), H (colourless), H···O bonds up to 1.8 Å are given as red dashed lines, and from 1.85 to 2.7 Å as light-blue dashed lines. |
(C2H8N)2[Co(H2O)6](SO4)2·2H2O | F(000) = 1028 |
Mr = 487.37 | Dx = 1.645 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 8.975 (5) Å | θ = 12.0–20.8° |
b = 13.268 (5) Å | µ = 1.16 mm−1 |
c = 16.528 (5) Å | T = 295 K |
V = 1968.2 (15) Å3 | Parallelepiped, light blue |
Z = 4 | 0.30 × 0.27 × 0.24 mm |
Enraf–Nonius CAD-4 diffractometer | 936 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.077 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→15 |
Tmin = 0.903, Tmax = 1.000 | l = −19→19 |
3383 measured reflections | 3 standard reflections every 100 reflections |
1733 independent reflections | intensity decay: 1.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0529P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
1733 reflections | Δρmax = 0.41 e Å−3 |
148 parameters | Δρmin = −0.37 e Å−3 |
2 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0022 (6) |
(C2H8N)2[Co(H2O)6](SO4)2·2H2O | V = 1968.2 (15) Å3 |
Mr = 487.37 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.975 (5) Å | µ = 1.16 mm−1 |
b = 13.268 (5) Å | T = 295 K |
c = 16.528 (5) Å | 0.30 × 0.27 × 0.24 mm |
Enraf–Nonius CAD-4 diffractometer | 936 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.077 |
Tmin = 0.903, Tmax = 1.000 | 3 standard reflections every 100 reflections |
3383 measured reflections | intensity decay: 1.5% |
1733 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 2 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.41 e Å−3 |
1733 reflections | Δρmin = −0.37 e Å−3 |
148 parameters |
Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | 0.0000 | 0.5000 | 0.5000 | 0.0278 (3) | |
S1 | 0.44510 (13) | 0.65726 (9) | 0.59555 (8) | 0.0319 (3) | |
O1 | 0.3702 (4) | 0.6999 (2) | 0.5243 (2) | 0.0466 (10) | |
O2 | 0.3355 (4) | 0.6107 (3) | 0.6497 (2) | 0.0419 (9) | |
O3 | 0.5255 (5) | 0.7366 (3) | 0.6378 (2) | 0.0634 (12) | |
O4 | 0.5493 (5) | 0.5793 (3) | 0.5696 (3) | 0.0791 (15) | |
O5 | −0.0505 (5) | 0.4446 (3) | 0.3854 (2) | 0.0422 (10) | |
H51 | −0.136 (7) | 0.422 (4) | 0.380 (3) | 0.040 (18)* | |
H52 | 0.010 (8) | 0.403 (5) | 0.365 (5) | 0.11 (3)* | |
O6 | 0.1413 (5) | 0.6068 (3) | 0.4439 (3) | 0.0391 (10) | |
H61 | 0.103 (8) | 0.653 (5) | 0.415 (4) | 0.09 (3)* | |
H62 | 0.198 (6) | 0.620 (4) | 0.470 (3) | 0.03 (2)* | |
O7 | 0.1808 (5) | 0.4036 (3) | 0.5066 (3) | 0.0444 (10) | |
H71 | 0.251 (7) | 0.412 (4) | 0.484 (3) | 0.037 (19)* | |
H72 | 0.172 (5) | 0.350 (3) | 0.512 (3) | 0.021 (16)* | |
O8 | 0.1675 (5) | 0.3224 (4) | 0.3135 (3) | 0.0558 (13) | |
H81 | 0.245 (7) | 0.326 (5) | 0.322 (4) | 0.06 (2)* | |
H82 | 0.174 (8) | 0.348 (5) | 0.268 (4) | 0.09 (3)* | |
N3 | 0.0327 (6) | 0.1120 (3) | 0.3563 (3) | 0.0567 (14) | |
H3A | 0.1016 | 0.1541 | 0.3769 | 0.068* | |
H3B | 0.0187 | 0.0622 | 0.3925 | 0.068* | |
C1 | 0.0909 (10) | 0.0689 (5) | 0.2833 (4) | 0.094 (3) | |
H1A | 0.1825 | 0.0344 | 0.2950 | 0.141* | |
H1B | 0.1092 | 0.1214 | 0.2446 | 0.141* | |
H1C | 0.0201 | 0.0219 | 0.2615 | 0.141* | |
C2 | −0.1060 (7) | 0.1669 (5) | 0.3473 (4) | 0.074 (2) | |
H2A | −0.1450 | 0.1833 | 0.3998 | 0.111* | |
H2B | −0.1767 | 0.1260 | 0.3187 | 0.111* | |
H2C | −0.0883 | 0.2279 | 0.3175 | 0.111* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.0269 (5) | 0.0257 (4) | 0.0309 (4) | 0.0003 (5) | −0.0026 (5) | −0.0010 (5) |
S1 | 0.0249 (6) | 0.0340 (6) | 0.0368 (7) | −0.0010 (6) | −0.0005 (6) | 0.0065 (6) |
O1 | 0.055 (2) | 0.042 (2) | 0.044 (2) | −0.0080 (19) | −0.0180 (18) | 0.0107 (17) |
O2 | 0.0289 (19) | 0.052 (2) | 0.045 (2) | −0.0104 (17) | 0.0059 (17) | 0.0093 (18) |
O3 | 0.084 (3) | 0.060 (2) | 0.047 (2) | −0.034 (3) | −0.023 (2) | 0.0151 (19) |
O4 | 0.063 (3) | 0.067 (3) | 0.108 (4) | 0.026 (2) | 0.042 (3) | 0.032 (3) |
O5 | 0.034 (2) | 0.053 (2) | 0.040 (2) | −0.004 (2) | −0.002 (2) | −0.0102 (19) |
O6 | 0.035 (2) | 0.039 (2) | 0.043 (2) | −0.004 (2) | −0.007 (2) | 0.007 (2) |
O7 | 0.035 (2) | 0.036 (3) | 0.062 (3) | 0.007 (2) | 0.012 (2) | 0.010 (2) |
O8 | 0.035 (3) | 0.093 (4) | 0.039 (3) | −0.004 (3) | −0.001 (2) | −0.009 (3) |
N3 | 0.069 (4) | 0.047 (3) | 0.054 (3) | 0.005 (3) | −0.018 (3) | −0.004 (2) |
C1 | 0.135 (8) | 0.056 (4) | 0.090 (6) | 0.016 (5) | 0.054 (5) | 0.009 (4) |
C2 | 0.057 (4) | 0.084 (5) | 0.080 (5) | 0.005 (4) | 0.007 (4) | 0.016 (4) |
Co—O7i | 2.069 (4) | O7—H71 | 0.74 (6) |
Co—O7 | 2.069 (4) | O7—H72 | 0.72 (4) |
Co—O5i | 2.081 (4) | O8—H81 | 0.71 (6) |
Co—O5 | 2.081 (4) | O8—H82 | 0.83 (6) |
Co—O6 | 2.116 (4) | N3—C1 | 1.434 (7) |
Co—O6i | 2.116 (4) | N3—C2 | 1.450 (7) |
S1—O3 | 1.454 (4) | N3—H3A | 0.9000 |
S1—O4 | 1.459 (4) | N3—H3B | 0.9000 |
S1—O2 | 1.467 (3) | C1—H1A | 0.9600 |
S1—O1 | 1.470 (3) | C1—H1B | 0.9600 |
O5—H51 | 0.82 (6) | C1—H1C | 0.9600 |
O5—H52 | 0.84 (7) | C2—H2A | 0.9600 |
O6—H61 | 0.85 (7) | C2—H2B | 0.9600 |
O6—H62 | 0.69 (5) | C2—H2C | 0.9600 |
O7i—Co—O7 | 180.0 (3) | Co—O6—H62 | 109 (4) |
O7i—Co—O5i | 90.04 (18) | H61—O6—H62 | 119 (6) |
O7—Co—O5i | 89.96 (18) | Co—O7—H71 | 123 (4) |
O7i—Co—O5 | 89.96 (18) | Co—O7—H72 | 122 (4) |
O7—Co—O5 | 90.04 (18) | H71—O7—H72 | 109 (6) |
O5i—Co—O5 | 180.000 (1) | H81—O8—H82 | 95 (7) |
O7i—Co—O6 | 91.87 (19) | C1—N3—C2 | 115.3 (5) |
O7—Co—O6 | 88.13 (19) | C1—N3—H3A | 108.5 |
O5i—Co—O6 | 91.80 (18) | C2—N3—H3A | 108.5 |
O5—Co—O6 | 88.20 (18) | C1—N3—H3B | 108.5 |
O7i—Co—O6i | 88.13 (19) | C2—N3—H3B | 108.5 |
O7—Co—O6i | 91.87 (19) | H3A—N3—H3B | 107.5 |
O5i—Co—O6i | 88.20 (18) | N3—C1—H1A | 109.5 |
O5—Co—O6i | 91.80 (18) | N3—C1—H1B | 109.5 |
O6—Co—O6i | 180.0 | H1A—C1—H1B | 109.5 |
O3—S1—O4 | 109.6 (3) | N3—C1—H1C | 109.5 |
O3—S1—O2 | 110.1 (2) | H1A—C1—H1C | 109.5 |
O4—S1—O2 | 108.1 (2) | H1B—C1—H1C | 109.5 |
O3—S1—O1 | 109.5 (2) | N3—C2—H2A | 109.5 |
O4—S1—O1 | 109.3 (3) | N3—C2—H2B | 109.5 |
O2—S1—O1 | 110.2 (2) | H2A—C2—H2B | 109.5 |
Co—O5—H51 | 116 (4) | N3—C2—H2C | 109.5 |
Co—O5—H52 | 117 (5) | H2A—C2—H2C | 109.5 |
H51—O5—H52 | 108 (6) | H2B—C2—H2C | 109.5 |
Co—O6—H61 | 119 (5) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O2i | 0.82 (6) | 1.91 (6) | 2.724 (6) | 169 (5) |
O5—H52···O8 | 0.84 (7) | 1.97 (8) | 2.806 (7) | 171 (7) |
O6—H61···O3ii | 0.85 (7) | 1.85 (7) | 2.687 (6) | 173 (6) |
O6—H62···O1 | 0.69 (5) | 2.08 (5) | 2.740 (6) | 161 (6) |
O7—H71···O4iii | 0.74 (6) | 2.01 (6) | 2.740 (6) | 173 (6) |
O7—H72···O1iv | 0.72 (4) | 2.04 (4) | 2.756 (6) | 176 (5) |
O8—H81···O3iii | 0.71 (6) | 2.32 (6) | 2.975 (7) | 154 (7) |
O8—H82···O2v | 0.83 (6) | 2.02 (6) | 2.849 (6) | 169 (7) |
N3—H3A···O6iv | 0.90 | 2.63 | 3.265 (6) | 128 |
N3—H3B···O4vi | 0.90 | 2.00 | 2.823 (6) | 152 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, z; (v) −x+1/2, −y+1, z−1/2; (vi) x−1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O2i | 0.82 (6) | 1.91 (6) | 2.724 (6) | 169 (5) |
O5—H52···O8 | 0.84 (7) | 1.97 (8) | 2.806 (7) | 171 (7) |
O6—H61···O3ii | 0.85 (7) | 1.85 (7) | 2.687 (6) | 173 (6) |
O6—H62···O1 | 0.69 (5) | 2.08 (5) | 2.740 (6) | 161 (6) |
O7—H71···O4iii | 0.74 (6) | 2.01 (6) | 2.740 (6) | 173 (6) |
O7—H72···O1iv | 0.72 (4) | 2.04 (4) | 2.756 (6) | 176 (5) |
O8—H81···O3iii | 0.71 (6) | 2.32 (6) | 2.975 (7) | 154 (7) |
O8—H82···O2v | 0.83 (6) | 2.02 (6) | 2.849 (6) | 169 (7) |
N3—H3A···O6iv | 0.90 | 2.63 | 3.265 (6) | 127.8 |
N3—H3B···O4vi | 0.90 | 2.00 | 2.823 (6) | 151.5 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, z; (v) −x+1/2, −y+1, z−1/2; (vi) x−1/2, −y+1/2, −z+1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dowty, E. (2011). ATOMS. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA. Google Scholar
Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands. Google Scholar
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands. Google Scholar
Grimes, N. W., Kay, H. F. & Webb, M. W. (1963). Acta Cryst. 16, 823–829. CrossRef IUCr Journals Web of Science Google Scholar
Held, P. (2014). Acta Cryst. E70, 403–405. CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.