research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 357-359

Crystal structure of 9-methacryloylanthracene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Cleveland State University, Cleveland OH 44115, USA, bDepartment of Chemistry, University of Akron, Akron OH 44325, USA, and cDepartment of Chemistry, Youngstown State University, Youngstown OH 44555, USA
*Correspondence e-mail: j.masnovi@csuohio.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 September 2014; accepted 26 February 2015; online 11 March 2015)

In the title compound, C18H14O, with systematic name 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one, the ketonic C atom lies 0.2030 (16) Å out of the anthryl-ring-system plane. The dihedral angle between the planes of the anthryl and methacryloyl moieties is 88.30 (3)° and the stereochemistry about the Csp2—Csp2 bond in the side chain is transoid. In the crystal, the end rings of the anthryl units in adjacent mol­ecules associate in parallel–planar orientations [shortest centroid–centroid distance = 3.6320 (7) Å]. A weak hydrogen bond is observed between an aromatic H atom and the O atom of a mol­ecule displaced by translation in the a-axis direction, forming sheets of parallel-planar anthryl groups packing in this direction.

1. Chemical Context

Enolizable aldehydes react with formaldehyde in strong aqueous base to form polyols, whereas ketones usually react to form polyhy­droxy­ketones (Davidson & Bogert, 1935[Davidson, D. & Bogert, M. T. (1935). J. Am. Chem. Soc. 57, 905-905.]; Vik et al., 1973[Vik, J. E., Kierkegaard, C., Pappas, J., Skaarup, S., Aaltonen, R. & Swahn, C. G. (1973). Acta Chem. Scand. 27, 251-257.]; Weissermel & Arpe, 1997[Weissermel, K. & Arpe, H.-J. (1997). In Industrial Organic Chemistry. Weinheim: VCH Verlagsgeselshaft.]; Wittcoff et al., 2013[Wittcoff, H. A., Reuben, B. G. & Plotkin, J. S. (2013). In Industrial Organic Chemicals, 2nd ed. Hoboken, NJ: Wiley.]). Therefore, the observed methyl­ation of 9-acetyl­anthracene by formaldehyde with alcoholic potassium carbonate (see Scheme below) is remarkable in that the reaction occurs with weak base in a non-aqueous medium by reduction of formaldehyde to form the methyl group (Pande et al., 1998[Pande, P. P., Joshi, G. C. & Mathela, C. S. (1998). Synth. Commun. 28, 4193-4200.]). Consequently, we obtained an X-ray structure determination to confirm the identity of the isolated product, 9-methacryl­oylanthracene or 1-(9-anthr­yl)-2-methyl-2-propen-1-one.

[Scheme 1]

2. Structural commentary

The crystal structure (Fig. 1[link]) establishes the material to be the α-methyl­ated aldol condensation product. Bond distances and valence angles agree well between the observed and the calculated structures. The anthryl ring system is essentially planar, as is the methacryloyl substituent (excepting the hydrogen atoms of the methyl group), whereas the calculated structure shows a slight deviation, about 7°, of the methacryl­oyl skeleton from planarity. The substituted C atom (C9) of the anthryl group also lies in the plane of the substit­uent, deviating by only 0.002 (2) Å. However, this C atom is puckered, so that the carbonyl C atom resides 0.2030 (16) Å out of the anthryl plane. This puckering is absent in the calculated structure. The planes of the anthryl and methacryloyl moieties are nearly perpendicular with a dihedral angle of 88.30 (3)° (but about 12° from perpendicular in the calculated structure). This general orientation is demanded by the close intra­molecular approach of the methacryloyl group to the peri-H atoms (H1 and H8), but packing effects may also contribute to deciding the exact angle since that calculated for the energy minimum differs by about 10° from that observed. The observed positioning is not quite symmetrical, with C11 being slightly closer (0.018 Å) to H1 than to H8. Similar geometries are found in 9-acetyl­anthracene, with a dihedral angle of 88.70 (3)° (Andersson et al., 1984[Andersson, K., Becker, H. D., Engelhardt, L. M., Hansen, L. & White, A. H. (1984). Aust. J. Chem. 37, 1337-1340.]) and in 9-(bromo­acet­yl)anthracene, with a dihedral angle of 74.2 (1)° (Kubo et al., 2007[Kubo, K., Watanabe, K. & Sakurai, T. (2007). Acta Cryst. E63, o1300-o1301.]). Unfavorable non-bonded inter­actions in the present structure are likely the reason that the methyl group, which is bulkier than the methyl­ene group, projects away from the anthryl moiety, making the stereochemistry of the C11—C12 bond transoid. The puckering observed at C9 would partially relieve these unfavorable steric inter­actions occurring about this position.

[Figure 1]
Figure 1
ORTEP (30% probability elipsoids) plot of the title compound showing the atom-labeling scheme.

3. Supra­molecular_features

Inter­molecular close contacts between large aromatic groups in the solid state often involve ππ stacking inter­actions involving parallel planar associations (Główka et al., 1999[Główka, M. L., Martynowski, D. & Kozłowska, K. (1999). J. Mol. Struct. 474, 81-89.]). This motif is observed here as well, with the anthryl rings displaced and stacking alternately with those of neighboring mol­ecules (Fig. 2[link]). The centroid–centroid separations are 3.6320 (7) and 3.7532 (7) and 3.7807 (8) Å. The methacryloyl substituent prevents such inter­actions involving the central ring of the anthryl moiety. A weak hydrogen bond is observed (Fig. 3[link]) between an aromatic H atom (H3) and the O atom of a mol­ecule displaced by translation in the a-axis direction (Table 1[link]), resulting in the formation of anthryl groups packing in parallel-planar sheets in this direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Oi 0.95 2.48 3.3747 (16) 157
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
Views parallel to the planes of both the anthryl and the methacryloyl moieties (top) and parallel to the methacryloyl but perpendicular to the anthryl with H atoms omitted for clarity (bottom).
[Figure 3]
Figure 3
A fragment of a [100] hydrogen-bonded chain of mol­ecules in the crystal showing the intermolecular O⋯H close contact (dotted line).

4. Synthesis and crystallization

Refluxing 9-acetyl­anthracene (1.0 g), paraformaldehyde (273 mg), and potassium carbonate (942 mg) in 3.0 ml ethanol afforded 80 mg product which eluted first from an alumina column with 10% ethyl acetate–hexane and was crystallized from chloro­form–hexane in the form of colorless plates.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C-alkene and C-aromatic), and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C18H14O
Mr 246.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.7602 (5), 9.1784 (5), 9.2032 (5)
α, β, γ (°) 67.206 (2), 71.670 (3), 75.195 (2)
V3) 639.98 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.21 × 0.17 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 1997[Bruker (1997). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 12757, 2590, 2348
Rint 0.026
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.06
No. of reflections 2590
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.21
Computer programs: APEX2 and SAINT (Bruker, 1997[Bruker (1997). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

6. Calculations

Density-functional theoretical computations were performed using Gaussian software (Frisch et al., 2010[Frisch, M. J. et al. (2010). Gaussian 09. Revision C.01. Gaussian Inc., Wallingford, CT, USA.]) through the Ohio Supercomputing Center (in Columbus OH) with Zhao and Truhlar's hybrid meta exchange-correlation functional, M06-2X, (Choe, 2012[Choe, S. J. (2012). Bull. Korean Chem. Soc. 33, 2861-2866.]; Huh & Choe, 2010[Huh, D. S. & Choe, S. J. (2010). J. Porphyrins Phthalocyanines, 14, 592-604.]; Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]), which is parameterized for non-metallic systems with non-covalent ππ interactions for accurate modelling of intramolecular dispersion effects. The basis set used is 6-31+G(d). To obtain the geometry at the global minimum potential energy, optimization was based on the minimum-energy conformation from a two-torsion MM2 plot (ChemBio3D Ultra 12.0; www.CambridgeSoft.com) using rotations about the C9—C11 and C11—C12 single bonds. The M06-2X structure has all vibrational frequencies positive, verifying that it is at a potential-energy minimum. Calculated values for geometrical paramters in the optimized isolated molecule are given in the Supporting information.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(Anthracen-9-yl)-2-methylprop-2-en-1-one top
Crystal data top
C18H14OZ = 2
Mr = 246.29F(000) = 260
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7602 (5) ÅCell parameters from 9953 reflections
b = 9.1784 (5) Åθ = 2.5–28.4°
c = 9.2032 (5) ŵ = 0.08 mm1
α = 67.206 (2)°T = 100 K
β = 71.670 (3)°Plate, colourless
γ = 75.195 (2)°0.21 × 0.17 × 0.05 mm
V = 639.98 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2590 independent reflections
Radiation source: fine-focus sealed tube2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.984, Tmax = 0.996k = 1111
12757 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.2652P]
where P = (Fo2 + 2Fc2)/3
2590 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.88771 (10)0.57102 (9)0.67719 (10)0.0221 (2)
C10.49492 (14)0.63847 (13)0.64670 (14)0.0176 (2)
C20.35652 (15)0.59642 (13)0.64748 (15)0.0203 (3)
C30.21748 (14)0.59128 (14)0.77952 (15)0.0214 (3)
C40.22034 (14)0.63126 (13)0.90640 (14)0.0202 (3)
C4a0.36214 (13)0.67831 (13)0.91022 (14)0.0164 (2)
C50.51116 (15)0.80977 (14)1.17279 (14)0.0206 (3)
C60.64792 (16)0.85245 (14)1.17433 (14)0.0229 (3)
C70.78992 (15)0.85161 (14)1.04616 (15)0.0223 (3)
C80.79096 (14)0.80876 (13)0.91974 (14)0.0183 (3)
C8a0.64945 (13)0.76406 (12)0.91228 (13)0.0153 (2)
C90.64571 (13)0.71974 (12)0.78388 (13)0.0148 (2)
C9a0.50386 (13)0.67960 (12)0.77832 (13)0.0152 (2)
C100.36743 (14)0.71921 (13)1.03939 (13)0.0179 (3)
C10a0.50634 (14)0.76402 (13)1.04251 (13)0.0166 (2)
C110.80055 (13)0.70042 (13)0.65638 (13)0.0150 (2)
C120.84479 (14)0.83810 (13)0.50679 (13)0.0178 (2)
C130.74810 (16)0.97827 (14)0.48462 (15)0.0242 (3)
C141.00033 (15)0.80523 (15)0.38767 (15)0.0264 (3)
H10.58690.64050.55750.021*
H20.35280.57010.55860.024*
H30.12230.55990.77930.026*
H40.12650.62780.99390.024*
H50.41720.81031.25960.025*
H60.64860.88301.26160.027*
H70.88510.88121.04870.027*
H80.88710.80860.83530.022*
H100.27410.71641.12730.022*
H13A0.65050.99060.56440.029*
H13B0.77651.06620.38900.029*
H14A1.01550.90090.29100.040*
H14B0.99500.71640.35640.040*
H14C1.09200.77700.43790.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0204 (4)0.0189 (4)0.0224 (4)0.0011 (3)0.0021 (3)0.0070 (3)
C10.0187 (5)0.0149 (5)0.0175 (5)0.0013 (4)0.0045 (4)0.0042 (4)
C20.0244 (6)0.0157 (5)0.0228 (6)0.0011 (4)0.0109 (5)0.0057 (4)
C30.0177 (6)0.0166 (5)0.0285 (6)0.0039 (4)0.0105 (5)0.0015 (5)
C40.0148 (5)0.0174 (5)0.0218 (6)0.0025 (4)0.0032 (4)0.0007 (4)
C4a0.0153 (5)0.0118 (5)0.0171 (5)0.0006 (4)0.0038 (4)0.0007 (4)
C50.0265 (6)0.0168 (5)0.0146 (5)0.0013 (5)0.0018 (5)0.0050 (4)
C60.0351 (7)0.0191 (6)0.0170 (6)0.0030 (5)0.0085 (5)0.0076 (5)
C70.0264 (6)0.0193 (6)0.0241 (6)0.0051 (5)0.0101 (5)0.0063 (5)
C80.0184 (6)0.0168 (5)0.0188 (6)0.0025 (4)0.0038 (4)0.0057 (4)
C8a0.0173 (5)0.0116 (5)0.0149 (5)0.0007 (4)0.0040 (4)0.0030 (4)
C90.0158 (5)0.0112 (5)0.0141 (5)0.0009 (4)0.0030 (4)0.0018 (4)
C9a0.0159 (5)0.0109 (5)0.0155 (5)0.0004 (4)0.0042 (4)0.0018 (4)
C100.0166 (5)0.0153 (5)0.0146 (5)0.0002 (4)0.0004 (4)0.0021 (4)
C10a0.0201 (6)0.0122 (5)0.0136 (5)0.0000 (4)0.0031 (4)0.0025 (4)
C110.0146 (5)0.0180 (5)0.0155 (5)0.0037 (4)0.0041 (4)0.0076 (4)
C120.0193 (6)0.0200 (6)0.0154 (5)0.0071 (4)0.0017 (4)0.0068 (4)
C130.0299 (6)0.0190 (6)0.0189 (6)0.0054 (5)0.0016 (5)0.0037 (5)
C140.0249 (6)0.0269 (6)0.0215 (6)0.0077 (5)0.0039 (5)0.0070 (5)
Geometric parameters (Å, º) top
O—C111.2176 (13)C9—C8a1.4024 (15)
C1—C21.3603 (17)C9—C9a1.4040 (16)
C1—H10.9500C9—C111.5117 (14)
C2—C31.4201 (17)C9a—C11.4300 (16)
C2—H20.9500C9a—C4a1.4365 (15)
C3—C41.3615 (17)C10—C10a1.3920 (17)
C3—H30.9500C10—H100.9500
C4—C4a1.4297 (16)C10a—C51.4307 (16)
C4—H40.9500C10a—C8a1.4363 (15)
C4a—C101.3948 (16)C11—C121.4864 (15)
C5—C61.3579 (18)C12—C131.3277 (17)
C5—H50.9500C12—C141.5020 (16)
C6—C71.4207 (17)C13—H13A0.9500
C6—H60.9500C13—H13B0.9500
C7—C81.3618 (16)C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
C8—C8a1.4301 (16)C14—H14C0.9800
C8—H80.9500
C1—C9a—C4a118.42 (10)C9—C8a—C10a119.11 (10)
C2—C1—C9a120.88 (11)C8—C8a—C10a118.27 (10)
C2—C1—H1119.6C8a—C9—C9a121.28 (10)
C9a—C1—H1119.6C8a—C9—C11119.66 (10)
C1—C2—C3120.84 (11)C9a—C9—C11118.84 (10)
C1—C2—H2119.6C9—C9a—C1122.57 (10)
C3—C2—H2119.6C9—C9a—C4a119.02 (10)
C4—C3—C2120.12 (11)C10a—C10—C4a121.54 (10)
C4—C3—H3119.9C10a—C10—H10119.2
C2—C3—H3119.9C4a—C10—H10119.2
C3—C4—C4a121.14 (11)C10—C10a—C5121.77 (10)
C3—C4—H4119.4C10—C10a—C8a119.51 (10)
C4a—C4—H4119.4C5—C10a—C8a118.72 (11)
C10—C4a—C4121.93 (10)O—C11—C12120.54 (10)
C10—C4a—C9a119.49 (10)O—C11—C9119.34 (10)
C4—C4a—C9a118.57 (10)C12—C11—C9120.11 (9)
C6—C5—C10a121.02 (11)C13—C12—C11120.05 (10)
C6—C5—H5119.5C13—C12—C14124.29 (11)
C10a—C5—H5119.5C11—C12—C14115.66 (10)
C5—C6—C7120.35 (11)C12—C13—H13A120.0
C5—C6—H6119.8C12—C13—H13B120.0
C7—C6—H6119.8H13A—C13—H13B120.0
C8—C7—C6120.66 (11)C12—C14—H14A109.5
C8—C7—H7119.7C12—C14—H14B109.5
C6—C7—H7119.7H14A—C14—H14B109.5
C7—C8—C8a120.98 (11)C12—C14—H14C109.5
C7—C8—H8119.5H14A—C14—H14C109.5
C8a—C8—H8119.5H14B—C14—H14C109.5
C9—C8a—C8122.61 (10)
C9a—C1—C2—C30.39 (17)C9a—C9—C11—O85.73 (13)
C1—C2—C3—C41.10 (17)C8a—C9—C11—C1291.47 (12)
C2—C3—C4—C4a0.25 (17)C9a—C9—C11—C1293.86 (12)
C3—C4—C4a—C10179.81 (10)C9—C9a—C1—C2178.37 (10)
C3—C4—C4a—C9a1.24 (16)C4a—C9a—C1—C21.12 (16)
C4—C4a—C10—C10a179.63 (10)C9—C9a—C4a—C100.99 (15)
C9a—C4a—C10—C10a1.08 (16)C1—C9a—C4a—C10179.50 (10)
C10a—C5—C6—C70.34 (18)C9—C9a—C4a—C4177.61 (9)
C5—C6—C7—C80.28 (18)C1—C9a—C4a—C41.90 (15)
C6—C7—C8—C8a0.20 (18)C4a—C10—C10a—C5178.48 (10)
C7—C8—C8a—C9179.79 (10)C4a—C10—C10a—C8a1.78 (16)
C7—C8—C8a—C10a0.58 (16)C10—C10a—C5—C6179.69 (10)
C9a—C9—C8a—C8178.68 (9)C8a—C10a—C5—C60.05 (17)
C11—C9—C8a—C86.78 (16)C10—C10a—C8a—C90.39 (16)
C9a—C9—C8a—C10a1.70 (16)C5—C10a—C8a—C9179.85 (9)
C11—C9—C8a—C10a172.84 (9)C10—C10a—C8a—C8179.25 (10)
C8a—C9—C9a—C1178.13 (9)C5—C10a—C8a—C80.51 (15)
C11—C9—C9a—C17.29 (16)O—C11—C12—C13179.37 (11)
C8a—C9—C9a—C4a2.38 (16)C9—C11—C12—C130.21 (16)
C11—C9—C9a—C4a172.20 (9)O—C11—C12—C140.10 (15)
C8a—C9—C11—O88.94 (13)C9—C11—C12—C14179.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Oi0.952.483.3747 (16)157
Symmetry code: (i) x1, y, z.
Geometric parameters (Å, °) top
Calculated values using RM06-2X/6-31+G(d) for optimized isolated molecule given in square brackets
O—C111.2176 (13)[1.217]
C1—C21.3603 (17)[1.365]
C1—H10.9500[1.086]
C2—C31.4201 (17)[1.428]
C2—H20.9500[1.086]
C3—C41.3615 (17)[1.364]
C3—H30.9500[1.086]
C4—C4a1.4297 (16)[1.432]
C4—H40.9500[1.087]
C4a—C101.3948 (16)[1.396]
C5—C61.3579 (18)[1.364]
C5—H50.9500[1.087]
C6—C71.4207 (17)[1.428]
C6—H60.9500[1.086]
C7—C81.3618 (16)[1.365]
C7—H70.9500[1.086]
C8—C8a1.4301 (16)[1.434]
C8—H80.9500[1.087]
C9—C8a1.4024 (15)[1.404]
C9—C9a1.4040 (16)[1.404]
C9—C111.5117 (14)[1.509]
C9a—C11.4300 (16)[1.434]
C9a—C4a1.4365 (15)[1.437]
C10—C10a1.3920 (17)[1.396]
C10—H100.9500[1.089]
C10a—C51.4307 (16)[1.432]
C10a—C8a1.4363 (15)[1.436]
C11—C121.4864 (15)[1.497]
C12—C131.3277 (17)[1.339]
C12—C141.5020 (16)[1.502]
C13—H13A0.9500[1.087]
C13—H13B0.9500[1.087]
C14—H14A0.9500[1.093]
C14—H14B0.9500[1.095]
C14—H14C0.9500[1.095]
C2—C1—C9a120.88 (11)[120.8]
C2—C1—H1119.6[120.0]
C9a—C1—H1119.6[119.1]
C1—C2—C3120.84 (11)[120.8]
C1—C2—H2119.6[119.9]
C3—C2—H2119.6[119.4]
C2—C3—C4120.12 (11)[120.2]
C2—C3—H3119.9[119.5]
C4—C3—H3119.9[120.3]
C3—C4—C4a121.14 (11)[120.9]
C3—C4—H4119.4[120.8]
C4a—C4—H4119.4[118.3]
C10—C4a—C4121.93 (10)[121.6]
C10—C4a—C9a119.49 (10)[119.5]
C4—C4a—C9a118.57 (10)[119.0]
C6—C5—C10a121.02 (11)[120.9]
C6—C5—H5119.5[120.8]
C10a—C5—H5119.5[118.3]
C5—C6—C7120.35 (11)[120.2]
C5—C6—H6119.8[120.3]
C7—C6—H6119.8[119.5]
C6—C7—C8120.66 (11)[120.7]
C6—C7—H7119.7[119.4]
C8—C7—H7119.7[119.9]
C7—C8—C8a120.98 (11)[120.9]
C7—C8—H8119.5[119.9]
C8a—C8—H8119.5[119.2]
C8—C8a—C9122.61 (10)[122.5]
C8—C8a—C10a118.27 (10)[118.3]
C9—C8a—C10a119.11 (10)[119.2]
C8a—C9—C9a121.28 (10)[121.2]
C8a—C9—C11119.66 (10)[119.7]
C9a—C9—C11118.84 (10)[119.0]
C1—C9a—C4a118.42 (10)[118.4]
C1—C9a—C9122.57 (10)[122.5]
C4a—C9a—C9119.02 (10)[119.1]
C4a—C10—C10a121.54 (10)[121.5]
C4a—C10—H10119.2[119.2]
C10a—C10—H10119.2[119.2]
C5—C10a—C10121.77 (10)[121.6]
C8a—C10a—C10119.51 (10)[119.4]
C5—C10a—C8a118.72 (11)[119.0]
O—C11—C9119.34 (10)[120.5]
O—C11—C12120.54 (10)[120.2]
C9—C11—C12120.11 (9)[119.3]
C11—C12—C13120.05 (10)[120.4]
C11—C12—C14115.66 (10)[115.4]
C13—C12—C14124.29 (11)[124.2]
C12—C13—H13A120.0[121.8]
C12—C13—H13B120.0[121.0]
H13A—C13—H13B120.0[117.2]
C12—C14—H14A109.5[110.9]
C12—C14—H14B109.5[110.6]
C12—C14—H14C109.5[110.6]
H14A—C14—H14B109.5[109.2]
H14A—C14—H14C109.5[109.1]
H14B—C14—H14C109.5[106.5]
C9a—C1—C2—C3-0.39 (17)[-0.1]
C1—C2—C3—C41.10 (17)[-0.1]
C2—C3—C4—C4a-0.25 (17)[0.2]
C3—C4—C4a—C10-179.81 (10)[179.7]
C3—C4—C4a—C9a-1.24 (16)[-0.2]
C4—C4a—C10—C10a179.63 (10)[-179.9]
C9a—C4a—C10—C10a1.08 (16)[0.0]
C10a—C5—C6—C7-0.34 (18)[-0.2]
C5—C6—C7—C80.28 (18)[0.3]
C6—C7—C8—C8a0.20 (18)[0.0]
C7—C8—C8a—C9179.79 (10)[-179.9]
C7—C8—C8a—C10a-0.58 (16)[-0.3]
C9a—C9—C8a—C8-178.68 (9)[179.0]
C11—C9—C8a—C86.78 (16)[0.2]
C9a—C9—C8a—C10a1.70 (16)[-0.6]
C11—C9—C8a—C10a-172.84 (9)[-179.4]
C8a—C9—C9a—C1178.13 (9)[-179.8]
C11—C9—C9a—C1-7.29 (16)[-1.1]
C8a—C9—C9a—C4a-2.38 (16)[1.1]
C11—C9—C9a—C4a172.20 (9)[179.8]
C8a—C9—C11—O88.94 (13)[102.3]
C9a—C9—C11—O-85.73 (13)[-76.5]
C8a—C9—C11—C12-91.47 (12)[-78.8]
C9a—C9—C11—C1293.86 (12)[102.4]
C9—C9a—C1—C2178.37 (10)[-179.0]
C4a—C9a—C1—C2-1.12 (16)[0.1]
C9—C9a—C4a—C100.99 (15)[-0.7]
C1—C9a—C4a—C10-179.50 (10)[-179.9]
C9—C9a—C4a—C4-177.61 (9)[179.1]
C1—C9a—C4a—C41.90 (15)[0.0]
C4a—C10—C10a—C5178.48 (10)[-179.7]
C4a—C10—C10a—C8a-1.78 (16)[0.4]
C10—C10a—C5—C6179.69 (10)[180.0]
C8a—C10a—C5—C6-0.05 (17)[-0.1]
C10—C10a—C8a—C90.39 (16)[-0.1]
C5—C10a—C8a—C9-179.85 (9)[180.0]
C10—C10a—C8a—C8-179.25 (10)[-179.7]
C5—C10a—C8a—C80.51 (15)[0.4]
O—C11—C12—C13179.37 (11)[172.7]
C9—C11—C12—C13-0.21 (16)[-6.1]
O—C11—C12—C140.10 (15)[-5.8]
C9—C11—C12—C14-179.48 (10)[175.3]

Acknowledgements

The authors would like to thank the Graduate College and Chemistry Department at Cleveland State University for support, the Ohio Supercomputing Center for a grant of computer time, and the National Science Foundation (CHE-0840446) for funds used to purchase the Bruker APEXII DUO X-ray diffractometer used in this research.

References

First citationAndersson, K., Becker, H. D., Engelhardt, L. M., Hansen, L. & White, A. H. (1984). Aust. J. Chem. 37, 1337–1340.  CAS Google Scholar
First citationBruker (1997). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoe, S. J. (2012). Bull. Korean Chem. Soc. 33, 2861–2866.  Web of Science CrossRef CAS Google Scholar
First citationDavidson, D. & Bogert, M. T. (1935). J. Am. Chem. Soc. 57, 905–905.  CrossRef CAS Google Scholar
First citationFrisch, M. J. et al. (2010). Gaussian 09. Revision C.01. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGłówka, M. L., Martynowski, D. & Kozłowska, K. (1999). J. Mol. Struct. 474, 81–89.  Google Scholar
First citationHuh, D. S. & Choe, S. J. (2010). J. Porphyrins Phthalocyanines, 14, 592–604.  Web of Science CrossRef CAS Google Scholar
First citationKubo, K., Watanabe, K. & Sakurai, T. (2007). Acta Cryst. E63, o1300–o1301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPande, P. P., Joshi, G. C. & Mathela, C. S. (1998). Synth. Commun. 28, 4193–4200.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVik, J. E., Kierkegaard, C., Pappas, J., Skaarup, S., Aaltonen, R. & Swahn, C. G. (1973). Acta Chem. Scand. 27, 251–257.  CrossRef CAS Web of Science Google Scholar
First citationWeissermel, K. & Arpe, H.-J. (1997). In Industrial Organic Chemistry. Weinheim: VCH Verlagsgeselshaft.  Google Scholar
First citationWittcoff, H. A., Reuben, B. G. & Plotkin, J. S. (2013). In Industrial Organic Chemicals, 2nd ed. Hoboken, NJ: Wiley.  Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 357-359
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds