organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o220-o221

Crystal structure of (S)-5,7-di­phenyl-4,7-di­hydro­tetra­zolo[1,5-a]pyrimidine

CROSSMARK_Color_square_no_text.svg

aChemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
*Correspondence e-mail: jhein2@ucmerced.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 December 2014; accepted 11 February 2015; online 4 March 2015)

The title compound, C16H13N5, was synthesized by coupling amino­tetra­zole with chalcone in the presence of an amine organocatalyst derived from chincona alkaloid. There are two mol­ecules, A and B, in the asymmetric unit. In mol­ecule A, the dihedral angles between the partly hydrogenated pyrimidine ring system (r.m.s. deviation = 0.056 Å) and the sp2- and sp3-bonded phenyl groups are 33.32 (11) and 86.53 (11)°, respectively. The equivalent data for mol­ecule B are 0.049 Å, and 27.05 (10) and 85.27 (11)°, respectively. In the crystal, A+B dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The dimers are linked by aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.5367 (15) Å], which results in a three-dimensional network.

1. Related literature

For background to tetra­zoles, see: Desenko et al. (2001[Desenko, S. M., Gladkov, E. S., Komykhov, S. A., Shishkin, O. V. & Orlov, V. D. (2001). Chem. Heterocycl. Compd, 37, 747-754.]); Ghorbani-Vaghei et al. (2013[Ghorbani-Vaghei, R., Toghraei-Semiromi, Z., Amiri, M. & Karimi-Nami, R. (2013). Mol. Divers. 17, 307-318.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H13N5

  • Mr = 275.31

  • Monoclinic, P 21

  • a = 8.7736 (2) Å

  • b = 8.8396 (2) Å

  • c = 17.6810 (4) Å

  • β = 98.8220 (9)°

  • V = 1355.03 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.14 mm

2.2. Data collection

  • Bruker D8 APEX Cu diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.108, Tmax = 0.818

  • 21873 measured reflections

  • 4926 independent reflections

  • 4822 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.121

  • S = 1.08

  • 4926 reflections

  • 387 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack x determined using 2194 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.04 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5A 0.84 (4) 2.16 (4) 2.952 (3) 157 (3)
N1A—H1AA⋯N5 0.84 (4) 2.10 (4) 2.912 (3) 163 (4)

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Experimental top

(E)-Chalcone (0.4 g, 1.921 mmol) was dissolved in aceto­nitrile (9.6 ml) and heated to 80°C. 1H-tetra­zol-5-amine (0.163 g, 1.921 mmol) and di­phenyl hydrogen phosphate (0.096 g, 0.384 mmol) were then added as powders and stirred until the sample was homogenous. (R)-((1S,2R,4S,5R)-5-ethyl­quinuclidin-2-yl)(6-meth­oxy­quinolin-4-yl)methanamine, (0.063 g, 0.192 mmol) was then added and the reaction stirred at 80°C for 24h. The same was cooled to room temp and allowed to stand uncapped to permit slow evaporation. Crystals initially formed were isolated and recrystallized from di­chloro­methane as colourless blocks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For background to tetrazoles, see: Desenko et al. (2001); Ghorbani-Vaghei et al. (2013).

Structure description top

(E)-Chalcone (0.4 g, 1.921 mmol) was dissolved in aceto­nitrile (9.6 ml) and heated to 80°C. 1H-tetra­zol-5-amine (0.163 g, 1.921 mmol) and di­phenyl hydrogen phosphate (0.096 g, 0.384 mmol) were then added as powders and stirred until the sample was homogenous. (R)-((1S,2R,4S,5R)-5-ethyl­quinuclidin-2-yl)(6-meth­oxy­quinolin-4-yl)methanamine, (0.063 g, 0.192 mmol) was then added and the reaction stirred at 80°C for 24h. The same was cooled to room temp and allowed to stand uncapped to permit slow evaporation. Crystals initially formed were isolated and recrystallized from di­chloro­methane as colourless blocks.

For background to tetrazoles, see: Desenko et al. (2001); Ghorbani-Vaghei et al. (2013).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (S)-5,7-diphenyl-4,7-dihydrotetrazol[1,5-a]pyrimidine, in ellipsoid thermal representation (50% of probability). The two molecule of the asymmetric unit are linked by hydrogen bonds (dashed green lines).
(S)-5,7-Diphenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine top
Crystal data top
C16H13N5F(000) = 576
Mr = 275.31Dx = 1.350 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.7736 (2) ÅCell parameters from 9874 reflections
b = 8.8396 (2) Åθ = 2.5–68.2°
c = 17.6810 (4) ŵ = 0.68 mm1
β = 98.8220 (9)°T = 100 K
V = 1355.03 (5) Å3Block, clear colorless
Z = 40.35 × 0.20 × 0.14 mm
Data collection top
Bruker D8 APEX Cu
diffractometer
4926 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker FR-5914822 reflections with I > 2σ(I)
Multilayer Mirrors monochromatorRint = 0.035
Detector resolution: 8.0 pixels mm-1θmax = 68.2°, θmin = 2.5°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.108, Tmax = 0.818l = 2121
21873 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.099P)2 + 0.0265P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4926 reflectionsΔρmax = 0.37 e Å3
387 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 2194 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C16H13N5V = 1355.03 (5) Å3
Mr = 275.31Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.7736 (2) ŵ = 0.68 mm1
b = 8.8396 (2) ÅT = 100 K
c = 17.6810 (4) Å0.35 × 0.20 × 0.14 mm
β = 98.8220 (9)°
Data collection top
Bruker D8 APEX Cu
diffractometer
4926 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4822 reflections with I > 2σ(I)
Tmin = 0.108, Tmax = 0.818Rint = 0.035
21873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121Δρmax = 0.37 e Å3
S = 1.08Δρmin = 0.16 e Å3
4926 reflectionsAbsolute structure: Flack x determined using 2194 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
387 parametersAbsolute structure parameter: 0.04 (13)
1 restraint
Special details top

Experimental. Absorption correction: SADABS-2012/1 (Bruker, 2013) was used for absorption correction. wR2(int) was 0.0856 before and 0.0465 after correction. The Ratio of minimum to maximum transmission is 0.1320. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1241 (2)0.7357 (3)0.20818 (12)0.0437 (4)
H10.128 (4)0.690 (4)0.250 (2)0.054 (9)*
N20.1544 (2)0.7090 (2)0.07940 (12)0.0433 (4)
N30.2314 (2)0.6164 (3)0.03696 (12)0.0467 (5)
N40.3068 (3)0.5225 (3)0.08421 (12)0.0476 (5)
N50.2824 (2)0.5492 (3)0.15778 (12)0.0458 (5)
C10.0730 (3)1.0885 (3)0.24985 (15)0.0468 (5)
H1A0.05061.14910.20850.056*
C20.1410 (3)1.1537 (3)0.30742 (15)0.0499 (6)
H20.16521.25850.30520.060*
C30.1741 (3)1.0677 (4)0.36812 (15)0.0508 (6)
H30.22121.11310.40740.061*
C40.1382 (3)0.9151 (4)0.37142 (15)0.0530 (6)
H40.15980.85570.41330.064*
C50.0705 (3)0.8486 (3)0.31339 (15)0.0489 (6)
H50.04690.74360.31570.059*
C60.0369 (3)0.9346 (3)0.25178 (14)0.0432 (5)
C70.0289 (3)0.8631 (3)0.18799 (14)0.0424 (5)
C80.0012 (3)0.9102 (3)0.11511 (14)0.0431 (5)
H80.05401.00370.10540.052*
C90.0427 (3)0.8252 (3)0.04719 (13)0.0423 (5)
H90.05150.77210.02110.051*
C100.1090 (3)0.9162 (3)0.01272 (14)0.0416 (5)
C110.2279 (3)1.0198 (3)0.00668 (13)0.0438 (5)
H110.26461.04080.05900.053*
C120.2929 (3)1.0926 (3)0.05011 (15)0.0472 (5)
H120.37541.16190.03670.057*
C130.2374 (3)1.0641 (3)0.12674 (15)0.0476 (5)
H130.28081.11510.16560.057*
C140.1189 (3)0.9613 (3)0.14640 (14)0.0465 (5)
H140.08130.94150.19880.056*
C150.0552 (3)0.8874 (3)0.08959 (14)0.0436 (5)
H150.02580.81650.10320.052*
C160.1852 (3)0.6651 (3)0.15244 (13)0.0418 (5)
N1A0.2796 (3)0.3097 (3)0.27062 (12)0.0457 (5)
H1AA0.287 (4)0.364 (5)0.232 (2)0.054 (9)*
N2A0.1962 (2)0.2931 (3)0.39031 (12)0.0440 (5)
N3A0.1134 (3)0.3784 (3)0.43317 (12)0.0479 (5)
N4A0.0776 (3)0.5003 (3)0.39495 (12)0.0477 (5)
N5A0.1334 (2)0.4997 (3)0.32690 (11)0.0448 (5)
C1A0.4542 (3)0.0403 (3)0.21227 (15)0.0455 (5)
H1AB0.41200.10950.24460.055*
C2A0.5287 (3)0.0939 (3)0.15462 (15)0.0480 (5)
H2A0.53700.19990.14740.058*
C3A0.5921 (3)0.0054 (3)0.10666 (14)0.0463 (5)
H3A0.64310.03220.06690.056*
C4A0.5795 (3)0.1605 (3)0.11792 (14)0.0465 (5)
H4A0.62290.22920.08580.056*
C5A0.5040 (3)0.2156 (3)0.17564 (14)0.0441 (5)
H5A0.49560.32170.18260.053*
C6A0.4401 (3)0.1156 (3)0.22367 (13)0.0436 (5)
C7A0.3557 (3)0.1710 (3)0.28455 (13)0.0433 (5)
C8A0.3471 (3)0.0932 (3)0.34915 (14)0.0449 (5)
H8A0.40610.00300.35760.054*
C9A0.2507 (3)0.1381 (3)0.40930 (13)0.0443 (5)
H9A0.15930.06930.40540.053*
C10A0.3383 (3)0.1305 (3)0.49058 (13)0.0446 (5)
C11A0.4812 (3)0.1996 (3)0.50895 (15)0.0494 (6)
H11A0.52490.25260.47080.059*
C12A0.5608 (3)0.1912 (3)0.58352 (17)0.0545 (6)
H12A0.65890.23790.59610.065*
C13A0.4957 (3)0.1140 (4)0.63933 (15)0.0555 (6)
H13A0.54920.10860.69020.067*
C14A0.3542 (3)0.0456 (4)0.62091 (16)0.0557 (6)
H14A0.31040.00690.65920.067*
C15A0.2745 (3)0.0526 (3)0.54644 (15)0.0505 (6)
H15A0.17710.00440.53400.061*
C16A0.2063 (3)0.3686 (3)0.32569 (13)0.0423 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0488 (10)0.0444 (11)0.0386 (10)0.0017 (9)0.0090 (8)0.0034 (9)
N20.0474 (10)0.0416 (10)0.0422 (9)0.0005 (8)0.0110 (8)0.0017 (8)
N30.0517 (10)0.0450 (11)0.0454 (10)0.0021 (9)0.0143 (8)0.0024 (9)
N40.0543 (11)0.0452 (11)0.0461 (10)0.0046 (9)0.0169 (9)0.0037 (9)
N50.0493 (10)0.0453 (11)0.0442 (10)0.0046 (9)0.0119 (8)0.0039 (9)
C10.0497 (12)0.0459 (14)0.0443 (12)0.0005 (10)0.0059 (10)0.0010 (9)
C20.0516 (12)0.0467 (14)0.0510 (12)0.0061 (11)0.0065 (10)0.0033 (11)
C30.0506 (12)0.0575 (15)0.0458 (12)0.0035 (11)0.0125 (9)0.0067 (11)
C40.0601 (14)0.0559 (15)0.0450 (12)0.0009 (12)0.0146 (11)0.0026 (11)
C50.0540 (13)0.0473 (14)0.0460 (12)0.0029 (11)0.0101 (10)0.0013 (10)
C60.0420 (11)0.0447 (13)0.0424 (11)0.0005 (10)0.0049 (9)0.0017 (9)
C70.0407 (10)0.0424 (12)0.0446 (11)0.0009 (10)0.0084 (9)0.0004 (9)
C80.0432 (10)0.0421 (12)0.0448 (12)0.0010 (10)0.0092 (9)0.0013 (9)
C90.0423 (11)0.0438 (12)0.0407 (11)0.0003 (9)0.0062 (9)0.0000 (9)
C100.0423 (11)0.0408 (12)0.0423 (11)0.0044 (9)0.0084 (9)0.0018 (9)
C110.0450 (11)0.0454 (13)0.0406 (11)0.0026 (10)0.0049 (9)0.0001 (9)
C120.0465 (11)0.0457 (13)0.0499 (13)0.0021 (10)0.0086 (9)0.0016 (10)
C130.0505 (12)0.0488 (13)0.0451 (12)0.0025 (11)0.0127 (9)0.0067 (10)
C140.0523 (12)0.0476 (13)0.0394 (11)0.0048 (11)0.0064 (9)0.0008 (10)
C150.0456 (11)0.0406 (11)0.0445 (12)0.0021 (10)0.0068 (9)0.0007 (9)
C160.0439 (11)0.0405 (12)0.0415 (11)0.0031 (9)0.0081 (9)0.0016 (9)
N1A0.0532 (11)0.0447 (11)0.0408 (10)0.0035 (9)0.0128 (8)0.0032 (9)
N2A0.0453 (10)0.0466 (12)0.0406 (10)0.0033 (9)0.0083 (8)0.0014 (8)
N3A0.0518 (11)0.0496 (11)0.0437 (10)0.0050 (9)0.0114 (8)0.0004 (9)
N4A0.0513 (10)0.0500 (12)0.0428 (10)0.0055 (9)0.0102 (8)0.0018 (9)
N5A0.0471 (10)0.0465 (11)0.0414 (10)0.0034 (9)0.0090 (8)0.0018 (8)
C1A0.0479 (12)0.0451 (12)0.0440 (11)0.0001 (10)0.0087 (9)0.0042 (10)
C2A0.0483 (12)0.0465 (13)0.0491 (12)0.0060 (11)0.0068 (10)0.0004 (10)
C3A0.0410 (11)0.0537 (14)0.0448 (12)0.0037 (10)0.0086 (9)0.0024 (10)
C4A0.0425 (11)0.0522 (14)0.0448 (11)0.0022 (10)0.0066 (9)0.0007 (11)
C5A0.0442 (11)0.0431 (13)0.0449 (11)0.0010 (9)0.0062 (9)0.0001 (10)
C6A0.0417 (10)0.0476 (12)0.0407 (11)0.0013 (10)0.0041 (9)0.0009 (10)
C7A0.0435 (11)0.0433 (12)0.0429 (11)0.0009 (10)0.0058 (9)0.0017 (9)
C8A0.0494 (11)0.0435 (13)0.0422 (12)0.0031 (10)0.0086 (9)0.0002 (9)
C9A0.0468 (11)0.0441 (13)0.0426 (11)0.0010 (10)0.0089 (9)0.0013 (10)
C10A0.0488 (11)0.0433 (12)0.0426 (12)0.0062 (10)0.0099 (9)0.0009 (10)
C11A0.0539 (13)0.0469 (13)0.0482 (13)0.0008 (11)0.0110 (10)0.0030 (10)
C12A0.0533 (13)0.0503 (14)0.0578 (14)0.0013 (12)0.0018 (11)0.0025 (12)
C13A0.0658 (15)0.0560 (15)0.0433 (12)0.0136 (13)0.0033 (11)0.0002 (11)
C14A0.0652 (15)0.0591 (15)0.0444 (12)0.0069 (14)0.0132 (11)0.0086 (12)
C15A0.0514 (12)0.0529 (14)0.0484 (13)0.0023 (12)0.0114 (10)0.0032 (11)
C16A0.0421 (11)0.0437 (13)0.0409 (11)0.0006 (10)0.0055 (9)0.0002 (10)
Geometric parameters (Å, º) top
N1—H10.84 (4)N1A—H1AA0.84 (4)
N1—C71.414 (3)N1A—C7A1.399 (4)
N1—C161.346 (3)N1A—C16A1.351 (3)
N2—N31.357 (3)N2A—N3A1.356 (3)
N2—C91.473 (3)N2A—C9A1.473 (3)
N2—C161.336 (3)N2A—C16A1.338 (3)
N3—N41.287 (3)N3A—N4A1.285 (3)
N4—N51.371 (3)N4A—N5A1.367 (3)
N5—C161.326 (3)N5A—C16A1.326 (4)
C1—H1A0.9500C1A—H1AB0.9500
C1—C21.382 (4)C1A—C2A1.377 (4)
C1—C61.396 (4)C1A—C6A1.401 (4)
C2—H20.9500C2A—H2A0.9500
C2—C31.382 (4)C2A—C3A1.394 (4)
C3—H30.9500C3A—H3A0.9500
C3—C41.385 (4)C3A—C4A1.392 (4)
C4—H40.9500C4A—H4A0.9500
C4—C51.392 (4)C4A—C5A1.387 (4)
C5—H50.9500C5A—H5A0.9500
C5—C61.396 (4)C5A—C6A1.401 (3)
C6—C71.485 (3)C6A—C7A1.480 (3)
C7—C81.341 (4)C7A—C8A1.345 (4)
C8—H80.9500C8A—H8A0.9500
C8—C91.516 (3)C8A—C9A1.510 (3)
C9—H91.0000C9A—H9A1.0000
C9—C101.515 (3)C9A—C10A1.524 (3)
C10—C111.391 (4)C10A—C11A1.388 (4)
C10—C151.392 (3)C10A—C15A1.390 (3)
C11—H110.9500C11A—H11A0.9500
C11—C121.387 (3)C11A—C12A1.396 (4)
C12—H120.9500C12A—H12A0.9500
C12—C131.391 (4)C12A—C13A1.392 (4)
C13—H130.9500C13A—H13A0.9500
C13—C141.384 (4)C13A—C14A1.374 (5)
C14—H140.9500C14A—H14A0.9500
C14—C151.386 (4)C14A—C15A1.394 (4)
C15—H150.9500C15A—H15A0.9500
C7—N1—H1123 (2)C7A—N1A—H1AA123 (3)
C16—N1—H1117 (3)C16A—N1A—H1AA118 (3)
C16—N1—C7118.1 (2)C16A—N1A—C7A118.5 (2)
N3—N2—C9124.36 (19)N3A—N2A—C9A124.9 (2)
C16—N2—N3108.4 (2)C16A—N2A—N3A108.1 (2)
C16—N2—C9126.9 (2)C16A—N2A—C9A126.6 (2)
N4—N3—N2106.25 (19)N4A—N3A—N2A106.32 (19)
N3—N4—N5111.4 (2)N3A—N4A—N5A111.6 (2)
C16—N5—N4104.9 (2)C16A—N5A—N4A104.9 (2)
C2—C1—H1A119.7C2A—C1A—H1AB119.7
C2—C1—C6120.7 (2)C2A—C1A—C6A120.5 (2)
C6—C1—H1A119.7C6A—C1A—H1AB119.7
C1—C2—H2119.7C1A—C2A—H2A119.6
C3—C2—C1120.6 (2)C1A—C2A—C3A120.8 (2)
C3—C2—H2119.7C3A—C2A—H2A119.6
C2—C3—H3120.2C2A—C3A—H3A120.5
C2—C3—C4119.7 (2)C4A—C3A—C2A119.0 (2)
C4—C3—H3120.2C4A—C3A—H3A120.5
C3—C4—H4120.0C3A—C4A—H4A119.7
C3—C4—C5120.0 (3)C5A—C4A—C3A120.6 (2)
C5—C4—H4120.0C5A—C4A—H4A119.7
C4—C5—H5119.7C4A—C5A—H5A119.9
C4—C5—C6120.7 (3)C4A—C5A—C6A120.3 (2)
C6—C5—H5119.7C6A—C5A—H5A119.8
C1—C6—C5118.4 (2)C1A—C6A—C5A118.8 (2)
C1—C6—C7120.6 (2)C1A—C6A—C7A119.7 (2)
C5—C6—C7120.9 (2)C5A—C6A—C7A121.5 (2)
N1—C7—C6115.5 (2)N1A—C7A—C6A116.1 (2)
C8—C7—N1120.8 (2)C8A—C7A—N1A120.7 (2)
C8—C7—C6123.7 (2)C8A—C7A—C6A123.2 (2)
C7—C8—H8117.6C7A—C8A—H8A117.5
C7—C8—C9124.8 (2)C7A—C8A—C9A125.0 (2)
C9—C8—H8117.6C9A—C8A—H8A117.5
N2—C9—C8105.94 (18)N2A—C9A—C8A106.3 (2)
N2—C9—H9107.8N2A—C9A—H9A108.7
N2—C9—C10109.68 (18)N2A—C9A—C10A110.8 (2)
C8—C9—H9107.8C8A—C9A—H9A108.7
C10—C9—C8117.5 (2)C8A—C9A—C10A113.40 (19)
C10—C9—H9107.8C10A—C9A—H9A108.7
C11—C10—C9122.1 (2)C11A—C10A—C9A120.5 (2)
C11—C10—C15119.4 (2)C11A—C10A—C15A120.0 (2)
C15—C10—C9118.4 (2)C15A—C10A—C9A119.5 (2)
C10—C11—H11119.9C10A—C11A—H11A120.0
C12—C11—C10120.2 (2)C10A—C11A—C12A120.1 (2)
C12—C11—H11119.9C12A—C11A—H11A120.0
C11—C12—H12120.0C11A—C12A—H12A120.2
C11—C12—C13120.0 (2)C13A—C12A—C11A119.7 (3)
C13—C12—H12120.0C13A—C12A—H12A120.2
C12—C13—H13120.0C12A—C13A—H13A120.0
C14—C13—C12120.1 (2)C14A—C13A—C12A120.1 (2)
C14—C13—H13120.0C14A—C13A—H13A120.0
C13—C14—H14120.1C13A—C14A—H14A119.7
C13—C14—C15119.9 (2)C13A—C14A—C15A120.6 (3)
C15—C14—H14120.1C15A—C14A—H14A119.7
C10—C15—H15119.8C10A—C15A—C14A119.6 (2)
C14—C15—C10120.5 (2)C10A—C15A—H15A120.2
C14—C15—H15119.8C14A—C15A—H15A120.2
N2—C16—N1121.9 (2)N2A—C16A—N1A121.6 (2)
N5—C16—N1129.1 (2)N5A—C16A—N1A129.3 (2)
N5—C16—N2109.0 (2)N5A—C16A—N2A109.1 (2)
N1—C7—C8—C98.3 (4)N1A—C7A—C8A—C9A4.0 (4)
N2—N3—N4—N50.1 (3)N2A—N3A—N4A—N5A0.3 (3)
N2—C9—C10—C1172.2 (3)N2A—C9A—C10A—C11A69.2 (3)
N2—C9—C10—C15103.6 (2)N2A—C9A—C10A—C15A111.3 (3)
N3—N2—C9—C8174.5 (2)N3A—N2A—C9A—C8A175.8 (2)
N3—N2—C9—C1046.7 (3)N3A—N2A—C9A—C10A52.2 (3)
N3—N2—C16—N1179.7 (2)N3A—N2A—C16A—N1A178.4 (2)
N3—N2—C16—N51.4 (3)N3A—N2A—C16A—N5A0.6 (3)
N3—N4—N5—C160.7 (3)N3A—N4A—N5A—C16A0.0 (3)
N4—N5—C16—N1179.9 (2)N4A—N5A—C16A—N1A178.5 (2)
N4—N5—C16—N21.3 (3)N4A—N5A—C16A—N2A0.4 (3)
C1—C2—C3—C40.3 (4)C1A—C2A—C3A—C4A0.2 (4)
C1—C6—C7—N1151.9 (2)C1A—C6A—C7A—N1A149.0 (2)
C1—C6—C7—C830.0 (4)C1A—C6A—C7A—C8A29.2 (4)
C2—C1—C6—C50.3 (4)C2A—C1A—C6A—C5A0.4 (4)
C2—C1—C6—C7176.9 (2)C2A—C1A—C6A—C7A178.3 (2)
C2—C3—C4—C50.6 (4)C2A—C3A—C4A—C5A0.5 (4)
C3—C4—C5—C60.5 (4)C3A—C4A—C5A—C6A0.3 (4)
C4—C5—C6—C10.1 (4)C4A—C5A—C6A—C1A0.1 (4)
C4—C5—C6—C7177.2 (2)C4A—C5A—C6A—C7A178.5 (2)
C5—C6—C7—N131.0 (3)C5A—C6A—C7A—N1A29.6 (3)
C5—C6—C7—C8147.1 (3)C5A—C6A—C7A—C8A152.2 (2)
C6—C1—C2—C30.2 (4)C6A—C1A—C2A—C3A0.2 (4)
C6—C7—C8—C9169.7 (2)C6A—C7A—C8A—C9A174.1 (2)
C7—N1—C16—N22.1 (3)C7A—N1A—C16A—N2A4.6 (3)
C7—N1—C16—N5176.6 (2)C7A—N1A—C16A—N5A176.6 (2)
C7—C8—C9—N214.0 (3)C7A—C8A—C9A—N2A10.7 (3)
C7—C8—C9—C10137.0 (3)C7A—C8A—C9A—C10A132.7 (3)
C8—C9—C10—C1148.8 (3)C8A—C9A—C10A—C11A50.3 (3)
C8—C9—C10—C15135.3 (2)C8A—C9A—C10A—C15A129.2 (2)
C9—N2—N3—N4174.4 (2)C9A—N2A—N3A—N4A174.9 (2)
C9—N2—C16—N16.4 (4)C9A—N2A—C16A—N1A4.2 (4)
C9—N2—C16—N5174.7 (2)C9A—N2A—C16A—N5A174.8 (2)
C9—C10—C11—C12175.2 (2)C9A—C10A—C11A—C12A179.6 (2)
C9—C10—C15—C14176.1 (2)C9A—C10A—C15A—C14A179.9 (3)
C10—C11—C12—C131.2 (4)C10A—C11A—C12A—C13A0.3 (4)
C11—C10—C15—C140.2 (4)C11A—C10A—C15A—C14A0.6 (4)
C11—C12—C13—C141.0 (4)C11A—C12A—C13A—C14A0.4 (4)
C12—C13—C14—C150.3 (4)C12A—C13A—C14A—C15A0.0 (5)
C13—C14—C15—C100.3 (4)C13A—C14A—C15A—C10A0.5 (4)
C15—C10—C11—C120.6 (3)C15A—C10A—C11A—C12A0.2 (4)
C16—N1—C7—C6179.1 (2)C16A—N1A—C7A—C6A177.2 (2)
C16—N1—C7—C81.0 (3)C16A—N1A—C7A—C8A4.5 (3)
C16—N2—N3—N40.9 (3)C16A—N2A—N3A—N4A0.5 (3)
C16—N2—C9—C813.2 (3)C16A—N2A—C9A—C8A10.9 (3)
C16—N2—C9—C10141.0 (2)C16A—N2A—C9A—C10A134.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5A0.84 (4)2.16 (4)2.952 (3)157 (3)
N1A—H1AA···N50.84 (4)2.10 (4)2.912 (3)163 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5A0.84 (4)2.16 (4)2.952 (3)157 (3)
N1A—H1AA···N50.84 (4)2.10 (4)2.912 (3)163 (4)
 

Acknowledgements

The authors thank Christopher Daley, A. Rheingold and C. Moore (UCSD) for the data collection. Funding for this work was provided by the University of California, Merced and the National Science Foundation (CHE-1300686)

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesenko, S. M., Gladkov, E. S., Komykhov, S. A., Shishkin, O. V. & Orlov, V. D. (2001). Chem. Heterocycl. Compd, 37, 747–754.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorbani-Vaghei, R., Toghraei-Semiromi, Z., Amiri, M. & Karimi-Nami, R. (2013). Mol. Divers. 17, 307–318.  Web of Science CAS PubMed Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o220-o221
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds