organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (5′S,8′S)-3-(2,5-di­methyl­phen­yl)-8-meth­­oxy-3-nitro-1-aza­spiro­[4.5]decane-2,4-dione

CROSSMARK_Color_square_no_text.svg

aMedical College, Quzhou College of Technology, Quzhou 324000, People's Republic of China
*Correspondence e-mail: jiangly1205@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 December 2014; accepted 7 March 2015; online 14 March 2015)

The title compound, C18H22N2O5, was synthesized by nitrification of its enol precursor. The pyrrolidine ring plane adopts a twisted conformation about the C—C bond linking the spiro centre and the C=O group remote from the N atom. It makes dihedral angles of 71.69 (9) and 88.92 (9)°, respectively, with the benzene ring plane and the plane defined by the four C atoms that form the seat of the of the cyclo­hexane chair. At the spiro centre, the NH group is axial and the C=O group is equatorial with respect to the cyclo­hexane ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are linked by C—H⋯O inter­actions, generating a three-dimensional network.

1. Related literature

For the pesticide spiro­tetra­mat, the central unit of the title compound, see: Fischer & Weiss (2008[Fischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61(2), 127-140.]); Maus (2008[Maus, C. (2008). Bayer CropSci. J. 61, 159-180.]); Bruck et al. (2009[Brück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Klueken, A. M., Nauen, R., Niebes, J. F., Reckmann, U., Schnorbach, H. J., Steffens, R. & van Waetermeulen, X. (2009). Crop Prot. 28, 838-844.]); Campbell et al. (1985[Campbell, A. C., Maidment, M. S., Pick, J. H. & Stevenson, D. F. M. (1985). J. Chem. Soc. Perkin Trans. 1, p. 1567.]); Schobert & Schlenk (2008[Schobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203-4221.]). For structures of spiro­tetra­mat derivatives, see: Fischer et al. (2010[Fischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H22N2O5

  • Mr = 346.38

  • Monoclinic, P 21 /c

  • a = 9.5707 (9) Å

  • b = 8.4181 (7) Å

  • c = 22.8720 (19) Å

  • β = 100.703 (8)°

  • V = 1810.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.36 × 0.32 × 0.23 mm

2.2. Data collection

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) Tmin = 0.954, Tmax = 1.000

  • 6891 measured reflections

  • 3308 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.139

  • S = 1.04

  • 3308 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.88 2.02 2.8853 (19) 167
C4—H4⋯O5ii 0.95 2.57 3.287 (3) 132
C7—H7B⋯O1iii 0.98 2.49 3.454 (3) 168
C14—H14B⋯O2iv 0.99 2.54 3.265 (3) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Spirotetramat is a new systemic insecticide which chemically belongs to the class of spirocyclic tetramic acid derivatives and be developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms make spirocyclic tetronic acid compounds as a new tool for integrated pest management (Bruck et al., 2009; Campbell et al.,1985; Schobert et al., 2008) In order to study the influence of new substituents on the activity of the Spirotetramat derivative, the title compound, has been synthesized and its structure has been determined (Fig. 1). The molecule contains one benzene ring, one six membered ring, and one five membered ring. The cyclohexane ring adopts a chair conformation;the C13, C14, C16 and C17 atoms are on one plane with C15 and C11 deviating by 0.658 (5)and -0.676 (9) Å, respectively. There are three planes in the molecule: atoms of C10, C11, C12 and N2 generate the pyrrolidine plane (I), C1—C6 yield the benzene plane (II) and C13—C14 and C16—C17 form the cyclohexane plane(III). The angle between planes I and II is 71.69 (9) °, and that between planes I and III is 88.92 (9) °. The space arrangement might result from the space factor between groups.

Related literature top

For the pesticide spirotetramat, the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008); Bruck et al. (2009); Campbell et al. (1985); Schobert & Schlenk (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010).

Experimental top

A solution of fuming nitric acid (0.92 g, 16mmoL) in anhydrous chloroform (10 ml) was added dropwise to a solution of compound 2 (1.78 g, 5.9mmoL) in anhydrous chloroform (20 ml) at 0 degree and stirred for 2 h. The reaction mixture was then washed with ice water (15 ml), and saturated sodium chloride solution and dried over anhydrous Na2SO4. The solvent was evaporated, and the residual solid was crystallized from ethanol to afford 1.84 g compound 3 as a pale yellow solid: yield 90%. The 1H NMR, 13 C-NMR and ESI-MS data testified the title compound's structure. ESI-MS: 347 (M+H)+ (100%); 1H NMR (500 MHz, CDCl3): 7.48 (s, 1H, –NH–),7.55 (s, 1H, Ph—H), 7.14 (d, 1H, Ph—H), 7.07 (d, 1H, Ph—H), 3.54 (s, 3H, –OCH3), 3.34–3.33 (m, 1H, –CH—O—C–), 2.36 (s, 3H, Ph—Me), 2.27 (s, 3H, Ph—Me), 2.12–2.07 (m, 4H, Cyclohexane-H4), 1.99–1.56 (m, 4H, Cyclohexane-H4); 13 C-NMR (100 MHz, CDCl3): 199.9, 165.1, 136.7, 136.0, 133.2, 131.5, 129.7, 127.4, 95.8, 76.8, 75.6, 66.1, 55.7, 32.5, 31.5, 26.4, 26.3, 21.0, 20.3.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Spirotetramat is a new systemic insecticide which chemically belongs to the class of spirocyclic tetramic acid derivatives and be developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms make spirocyclic tetronic acid compounds as a new tool for integrated pest management (Bruck et al., 2009; Campbell et al.,1985; Schobert et al., 2008) In order to study the influence of new substituents on the activity of the Spirotetramat derivative, the title compound, has been synthesized and its structure has been determined (Fig. 1). The molecule contains one benzene ring, one six membered ring, and one five membered ring. The cyclohexane ring adopts a chair conformation;the C13, C14, C16 and C17 atoms are on one plane with C15 and C11 deviating by 0.658 (5)and -0.676 (9) Å, respectively. There are three planes in the molecule: atoms of C10, C11, C12 and N2 generate the pyrrolidine plane (I), C1—C6 yield the benzene plane (II) and C13—C14 and C16—C17 form the cyclohexane plane(III). The angle between planes I and II is 71.69 (9) °, and that between planes I and III is 88.92 (9) °. The space arrangement might result from the space factor between groups.

For the pesticide spirotetramat, the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008); Bruck et al. (2009); Campbell et al. (1985); Schobert & Schlenk (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule, showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Reaction scheme.
(5'S,8'S)-3-(2,5-Dimethylphenyl)-8-methoxy-3-nitro-1-azaspiro[4.5]decane-2,4-dione top
Crystal data top
C18H22N2O5F(000) = 736
Mr = 346.38Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5707 (9) ÅCell parameters from 2205 reflections
b = 8.4181 (7) Åθ = 3.2–29.5°
c = 22.8720 (19) ŵ = 0.09 mm1
β = 100.703 (8)°T = 170 K
V = 1810.7 (3) Å3Block, colourless
Z = 40.36 × 0.32 × 0.23 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3308 independent reflections
Radiation source: Enhance (Mo) X-ray Source2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.3°
ω scansh = 117
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 810
Tmin = 0.954, Tmax = 1.000l = 2227
6891 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.8521P]
where P = (Fo2 + 2Fc2)/3
3308 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C18H22N2O5V = 1810.7 (3) Å3
Mr = 346.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5707 (9) ŵ = 0.09 mm1
b = 8.4181 (7) ÅT = 170 K
c = 22.8720 (19) Å0.36 × 0.32 × 0.23 mm
β = 100.703 (8)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3308 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2600 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 1.000Rint = 0.034
6891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
3308 reflectionsΔρmin = 0.31 e Å3
229 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18294 (17)1.31285 (17)0.34437 (6)0.0406 (4)
O20.09810 (17)1.2327 (2)0.42014 (7)0.0500 (5)
O30.44250 (14)1.14145 (16)0.43813 (5)0.0295 (3)
O40.00240 (16)0.9051 (2)0.37430 (8)0.0579 (5)
O50.32239 (19)0.4533 (2)0.56929 (7)0.0558 (5)
N10.16126 (17)1.2114 (2)0.37880 (7)0.0281 (4)
N20.33749 (16)0.90936 (19)0.45886 (6)0.0245 (4)
H20.40570.87900.48800.029*
C10.2650 (2)1.0141 (2)0.31529 (8)0.0277 (4)
C20.1642 (2)1.0202 (3)0.26206 (9)0.0381 (5)
C30.2143 (3)0.9836 (3)0.21029 (10)0.0558 (7)
H30.14910.98590.17350.067*
C40.3526 (3)0.9447 (3)0.20978 (11)0.0612 (8)
H40.38010.91870.17310.073*
C50.4534 (3)0.9422 (3)0.26167 (10)0.0483 (6)
C60.4058 (2)0.9761 (2)0.31421 (9)0.0342 (5)
H60.47210.97320.35070.041*
C70.0114 (3)1.0702 (3)0.25703 (10)0.0509 (7)
H7A0.01251.07610.29680.076*
H7B0.05050.99240.23300.076*
H7C0.00241.17470.23790.076*
C80.6086 (3)0.9084 (4)0.26190 (13)0.0732 (9)
H8A0.62630.79410.26710.110*
H8B0.66740.96630.29470.110*
H8C0.63270.94280.22410.110*
C90.22283 (19)1.0470 (2)0.37501 (8)0.0237 (4)
C100.1216 (2)0.9211 (2)0.39383 (8)0.0305 (5)
C110.20633 (19)0.8179 (2)0.44258 (8)0.0258 (4)
C120.34921 (19)1.0401 (2)0.42782 (8)0.0228 (4)
C130.1293 (2)0.8034 (3)0.49537 (9)0.0346 (5)
H13A0.11770.91040.51180.042*
H13B0.03340.75820.48150.042*
C140.2111 (2)0.6980 (3)0.54417 (9)0.0374 (5)
H14A0.30250.74940.56130.045*
H14B0.15550.68570.57630.045*
C150.2394 (2)0.5373 (3)0.52057 (9)0.0384 (5)
H150.14700.48060.50740.046*
C160.3164 (2)0.5505 (2)0.46846 (9)0.0349 (5)
H16A0.32960.44300.45270.042*
H16B0.41170.59740.48230.042*
C170.2336 (2)0.6532 (2)0.41893 (9)0.0328 (5)
H17A0.14170.60150.40260.039*
H17B0.28820.66350.38640.039*
C180.3060 (3)0.2894 (3)0.56796 (12)0.0524 (7)
H18A0.33020.24750.53110.079*
H18B0.20710.26270.56960.079*
H18C0.36910.24240.60230.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (10)0.0297 (8)0.0332 (8)0.0042 (7)0.0051 (7)0.0052 (7)
O20.0483 (10)0.0597 (11)0.0476 (9)0.0133 (8)0.0233 (8)0.0020 (8)
O30.0273 (7)0.0311 (7)0.0276 (7)0.0056 (6)0.0009 (5)0.0041 (6)
O40.0303 (9)0.0716 (12)0.0634 (11)0.0161 (8)0.0136 (8)0.0371 (10)
O50.0640 (12)0.0480 (10)0.0476 (10)0.0009 (8)0.0099 (8)0.0225 (8)
N10.0251 (9)0.0339 (10)0.0245 (8)0.0026 (7)0.0021 (7)0.0004 (8)
N20.0227 (8)0.0274 (9)0.0214 (8)0.0010 (7)0.0009 (6)0.0055 (7)
C10.0367 (11)0.0236 (10)0.0228 (9)0.0002 (8)0.0052 (8)0.0010 (8)
C20.0505 (14)0.0352 (12)0.0253 (10)0.0028 (10)0.0015 (9)0.0014 (9)
C30.084 (2)0.0578 (16)0.0226 (11)0.0047 (15)0.0014 (11)0.0071 (11)
C40.093 (2)0.0641 (18)0.0323 (13)0.0112 (16)0.0262 (14)0.0061 (12)
C50.0671 (17)0.0443 (14)0.0393 (13)0.0146 (12)0.0247 (12)0.0037 (11)
C60.0424 (12)0.0349 (11)0.0267 (10)0.0065 (10)0.0106 (9)0.0048 (9)
C70.0493 (15)0.0596 (16)0.0350 (12)0.0003 (12)0.0145 (10)0.0009 (12)
C80.076 (2)0.089 (2)0.0660 (18)0.0305 (18)0.0426 (16)0.0096 (17)
C90.0233 (10)0.0254 (10)0.0212 (9)0.0009 (8)0.0009 (7)0.0036 (8)
C100.0258 (11)0.0363 (11)0.0275 (10)0.0049 (9)0.0003 (8)0.0060 (9)
C110.0215 (10)0.0308 (10)0.0237 (9)0.0033 (8)0.0011 (7)0.0057 (8)
C120.0207 (9)0.0286 (10)0.0192 (9)0.0010 (8)0.0039 (7)0.0007 (8)
C130.0297 (11)0.0420 (12)0.0340 (11)0.0025 (9)0.0106 (9)0.0106 (10)
C140.0338 (12)0.0508 (14)0.0294 (11)0.0028 (10)0.0108 (9)0.0135 (10)
C150.0332 (12)0.0409 (13)0.0367 (11)0.0065 (10)0.0047 (9)0.0161 (10)
C160.0354 (12)0.0279 (11)0.0381 (12)0.0004 (9)0.0021 (9)0.0013 (9)
C170.0348 (12)0.0326 (11)0.0289 (10)0.0060 (9)0.0000 (8)0.0008 (9)
C180.0645 (17)0.0363 (13)0.0544 (15)0.0038 (12)0.0059 (12)0.0190 (12)
Geometric parameters (Å, º) top
O1—N11.206 (2)C8—H8A0.9800
O2—N11.226 (2)C8—H8B0.9800
O3—C121.226 (2)C8—H8C0.9800
O4—C101.195 (2)C9—C101.550 (3)
O5—C151.430 (2)C9—C121.544 (2)
O5—C181.388 (3)C10—C111.523 (3)
N1—C91.513 (2)C11—C131.532 (3)
N2—H20.8800C11—C171.529 (3)
N2—C111.461 (2)C13—H13A0.9900
N2—C121.325 (2)C13—H13B0.9900
C1—C21.407 (3)C13—C141.523 (3)
C1—C61.390 (3)C14—H14A0.9900
C1—C91.520 (3)C14—H14B0.9900
C2—C31.392 (3)C14—C151.500 (3)
C2—C71.506 (3)C15—H151.0000
C3—H30.9500C15—C161.518 (3)
C3—C41.366 (4)C16—H16A0.9900
C4—H40.9500C16—H16B0.9900
C4—C51.384 (4)C16—C171.525 (3)
C5—C61.391 (3)C17—H17A0.9900
C5—C81.511 (4)C17—H17B0.9900
C6—H60.9500C18—H18A0.9800
C7—H7A0.9800C18—H18B0.9800
C7—H7B0.9800C18—H18C0.9800
C7—H7C0.9800
C18—O5—C15115.49 (19)N2—C11—C10101.63 (15)
O1—N1—O2124.68 (18)N2—C11—C13110.96 (15)
O1—N1—C9119.64 (15)N2—C11—C17111.93 (15)
O2—N1—C9115.55 (16)C10—C11—C13110.73 (16)
C11—N2—H2121.5C10—C11—C17111.17 (15)
C12—N2—H2121.5C17—C11—C13110.18 (16)
C12—N2—C11117.08 (15)O3—C12—N2127.30 (17)
C2—C1—C9121.12 (18)O3—C12—C9124.13 (16)
C6—C1—C2120.31 (18)N2—C12—C9108.57 (15)
C6—C1—C9118.57 (17)C11—C13—H13A109.3
C1—C2—C7125.23 (19)C11—C13—H13B109.3
C3—C2—C1116.0 (2)H13A—C13—H13B108.0
C3—C2—C7118.7 (2)C14—C13—C11111.56 (16)
C2—C3—H3118.4C14—C13—H13A109.3
C4—C3—C2123.2 (2)C14—C13—H13B109.3
C4—C3—H3118.4C13—C14—H14A109.4
C3—C4—H4119.4C13—C14—H14B109.4
C3—C4—C5121.2 (2)H14A—C14—H14B108.0
C5—C4—H4119.4C15—C14—C13111.35 (17)
C4—C5—C6116.8 (2)C15—C14—H14A109.4
C4—C5—C8122.3 (2)C15—C14—H14B109.4
C6—C5—C8121.0 (2)O5—C15—C14106.08 (17)
C1—C6—C5122.4 (2)O5—C15—H15109.3
C1—C6—H6118.8O5—C15—C16111.55 (18)
C5—C6—H6118.8C14—C15—H15109.3
C2—C7—H7A109.5C14—C15—C16111.32 (17)
C2—C7—H7B109.5C16—C15—H15109.3
C2—C7—H7C109.5C15—C16—H16A109.4
H7A—C7—H7B109.5C15—C16—H16B109.4
H7A—C7—H7C109.5C15—C16—C17111.29 (18)
H7B—C7—H7C109.5H16A—C16—H16B108.0
C5—C8—H8A109.5C17—C16—H16A109.4
C5—C8—H8B109.5C17—C16—H16B109.4
C5—C8—H8C109.5C11—C17—H17A109.5
H8A—C8—H8B109.5C11—C17—H17B109.5
H8A—C8—H8C109.5C16—C17—C11110.53 (16)
H8B—C8—H8C109.5C16—C17—H17A109.5
N1—C9—C1112.92 (15)C16—C17—H17B109.5
N1—C9—C10109.82 (15)H17A—C17—H17B108.1
N1—C9—C12104.28 (14)O5—C18—H18A109.5
C1—C9—C10114.16 (16)O5—C18—H18B109.5
C1—C9—C12113.32 (15)O5—C18—H18C109.5
C12—C9—C10101.33 (14)H18A—C18—H18B109.5
O4—C10—C9127.03 (18)H18A—C18—H18C109.5
O4—C10—C11124.44 (18)H18B—C18—H18C109.5
C11—C10—C9108.53 (15)
O1—N1—C9—C118.9 (2)C6—C1—C9—N1120.84 (19)
O1—N1—C9—C10147.60 (16)C6—C1—C9—C10112.8 (2)
O1—N1—C9—C12104.50 (18)C6—C1—C9—C122.6 (2)
O2—N1—C9—C1165.05 (16)C7—C2—C3—C4176.7 (3)
O2—N1—C9—C1036.4 (2)C8—C5—C6—C1177.3 (2)
O2—N1—C9—C1271.51 (19)C9—C1—C2—C3178.3 (2)
O4—C10—C11—N2167.1 (2)C9—C1—C2—C74.9 (3)
O4—C10—C11—C1349.2 (3)C9—C1—C6—C5179.1 (2)
O4—C10—C11—C1773.6 (3)C9—C10—C11—N212.77 (19)
O5—C15—C16—C17174.73 (17)C9—C10—C11—C13130.69 (17)
N1—C9—C10—O453.2 (3)C9—C10—C11—C17106.48 (18)
N1—C9—C10—C11126.63 (16)C10—C9—C12—O3164.71 (18)
N1—C9—C12—O350.6 (2)C10—C9—C12—N214.88 (19)
N1—C9—C12—N2128.95 (15)C10—C11—C13—C14178.93 (18)
N2—C11—C13—C1469.0 (2)C10—C11—C17—C16179.12 (16)
N2—C11—C17—C1668.0 (2)C11—N2—C12—O3171.67 (18)
C1—C2—C3—C40.4 (4)C11—N2—C12—C97.9 (2)
C1—C9—C10—O474.7 (3)C11—C13—C14—C1555.5 (2)
C1—C9—C10—C11105.40 (18)C12—N2—C11—C103.1 (2)
C1—C9—C12—O372.5 (2)C12—N2—C11—C13120.87 (18)
C1—C9—C12—N2107.87 (17)C12—N2—C11—C17115.59 (18)
C2—C1—C6—C50.3 (3)C12—C9—C10—O4163.1 (2)
C2—C1—C9—N159.8 (2)C12—C9—C10—C1116.77 (19)
C2—C1—C9—C1066.6 (2)C13—C11—C17—C1656.0 (2)
C2—C1—C9—C12178.06 (18)C13—C14—C15—O5176.97 (17)
C2—C3—C4—C51.3 (4)C13—C14—C15—C1655.5 (2)
C3—C4—C5—C62.1 (4)C14—C15—C16—C1756.5 (2)
C3—C4—C5—C8176.6 (3)C15—C16—C17—C1156.7 (2)
C4—C5—C6—C11.3 (3)C17—C11—C13—C1455.5 (2)
C6—C1—C2—C31.1 (3)C18—O5—C15—C14150.9 (2)
C6—C1—C2—C7175.7 (2)C18—O5—C15—C1687.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.022.8853 (19)167
C4—H4···O5ii0.952.573.287 (3)132
C7—H7B···O1iii0.982.493.454 (3)168
C14—H14B···O2iv0.992.543.265 (3)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.022.8853 (19)167
C4—H4···O5ii0.952.573.287 (3)132
C7—H7B···O1iii0.982.493.454 (3)168
C14—H14B···O2iv0.992.543.265 (3)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+2, z+1.
 

References

First citationBrück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Klueken, A. M., Nauen, R., Niebes, J. F., Reckmann, U., Schnorbach, H. J., Steffens, R. & van Waetermeulen, X. (2009). Crop Prot. 28, 838–844.  Google Scholar
First citationCampbell, A. C., Maidment, M. S., Pick, J. H. & Stevenson, D. F. M. (1985). J. Chem. Soc. Perkin Trans. 1, p. 1567.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.  Google Scholar
First citationFischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61(2), 127–140.  Google Scholar
First citationMaus, C. (2008). Bayer CropSci. J. 61, 159–180.  CAS Google Scholar
First citationSchobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203–4221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds