organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o218-o219

Crystal structure of 4-azido­methyl-6-tert-butyl-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 February 2015; accepted 10 February 2015; online 4 March 2015)

In the title compound, C14H15N3O2, one of the methyl C atoms of the tert-butyl group lies almost in the plane of the chromene ring system [deviation = −0.097 (2) Å], one lies above and one lies below [deviations = 1.460 (3) and 1.006 (3) Å, respectively]. The C—C—N—N torsion angle is 142.33 (17)°. In the crystal, moelcules are linked by weak C—H⋯O hydrogen bonds to generate C(6) chains propagating in the [010] direction.

1. Related literature

For background to the biological properties of coumarins, see: Basanagouda et al. (2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]); Liu et al. (2008[Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241-247.]); Mustafa et al. (2011[Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305-4317.]); Ronad et al. (2008[Ronad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci. 341, 696-700.]); Tian et al. (2000[Tian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640-1652.]); Puttaraju et al. (2013[Puttaraju, K. B., Shivashankar, K., Chandra, Mahendra, M., Rasal, V. P., Venkata Vivek, P. N., Rai, K. & Chanu, M. B. (2013). Eur. J. Med. Chem. 69, 316-322.]). For a related structure, see: Chandra et al. (2014[Chandra, Puttaraju, K. B., Mahesh, S. S., Shivashankar, K., Lokanath, N. K. & Madegowda, M. (2014). Bioinformation, 10, 288-292.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H15N3O2

  • Mr = 257.29

  • Monoclinic, P 21 /c

  • a = 10.6816 (7) Å

  • b = 11.1416 (8) Å

  • c = 11.5409 (8) Å

  • β = 100.674 (4)°

  • V = 1349.72 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • 5911 measured reflections

  • 2165 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.04

  • 2165 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.97 2.55 3.311 (2) 135
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin and its substituents are of well known heterocyclic compounds, which have a variety of biologically activities; such as anti-tumour (Mustafa et al., 2011), anti-bacterial (Basanagouda et al., 2009; Liu et al., 2008) and analgesic (Ronad et al., 2008) agents. In addition, coumarin derivatives have been found to be very useful in many applications; such as nonlinear optical materials and as intermediates for the drug synthesis (Tian et al., 2000). In our previous work (Puttaraju et al., 2013), we have reported the synthesis, in vitro antimicrobial and anticancer activities of new coumarin derivatives substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. In continuation to this, we have synthesized the title compound to study its molecular and crystal structure.

In the molecular structure of the title compound (Fig. 1), the chromene moiety is almost planar, with the maximum deviation from the mean plane being 0.093 (2) Å for atom C10, respectively. The azidomethyl group is in anti-periplanar conformation with respect to the chromene moiety, as indicated by the torsion angle value of 172.35 (14)° (C3–C4–C14–N1). The bond lengths and angles are within normal ranges and are comparable to related structure (Chandra et al., 2014). The crystal structure features C—H···O hydrogen bonds, which link the molecules into [010] chains, as shown in Fig. 2.

Related literature top

For background to the biological properties of coumarins, see: Basanagouda et al. (2009); Liu et al. (2008); Mustafa et al. (2011); Ronad et al. (2008); Tian et al. (2000); Puttaraju et al. (2013). For a related structure, see: Chandra et al. (2014).

Experimental top

6-tert-Butyl-4-bromomethylcoumarins (0.001 mmol. 0.5 g) were taken in 15 ml acetone in a round bottomed flask and stirred. To this, sodium azide (0.002 mol, 0.13 g) in 5 ml of water was added drop wise with stirring, which was continued for 3 hrs (reaction was monitored by TLC). The reaction mixture was poured in to ice cold water, separated solid was filtered and recrystallized from ethyl alcohol to get pale yelllow blocks of the title compound.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atom, with C–H distance in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2–1.5Ueq (carrier atom) for all H atoms.

Structure description top

Coumarin and its substituents are of well known heterocyclic compounds, which have a variety of biologically activities; such as anti-tumour (Mustafa et al., 2011), anti-bacterial (Basanagouda et al., 2009; Liu et al., 2008) and analgesic (Ronad et al., 2008) agents. In addition, coumarin derivatives have been found to be very useful in many applications; such as nonlinear optical materials and as intermediates for the drug synthesis (Tian et al., 2000). In our previous work (Puttaraju et al., 2013), we have reported the synthesis, in vitro antimicrobial and anticancer activities of new coumarin derivatives substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. In continuation to this, we have synthesized the title compound to study its molecular and crystal structure.

In the molecular structure of the title compound (Fig. 1), the chromene moiety is almost planar, with the maximum deviation from the mean plane being 0.093 (2) Å for atom C10, respectively. The azidomethyl group is in anti-periplanar conformation with respect to the chromene moiety, as indicated by the torsion angle value of 172.35 (14)° (C3–C4–C14–N1). The bond lengths and angles are within normal ranges and are comparable to related structure (Chandra et al., 2014). The crystal structure features C—H···O hydrogen bonds, which link the molecules into [010] chains, as shown in Fig. 2.

For background to the biological properties of coumarins, see: Basanagouda et al. (2009); Liu et al. (2008); Mustafa et al. (2011); Ronad et al. (2008); Tian et al. (2000); Puttaraju et al. (2013). For a related structure, see: Chandra et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective diagram of the molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed parallel to the b axis.
4-Azidomethyl-6-tert-butyl-2H-chromen-2-one top
Crystal data top
C14H15N3O2F(000) = 544
Mr = 257.29Dx = 1.266 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2165 reflections
a = 10.6816 (7) Åθ = 5.6–64.5°
b = 11.1416 (8) ŵ = 0.71 mm1
c = 11.5409 (8) ÅT = 293 K
β = 100.674 (4)°Block, pale yellow
V = 1349.72 (16) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
1949 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.037
Helios multilayer optics monochromatorθmax = 64.5°, θmin = 5.6°
Detector resolution: 10.7 pixels mm-1h = 1212
φ and ω scansk = 1212
5911 measured reflectionsl = 1313
2165 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2532P]
where P = (Fo2 + 2Fc2)/3
2165 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H15N3O2V = 1349.72 (16) Å3
Mr = 257.29Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.6816 (7) ŵ = 0.71 mm1
b = 11.1416 (8) ÅT = 293 K
c = 11.5409 (8) Å0.30 × 0.25 × 0.20 mm
β = 100.674 (4)°
Data collection top
Bruker X8 Proteum
diffractometer
1949 reflections with I > 2σ(I)
5911 measured reflectionsRint = 0.037
2165 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2165 reflectionsΔρmin = 0.17 e Å3
175 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59056 (12)0.02266 (11)0.31873 (10)0.0633 (4)
O20.43714 (15)0.00517 (14)0.16423 (12)0.0886 (6)
N10.32064 (15)0.31631 (13)0.42079 (19)0.0852 (7)
N20.29968 (12)0.42384 (13)0.41655 (12)0.0581 (5)
N30.26741 (17)0.51960 (15)0.40562 (16)0.0784 (7)
C10.79791 (14)0.09815 (13)0.63907 (13)0.0464 (5)
C20.68585 (13)0.15469 (12)0.58820 (12)0.0441 (4)
C30.61248 (13)0.11775 (12)0.48071 (12)0.0429 (4)
C40.49582 (14)0.17576 (13)0.42299 (13)0.0478 (5)
C50.43662 (16)0.13424 (15)0.31759 (14)0.0585 (6)
C60.48347 (19)0.03397 (17)0.26019 (15)0.0642 (6)
C70.65570 (15)0.01975 (13)0.42495 (13)0.0493 (5)
C80.76681 (17)0.03930 (15)0.47367 (16)0.0593 (6)
C90.83629 (16)0.00013 (14)0.57861 (16)0.0566 (5)
C100.88114 (15)0.14115 (14)0.75389 (14)0.0553 (5)
C110.9105 (3)0.0370 (2)0.8404 (2)0.0925 (9)
C121.0051 (2)0.1916 (3)0.7259 (2)0.0969 (10)
C130.8160 (2)0.2375 (2)0.81437 (18)0.0840 (8)
C140.44697 (15)0.27965 (14)0.48332 (16)0.0581 (5)
H20.658100.219900.626900.0530*
H50.362300.172000.280400.0700*
H80.794200.105200.435600.0710*
H90.911300.039600.610600.0680*
H11A0.832300.002300.854100.1390*
H11B0.959000.022800.808100.1390*
H11C0.958900.065800.913600.1390*
H12A1.057000.221600.796900.1450*
H12B1.050200.129300.693400.1450*
H12C0.986100.255700.669800.1450*
H13A0.735600.207900.828200.1260*
H13B0.868900.258300.888200.1260*
H13C0.802100.307400.764900.1260*
H14A0.505600.346500.486400.0700*
H14B0.442000.257500.563600.0700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0776 (8)0.0686 (8)0.0471 (7)0.0085 (6)0.0204 (6)0.0127 (5)
O20.1016 (11)0.1144 (12)0.0476 (8)0.0252 (9)0.0082 (7)0.0190 (7)
N10.0611 (9)0.0489 (9)0.1292 (15)0.0037 (7)0.0249 (9)0.0015 (8)
N20.0521 (8)0.0577 (9)0.0598 (9)0.0068 (6)0.0019 (6)0.0048 (6)
N30.0802 (11)0.0653 (11)0.0841 (12)0.0237 (8)0.0010 (9)0.0092 (8)
C10.0489 (8)0.0428 (8)0.0493 (8)0.0053 (6)0.0141 (6)0.0055 (6)
C20.0509 (8)0.0375 (7)0.0453 (8)0.0036 (6)0.0128 (6)0.0017 (6)
C30.0502 (8)0.0387 (7)0.0419 (8)0.0032 (6)0.0143 (6)0.0056 (6)
C40.0539 (8)0.0422 (8)0.0467 (8)0.0079 (6)0.0080 (6)0.0100 (6)
C50.0616 (10)0.0630 (10)0.0482 (9)0.0110 (8)0.0030 (7)0.0106 (7)
C60.0770 (12)0.0753 (11)0.0424 (9)0.0209 (9)0.0166 (8)0.0016 (8)
C70.0617 (9)0.0488 (8)0.0422 (8)0.0082 (7)0.0223 (7)0.0029 (6)
C80.0679 (10)0.0516 (9)0.0653 (11)0.0080 (8)0.0307 (8)0.0070 (7)
C90.0556 (9)0.0527 (9)0.0644 (10)0.0122 (7)0.0189 (8)0.0018 (7)
C100.0535 (9)0.0556 (9)0.0541 (9)0.0116 (7)0.0027 (7)0.0021 (7)
C110.1146 (18)0.0844 (14)0.0685 (13)0.0236 (13)0.0093 (12)0.0150 (11)
C120.0754 (13)0.1139 (19)0.0993 (17)0.0241 (12)0.0111 (12)0.0184 (14)
C130.0873 (13)0.0933 (15)0.0614 (11)0.0298 (11)0.0126 (10)0.0242 (10)
C140.0529 (9)0.0432 (8)0.0715 (10)0.0048 (7)0.0059 (7)0.0042 (7)
Geometric parameters (Å, º) top
O1—C61.370 (2)C10—C121.527 (3)
O1—C71.3763 (19)C10—C131.518 (3)
O2—C61.208 (2)C2—H20.9300
N1—N21.218 (2)C5—H50.9300
N1—C141.466 (2)C8—H80.9300
N2—N31.121 (2)C9—H90.9300
C1—C21.384 (2)C11—H11A0.9600
C1—C91.398 (2)C11—H11B0.9600
C1—C101.530 (2)C11—H11C0.9600
C2—C31.4008 (19)C12—H12A0.9600
C3—C41.452 (2)C12—H12B0.9600
C3—C71.389 (2)C12—H12C0.9600
C4—C51.345 (2)C13—H13A0.9600
C4—C141.494 (2)C13—H13B0.9600
C5—C61.435 (3)C13—H13C0.9600
C7—C81.382 (2)C14—H14A0.9700
C8—C91.370 (3)C14—H14B0.9700
C10—C111.525 (3)
C6—O1—C7121.29 (13)C3—C2—H2119.00
N2—N1—C14116.07 (15)C4—C5—H5119.00
N1—N2—N3172.26 (18)C6—C5—H5119.00
C2—C1—C9117.04 (14)C7—C8—H8120.00
C2—C1—C10122.92 (13)C9—C8—H8120.00
C9—C1—C10120.01 (14)C1—C9—H9119.00
C1—C2—C3122.70 (13)C8—C9—H9119.00
C2—C3—C4124.58 (13)C10—C11—H11A110.00
C2—C3—C7117.50 (13)C10—C11—H11B110.00
C4—C3—C7117.91 (13)C10—C11—H11C109.00
C3—C4—C5118.81 (14)H11A—C11—H11B109.00
C3—C4—C14118.39 (13)H11A—C11—H11C109.00
C5—C4—C14122.81 (15)H11B—C11—H11C109.00
C4—C5—C6122.65 (16)C10—C12—H12A109.00
O1—C6—O2116.67 (17)C10—C12—H12B110.00
O1—C6—C5117.49 (15)C10—C12—H12C109.00
O2—C6—C5125.85 (18)H12A—C12—H12B109.00
O1—C7—C3121.73 (14)H12A—C12—H12C109.00
O1—C7—C8116.95 (14)H12B—C12—H12C109.00
C3—C7—C8121.31 (14)C10—C13—H13A109.00
C7—C8—C9119.38 (15)C10—C13—H13B110.00
C1—C9—C8122.06 (16)C10—C13—H13C109.00
C1—C10—C11110.18 (14)H13A—C13—H13B109.00
C1—C10—C12108.64 (14)H13A—C13—H13C109.00
C1—C10—C13112.18 (14)H13B—C13—H13C109.00
C11—C10—C12109.72 (19)N1—C14—H14A109.00
C11—C10—C13107.06 (16)N1—C14—H14B109.00
C12—C10—C13109.04 (17)C4—C14—H14A109.00
N1—C14—C4110.84 (14)C4—C14—H14B109.00
C1—C2—H2119.00H14A—C14—H14B108.00
C7—O1—C6—O2175.54 (16)C2—C3—C4—C5177.54 (15)
C7—O1—C6—C54.2 (2)C2—C3—C4—C142.2 (2)
C6—O1—C7—C33.5 (2)C7—C3—C4—C14178.75 (14)
C6—O1—C7—C8176.23 (16)C2—C3—C7—O1179.59 (13)
N2—N1—C14—C4142.33 (17)C2—C3—C7—C80.1 (2)
C10—C1—C2—C3177.49 (14)C4—C3—C7—O10.5 (2)
C2—C1—C9—C80.1 (2)C4—C3—C7—C8179.21 (15)
C10—C1—C9—C8177.99 (15)C7—C3—C4—C51.5 (2)
C2—C1—C10—C11128.80 (18)C3—C4—C5—C60.6 (2)
C2—C1—C10—C12110.99 (19)C14—C4—C5—C6179.65 (16)
C2—C1—C10—C139.6 (2)C5—C4—C14—N17.9 (2)
C9—C1—C2—C30.3 (2)C3—C4—C14—N1172.35 (14)
C9—C1—C10—C1266.8 (2)C4—C5—C6—O12.2 (3)
C9—C1—C10—C13172.62 (15)C4—C5—C6—O2177.53 (19)
C9—C1—C10—C1153.5 (2)C3—C7—C8—C90.5 (2)
C1—C2—C3—C4178.72 (14)O1—C7—C8—C9179.18 (15)
C1—C2—C3—C70.3 (2)C7—C8—C9—C10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.972.553.311 (2)135
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.972.553.311 (2)135
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

MM would like to thank UGC, New Delhi, Government of India, for the award of a project under the head F. No. 41–920/2012(SR) (dated: 25-07-2012). In addition, SD is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [grant No. 02 (0172)/13/EMR-II].

References

First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, Puttaraju, K. B., Mahesh, S. S., Shivashankar, K., Lokanath, N. K. & Madegowda, M. (2014). Bioinformation, 10, 288–292.  CrossRef CAS PubMed Google Scholar
First citationLiu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241–247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305–4317.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPuttaraju, K. B., Shivashankar, K., Chandra, Mahendra, M., Rasal, V. P., Venkata Vivek, P. N., Rai, K. & Chanu, M. B. (2013). Eur. J. Med. Chem. 69, 316–322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRonad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci. 341, 696–700.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640–1652.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o218-o219
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds