research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 392-397

Crystal structures of {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n and {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n [where Lpn = (R)-propane-1,2-di­amine]: two heterometallic chiral cyanide-bridged coordination polymers

CROSSMARK_Color_square_no_text.svg

aInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 February 2015; accepted 14 March 2015; online 21 March 2015)

The title compounds, catena-poly[[[bis­[(R)-propane-1,2-di­amine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris­(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexa­cyanido-κ6C-hexa­kis­[(R)-propane-1,2-di­amine-κ2N,N′]dichromium(III)tricopper(II)] penta­hydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-di­amine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water mol­ecules. The FeIII atoms have distorted octa­hedral geometries, while the CuII atoms can be considered to be penta­coordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuII atoms have distorted octa­hedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H⋯N and N—H⋯N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]} anions bridged by a chiral [Cu(Lpn)2]2+ cation and five water mol­ecules of crystallization. Both the CrIII atoms and the central CuII atom have distorted octa­hedral geometries. The coordination spheres of the outer CuII atoms of the asymmetric unit can be considered to be penta­coordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuII atoms now have distorted octa­hedral geometries. The networks, which lie parallel to (10-1), are linked via O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds involving all five non-coordinating water mol­ecules, the cyanide N atoms and the NH2 groups of the Lpn ligands, forming a three-dimensional framework.

1. Chemical context

The design of multi-dimensional mol­ecular systems is closely linked to their unique bulk physicochemical properties, such as magnetism (Kahn, 1993[Kahn, O. (1993). Molecular Magnetism, pp. 1-380. Weinheim: VCH.]). Examples of these systems include cyanide-bridged complexes, in which a cyanido­metallate anion serves as the bridging moiety in a multi-dimensional structure with a second coordination centre (Fukita et al., 1998[Fukita, N., Ohba, M., Ōkawa, H., Matsuda, K. & Iwamura, N. (1998). Inorg. Chem. 37, 842-848.]; Ohba et al., 1999[Ohba, M., Usuki, N., Fukita, N. & Ōkawa, H. (1999). Angew. Chem. Int. Ed. 38, 1795-1798.]; Tanase & Reedijk, 2006[Tanase, S. & Reedijk, J. (2006). Coord. Chem. Rev. 250, 2501-2510.]; Zhang & Luo, 2006[Zhang, Y.-Q. & Luo, C.-L. (2006). J. Mater. Chem. 16, 4657-4664.]). In this context, heterometallic and chiral frameworks are of particular inter­est (Cui et al., 2002[Cui, Y., Evans, O. R., Ngo, H. L., White, P. S. & Lin, W. (2002). Angew. Chem. Int. Ed. 41, 1159-1162.]; Mironov et al., 2004[Mironov, Y. V., Naumov, N. G., Brylev, K. A., Efremova, O. A., Fedorov, V. E. & Hegetschweiler, K. (2004). Angew. Chem. Int. Ed. 43, 1297-1300.]). A chiral network would allow selective binding of chiral guests, and the presence of different types of metal ions may enable specific tuning of the electronic properties. However, only a few examples of chiral cyanide-bridged bimetallic complexes have been published so far (Coronado et al., 2003[Coronado, E., Giménez-Saiz, C., Martínez-Agudo, J. M., Nuez, A., Romero, F. M. & Stoeckli-Evans, H. (2003). Polyhedron, 22, 2435-2440.]; Imai et al., 2004[Imai, H., Inoue, K., Kikuchi, K., Yoshida, Y., Ito, M., Sunahara, T. & Onaka, S. (2004). Angew. Chem. Int. Ed. 43, 5618-5621.]; Kaneko et al., 2006[Kaneko, W., Kitagawa, S. & Ohba, M. (2006). J. Am. Chem. Soc. 129, 248-249.]). We report herein on the synthesis and crystal structures of two new chiral cyanide-bridged heterometallic coordination polymers, (I)[link] and (II)[link], synthesized using the chiral ligand (R)-propane-1,2-di­amine. Compound (I)[link] is isotypic with [Cu(1,2-pn)2][Fe(CN)5NO]·H2O, synthesized using the racemic form of the same ligand propane-1,2-di­amine (Smékal et al., 2000[Smékal, Z., Trávnícek, Z., Marek, J. & Nádvornik, N. (2000). Aust. J. Chem. 53, 225-228.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of complex (I)[link] (Fig. 1[link]) is composed of two independent cation–anion units of [Cu(Lpn)2]2+·[Fe(CN)5)(NO)]2−·H2O. Atoms Fe1 and Fe2 have distorted octa­hedral geometries being coordinated by five C atoms from the cyanide ligands (two cyanido groups are bridging and two terminal) and by one N atom, N2 and N12, respectively, from the nitrosyl group. The average Fe—N distance [1.657 (14) Å] is much shorter than the Fe—C distances, which are between 1.926 (5) and 1.954 (6) Å. These values are in good agreement with those reported for other polymeric structures involving nitro­prusside (Shyu et al., 1997[Shyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81-86.]; Chen et al., 1995[Chen, Z. N., Wang, J. L., Qiu, J., Miao, F. G. & Tang, W. X. (1995). Inorg. Chem. 34, 2255-2257.]). Atoms Cu1 and Cu2 are penta­coordinate. Atom Cu1 has a perfect square-pyramidal geometry with a τ value of 0 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc., Dalton Trans. pp. 1349-1356.]), while atom Cu2 has a distorted square-pyramidal geometry with a τ value of 0.23. The Cu—N(Lpn) bond lengths vary between 1.998 (5) and 2.026 (5) Å, while the axial bond length Cu1—N1 is 2.333 (5) Å and Cu2—N11 is 2.290 (5) Å.

[Figure 1]
Figure 1
A view of the asymmetric unit of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The asymmetric unit of complex (II)[link] (Fig. 2[link]) consists of two chiral {[Cu(Lpn)2][Cr(CN)6]} anions bridged by a chiral [Cu(Lpn)2]2+ cation. There are also five water mol­ecules of crystallization present. The coordination sphere of the central CuII atom, Cu3, can be described as elongated octa­hedral, generated by four N atoms of the Lpn ligands and two cyanide N atoms. The outer atoms Cu1 and Cu2 are penta­coordinate; atom Cu1 has a distorted square-pyramidal geometry with a τ value of 0.14 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc., Dalton Trans. pp. 1349-1356.]), while atom Cu2 has an almost perfect square-pyramidal geometry with a τ value of 0.04. The Cu—N(Lpn) bond lengths vary between 1.960 (12) and 2.020 (10) Å, which is similar to the bond lengths observed in (I)[link] and in a copper(II) complex involving (S)-propane-1,2-di­amine (Higashikawa et al., 2007[Higashikawa, H., Okuda, K., Kishine, J., Masuhara, N. & Inoue, K. (2007). Chem. Lett. 36, 1022-1023.]). The axial bond lengths Cu1—N2 and Cu2—N12 are 2.540 (12) and 2.490 (12) Å, respectively, while those for Cu3 are 2.465 (9) and 2.639 (12) Å for Cu3—N1 and Cu3—N11, respectively. Each CrIII ion has an almost regular octa­hedral coordination geometry. The Cr—C bond lengths are in the range 2.047 (15)–2.081 (15) Å), and the Cr—C≡N bond angles vary over a small range, 174.5 (13)–179.6 (12)°.

[Figure 2]
Figure 2
A view of the asymmetric unit of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Water mol­ecules and the C-bound H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal of (I)[link], the independent bimetallic units line up to form zigzag polymer chains propagating along [101] (see Fig. 3[link]). The bridging axial bond lengths are 2.980 (9) and 3.112 (8) Å for Cu1—N13i and Cu2—N3ii, respectively [symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + 1; (ii) −x, y + [{1\over 2}], −z]. This axial bonding results in distorted octa­hedral coordination spheres for the copper(II) atoms. The extremely long semi-coord­ination Cu—N bonds can be attributed to the co-existence of pseudo-Jahn–Teller elongation and electrostatic inter­actions in the infinite one dimensional chain. A similar geometry has been found in [CuIIL2][MII(CN)4]·2H2O [MII = NiII, PtII; L = trans-cyclo­hexane-(1R,2R)-di­amine] (Akitsu & Einaga, 2006[Akitsu, T. & Einaga, Y. (2006). Inorg. Chem. 45, 9826-9833.]). Neighbouring chains are linked via O—H⋯N and N—H⋯N hydrogen bonds (Table 1[link]), forming sheets parallel to (010). The sheets are linked via N—H⋯O and further N—H⋯N hydrogen bonds, forming a three-dimensional framework (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7X⋯N15i 0.89 2.39 3.257 (8) 166
N7—H7Y⋯N14ii 0.89 2.12 3.008 (8) 173
N8—H8X⋯N14iii 0.89 2.27 3.120 (8) 160
N8—H8Y⋯N15 0.89 2.45 3.209 (7) 144
N9—H9X⋯O1W 0.89 2.52 3.207 (7) 135
N9—H9Y⋯N16iii 0.89 2.39 3.157 (7) 144
N10—H10X⋯N16ii 0.89 2.52 3.189 (7) 132
N10—H10Y⋯O1Wi 0.89 2.11 2.962 (7) 159
N17—H17X⋯N4iv 0.89 2.22 3.051 (8) 155
N17—H17Y⋯N5v 0.89 2.32 3.197 (7) 169
N18—H18X⋯N5 0.89 2.37 3.224 (8) 161
N18—H18Y⋯N4vi 0.89 2.27 3.080 (8) 151
N19—H19X⋯N6vi 0.89 2.44 3.295 (8) 160
N19—H19Y⋯O2Wi 0.89 2.30 3.142 (8) 159
N20—H20X⋯O2W 0.89 2.11 2.990 (8) 172
O1W—H1WB⋯N15 0.84 (3) 2.11 (3) 2.928 (7) 163 (6)
O2W—H2WA⋯N13 0.83 (3) 2.65 (4) 3.419 (9) 155 (6)
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z]; (v) x+1, y, z; (vi) [-x, y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of compound (I)[link], showing the one-dimensional polymer structure (Cu atoms are green, Fe atoms are orange, and bridging Cu—N bonds are thin dashed cyan lines). Water mol­ecules and the C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Crystal packing of compound (I)[link], viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details) and C-bound H atoms have been omitted for clarity.

In the crystal of (II)[link], the cation-anion units are linked to form two-dimensional networks lying parallel to (10[\overline{1}]) (see Fig. 5[link]). The bridging Cu—N(cyanido) bond lengths, Cu1—N3iii and Cu2—N13iv, are 2.698 (14) and 2.860 (14) Å, respectively [symmetry codes: (iii) −x + 1, y − [{1\over 2}], −z; (iv) −x + 2, y + [{1\over 2}], −z + 1]. Thus, as for complex (I)[link], atoms Cu1 and Cu2 have octa­hedral coordination spheres with a strong pseudo-Jahn–Teller effect. Closely related two-dimensional bimetallic systems have been found in iron(III) analogues, where [Fe(CN)6]3− anions binds to three adjacent nickel atoms (Kou et al., 1999[Kou, H.-Z., Gao, S., Bu, W.-M., Liao, D.-Z., Ma, B.-Q., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (1999). J. Chem. Soc. Dalton. Trans. pp. 2477-2480.], 2000[Kou, H.-Z., Bu, W.-M., Gao, S., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (2000). J. Chem. Soc. Dalton. Trans. pp. 2996-3000.]). The two-dimensional networks of (II)[link] (Fig. 5[link]) are linked by a series of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds, involving the water mol­ecules, the cyanide N atoms and the NH2 groups of the Lpn ligands, forming a three-dimensional framework (Fig. 6[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4X⋯N19i 0.89 2.27 3.153 (16) 171
N5—H5X⋯O5WAii 0.89 2.24 3.04 (4) 150
N5—H5X⋯O5WBii 0.89 2.22 2.89 (3) 133
N5—H5Y⋯O4W 0.89 2.50 3.177 (17) 133
N6—H6X⋯N18i 0.89 2.56 3.373 (17) 152
N7—H7X⋯N1ii 0.89 2.49 3.219 (15) 139
N14—H14Y⋯N9iii 0.89 2.62 3.360 (16) 142
N15—H15Y⋯N11iv 0.89 2.27 3.156 (15) 177
N16—H16Y⋯O1Wv 0.89 2.32 3.159 (16) 158
N17—H17X⋯O2W 0.89 2.33 3.132 (18) 150
N17—H17Y⋯N13iv 0.89 2.69 3.166 (19) 115
N17—H17Y⋯O4Wvi 0.89 2.60 3.361 (18) 145
N21—H21X⋯O5WA 0.89 2.16 3.04 (5) 170
N21—H21X⋯O5WB 0.89 2.02 2.88 (3) 163
N21—H21Y⋯N12 0.89 2.51 3.376 (17) 164
N22—H22X⋯N18i 0.89 2.43 3.262 (17) 155
N23—H23X⋯N20 0.89 2.68 3.445 (18) 144
N23—H23Y⋯N9iii 0.89 2.20 3.086 (17) 172
N24—H24Y⋯O3W 0.89 2.09 2.969 (18) 167
O1W—H1WA⋯N19vii 0.85 (3) 2.14 (5) 2.972 (16) 167 (16)
O1W—H1WB⋯N20 0.84 (3) 2.00 (5) 2.822 (15) 164 (14)
O2W—H2WA⋯N10viii 0.85 (3) 2.09 (10) 2.811 (17) 143 (15)
O2W—H2WB⋯O5WA 0.85 (3) 1.78 (9) 2.56 (6) 153 (16)
O2W—H2WB⋯O5WB 0.85 (3) 2.01 (8) 2.85 (7) 169 (20)
O3W—H3WA⋯N18i 0.85 (3) 2.27 (14) 2.982 (19) 142 (20)
O3W—H3WB⋯O1Wix 0.85 (3) 1.92 (10) 2.712 (17) 156 (21)
O4W—H4WA⋯N10ii 0.84 (3) 2.53 (18) 3.104 (17) 126 (18)
O4W—H4WB⋯N8x 0.84 (3) 2.16 (13) 2.883 (16) 145 (19)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x-1, y, z; (viii) [-x+2, y+{\script{1\over 2}}, -z]; (ix) [-x+1, y-{\script{1\over 2}}, -z+1]; (x) [-x, y-{\script{1\over 2}}, -z].
[Figure 5]
Figure 5
A partial view approximately along [101] of the crystal packing of compound (II)[link], showing the two-dimensional polymer structure (Cu atoms are green, Cr atoms are violet, and bridging Cu—N bonds are thin dashed cyan lines). Water mol­ecules and the C-bound H atoms have been omitted for clarity.
[Figure 6]
Figure 6
Crystal packing of compound (II)[link], viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 2[link] for details) and C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 49 hits for bimetallic cyanide-bridged complexes involving trans­ition metals and the ligand propane-1,2-di­amine. Of these, only two complexes involved (R)-propane-1,2-di­amine, viz. catena-[tris­(μ2-cyanido)­cyanido­[(R)-1,2-di­amino­propane]copper(II)nickel(II) hemihydrate clathrate] (IZEPOS; Imai et al., 2003[Imai, H., Inoue, K., Ohba, M., Okawa, M. & Kikuchi, K. (2003). Synth. Met. 137, 919-920.]) and catena-[hepta­deca­kis­(μ2-cyanido-κ2C:N)tetraaqua­penta­deca­cyanido­hexa­kis­[(R)-propane-1,2-di­amine-κ2N,N′]hexa­copper(II)tetra­tungsten(V) hydrate] (YIMBEC; Higashikawa et al., 2007[Higashikawa, H., Okuda, K., Kishine, J., Masuhara, N. & Inoue, K. (2007). Chem. Lett. 36, 1022-1023.]). Two complexes involved (S)-propane-1,2-di­amine, viz. catena-[potassium (S)-1-amino-2-ammonio­propane tetra­kis­(μ2-cyanido)­dicyanido­[(S)-1,2-diamino­propane-κ2N,N′]chromiummanganese(II) (S)-1,2-diamino­propane] (IDEBOI; Inoue et al., 2001[Inoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. & Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 140, 4242-4245.]) and catena-[hepta­deca­kis­(μ2-cyanido-κ2C:N)tetra­aqua­penta­decacyanidohexa­kis­[(S)-propane-1,2-di­amine-κ2N,N′]hexacopper(II)tetra­tungsten(V) hydrate] (YIMBAY; Higashikawa et al., 2007[Higashikawa, H., Okuda, K., Kishine, J., Masuhara, N. & Inoue, K. (2007). Chem. Lett. 36, 1022-1023.]). They were studied principally for their magnetic properties, compound IDEBOI being a ferrimagnet, while the other three compounds have one- or two-dimensional anti­ferromagnetic properties.

5. Synthesis and crystallization

Compound (I): (R)-propane-1,2-di­amine (Lpn) was synthesized according to a reported procedure (Bernauer, 1971[Bernauer, K. (1971). Patentschrift (Switz.) CH 509239, A 19710630.]). The pH of an aqueous solution of Lpn·HCl (0.1 mmol in 1 ml of water) was adjusted to 7–8 by the addition of an aqueous solution of KOH (0.12 mmol in 0.3 ml of water). To this mixture, a solution of CuSO4·5H2O (0.1 mmol) in 0.8 ml of water was added under an argon atmosphere. A glass tube (ca 8 mm diameter, ca 20 cm long) was charged with this solution, and a mixture of methanol and H2O (1:2, 1.5 ml) was gently added as a buffer layer. A solution of Na2[Fe(CN)5NO] (0.07 mmol) in methanol/H2O (1:1, 1 ml) was then added carefully as a third layer under an argon atmosphere, and then the tube was sealed. Crystals of complex (I)[link] grew as violet blocks after several weeks. Elemental analysis for C11H22N10CuFeO2, found: C, 29.86; H, 5.07; N, 31.93%. calc: C, 29.64; H, 4.97 N, 31.42%.

Compound (II): Dark-blue block-like crystals of compound (II)[link] were prepared in a similar manner to those of (I)[link], but this time using K3[Cr(CN)6] instead of Na2[Fe(CN)5NO]. Elemental analysis for C30H70N24Cu3Cr2O5, found: C, 30.87; H, 5.80; N, 28.41%. calc: C, 31.56; H, 6.18 N, 29.44%.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the water mol­ecule H atoms were located in difference Fourier maps and refined with distance restraints of O—H = 0.84 (2) Å and with Uiso(H) = 1.5Ueq(O). The N- and C-bound H atoms were included in calculated positions and treated as riding atoms: N—H = 0.89 Å, C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms. It was not possible to locate the H atoms of the disordered water mol­ecule, OW5A/OW5B, in compound (II)[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [CuFe(C3H10N2)2(CN)5(NO)]·H2O [Cr2Cu3(CN)12(C3H10N2)6]·5H2O
Mr 445.77 1141.72
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 173 173
a, b, c (Å) 6.7987 (3), 17.891 (1), 15.7161 (8) 10.1474 (10), 17.6136 (10), 15.5376 (14)
β (°) 100.482 (4) 103.973 (11)
V3) 1879.73 (17) 2694.9 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.93 1.61
Crystal size (mm) 0.45 × 0.38 × 0.35 0.40 × 0.30 × 0.30
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
Absorption correction Multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.572, 0.740 0.583, 0.678
No. of measured, independent and observed [I > 2σ(I)] reflections 22802, 9961, 8537 21461, 10308, 4948
Rint 0.033 0.085
(sin θ/λ)max−1) 0.688 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03 0.052, 0.131, 0.79
No. of reflections 9961 10308
No. of parameters 467 594
No. of restraints 7 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.44 0.61, −1.05
Absolute structure Flack x determined using 3691 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 1754 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.038 (15) 0.00 (3)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) catena-Poly[[[bis[(R)-propane-1,2-diamine-κ2N,N']copper(II)]-µ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-µ-cyanido-κ2C:N] monohydrate] top
Crystal data top
[CuFe(C3H10N2)2(CN)5(NO)]·H2OF(000) = 916
Mr = 445.77Dx = 1.575 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.7987 (3) ÅCell parameters from 22904 reflections
b = 17.891 (1) Åθ = 1.8–29.3°
c = 15.7161 (8) ŵ = 1.93 mm1
β = 100.482 (4)°T = 173 K
V = 1879.73 (17) Å3Plate, violet
Z = 40.45 × 0.38 × 0.35 mm
Data collection top
Stoe IPDS 2
diffractometer
9961 independent reflections
Radiation source: fine-focus sealed tube8537 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
φ + ω scansθmax = 29.3°, θmin = 1.7°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 89
Tmin = 0.572, Tmax = 0.740k = 2424
22802 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.0779P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9961 reflectionsΔρmax = 0.55 e Å3
467 parametersΔρmin = 0.44 e Å3
7 restraintsAbsolute structure: Flack x determined using 3691 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.038 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10706 (10)0.11302 (3)0.41868 (5)0.02243 (16)
Fe10.07542 (12)0.24094 (3)0.11676 (5)0.01767 (16)
O10.4628 (7)0.2972 (2)0.1620 (3)0.0346 (11)
N10.0460 (9)0.1979 (3)0.3043 (4)0.0298 (12)
N20.3065 (8)0.2752 (2)0.1432 (3)0.0231 (10)
N30.3427 (9)0.1681 (4)0.0694 (5)0.0452 (16)
N40.2137 (9)0.0800 (3)0.0924 (5)0.0362 (14)
N50.1151 (9)0.3962 (3)0.1278 (4)0.0329 (12)
N60.0371 (9)0.2626 (3)0.0800 (4)0.0387 (12)
N70.0285 (8)0.1791 (3)0.4932 (4)0.0295 (11)
H7X0.10590.21200.46030.035*
H7Y0.10570.15160.52100.035*
N80.3547 (7)0.1695 (2)0.4694 (4)0.0257 (10)
H8X0.43230.14150.50870.031*
H8Y0.42340.18170.42830.031*
N90.2476 (8)0.0400 (3)0.3514 (3)0.0279 (10)
H9X0.27530.06210.30420.033*
H9Y0.36220.02530.38390.033*
N100.1344 (8)0.0507 (3)0.3756 (4)0.0317 (11)
H10X0.16200.02210.41830.038*
H10Y0.23950.08000.35740.038*
C10.0529 (8)0.2162 (3)0.2339 (4)0.0215 (11)
C20.1916 (9)0.1970 (3)0.0875 (4)0.0253 (12)
C30.1650 (8)0.1403 (3)0.1026 (4)0.0233 (12)
C40.0513 (9)0.3374 (3)0.1251 (4)0.0246 (12)
C50.0524 (9)0.2554 (3)0.0071 (4)0.0278 (12)
C60.1233 (9)0.2186 (3)0.5568 (3)0.0363 (11)
H60.17320.18420.60610.044*
C70.2936 (7)0.2377 (2)0.5113 (3)0.0310 (9)
H7A0.25100.27680.46720.037*
H7B0.40790.25730.55360.037*
C80.0405 (14)0.2889 (4)0.5915 (6)0.058 (2)
H8A0.08200.27660.61310.087*
H8B0.01020.32590.54500.087*
H8C0.13980.30940.63880.087*
C90.1164 (7)0.0257 (2)0.3268 (3)0.0310 (9)
H90.12620.05880.37860.037*
C100.0953 (7)0.0037 (3)0.3051 (4)0.0341 (10)
H10A0.11280.03300.25080.041*
H10B0.19080.03860.29640.041*
C110.1796 (12)0.0705 (4)0.2547 (5)0.0423 (15)
H11A0.31560.08950.27390.063*
H11B0.17650.03840.20390.063*
H11C0.08760.11260.23960.063*
Cu20.39302 (11)0.55505 (3)0.08355 (5)0.02290 (16)
Fe20.41932 (12)0.43450 (3)0.38348 (5)0.01729 (16)
O20.0342 (6)0.3768 (2)0.3377 (3)0.0317 (10)
N110.4582 (9)0.4728 (3)0.1969 (4)0.0273 (11)
N120.1918 (7)0.4003 (2)0.3562 (3)0.0191 (9)
N130.8371 (9)0.5054 (3)0.4342 (4)0.0370 (13)
N140.2910 (8)0.5974 (3)0.4029 (4)0.0330 (12)
N150.6236 (9)0.2807 (3)0.3783 (4)0.0333 (13)
N160.4194 (8)0.4211 (3)0.5782 (4)0.0325 (11)
N170.5330 (7)0.4883 (3)0.0108 (3)0.0251 (10)
H17X0.57160.51470.03130.030*
H17Y0.64130.46850.04330.030*
N180.1419 (8)0.5031 (3)0.0242 (4)0.0304 (12)
H18X0.09980.47160.06090.036*
H18Y0.04540.53630.00690.036*
N190.2644 (9)0.6247 (3)0.1572 (4)0.0346 (12)
H19X0.17980.65530.12410.041*
H19Y0.19690.59890.19080.041*
N200.6299 (9)0.6241 (3)0.1114 (4)0.0320 (11)
H20X0.72980.60100.14600.038*
H20Y0.67190.63710.06310.038*
C120.4471 (9)0.4562 (3)0.2656 (4)0.0222 (12)
C130.6835 (10)0.4773 (3)0.4159 (4)0.0252 (12)
C140.3364 (9)0.5368 (3)0.3945 (4)0.0242 (12)
C150.5529 (9)0.3388 (3)0.3807 (4)0.0205 (11)
C160.4259 (8)0.4240 (3)0.5064 (4)0.0231 (11)
C170.3943 (8)0.4284 (2)0.0270 (4)0.0328 (10)
H170.39180.38900.01800.039*
C180.1901 (8)0.4623 (3)0.0496 (3)0.0361 (10)
H18A0.18520.49670.09920.043*
H18B0.08980.42240.06680.043*
C190.4588 (15)0.3922 (4)0.1060 (6)0.055 (2)
H19A0.46640.43060.14980.082*
H19B0.36080.35410.13020.082*
H19C0.59030.36890.08850.082*
C200.4301 (9)0.6681 (3)0.2113 (3)0.0406 (11)
H200.50330.63380.25650.049*
C210.5683 (9)0.6910 (3)0.1547 (4)0.0433 (13)
H21A0.68710.71560.18920.052*
H21B0.50180.72710.11100.052*
C220.3594 (13)0.7349 (4)0.2563 (6)0.053 (2)
H22A0.27140.71810.29550.080*
H22B0.28580.76900.21310.080*
H22C0.47510.76090.28970.080*
O1W0.5517 (7)0.1452 (3)0.2726 (4)0.0378 (11)
H1WA0.630 (9)0.142 (3)0.239 (4)0.057*
H1WB0.568 (10)0.189 (2)0.293 (4)0.057*
O2W0.9350 (8)0.5353 (2)0.2311 (3)0.0369 (11)
H2WA0.953 (10)0.526 (3)0.284 (2)0.055*
H2WB0.890 (10)0.576 (2)0.219 (4)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0191 (3)0.0216 (3)0.0265 (4)0.0003 (2)0.0040 (3)0.0021 (3)
Fe10.0175 (4)0.0162 (3)0.0195 (4)0.0007 (3)0.0038 (3)0.0003 (3)
O10.029 (2)0.0278 (19)0.046 (3)0.0116 (17)0.002 (2)0.0036 (18)
N10.034 (3)0.026 (2)0.031 (3)0.005 (2)0.008 (2)0.006 (2)
N20.028 (3)0.0141 (17)0.027 (3)0.0008 (17)0.005 (2)0.0002 (17)
N30.028 (3)0.050 (3)0.059 (4)0.015 (3)0.012 (3)0.011 (3)
N40.032 (3)0.023 (2)0.056 (4)0.0056 (19)0.013 (3)0.013 (2)
N50.032 (3)0.027 (2)0.042 (3)0.0061 (19)0.012 (2)0.003 (2)
N60.041 (3)0.049 (3)0.026 (2)0.007 (2)0.0034 (19)0.0001 (19)
N70.031 (3)0.026 (2)0.035 (3)0.0009 (19)0.015 (2)0.002 (2)
N80.021 (2)0.023 (2)0.033 (3)0.0003 (17)0.005 (2)0.0030 (18)
N90.032 (2)0.0208 (18)0.032 (2)0.0047 (16)0.0090 (19)0.0027 (16)
N100.027 (2)0.028 (2)0.037 (3)0.0066 (18)0.001 (2)0.0047 (19)
C10.018 (3)0.018 (2)0.029 (3)0.0020 (18)0.005 (2)0.002 (2)
C20.019 (3)0.027 (2)0.031 (3)0.0014 (19)0.008 (2)0.004 (2)
C30.014 (2)0.022 (2)0.035 (3)0.0017 (18)0.010 (2)0.007 (2)
C40.027 (3)0.021 (2)0.025 (3)0.001 (2)0.004 (2)0.0014 (19)
C50.032 (3)0.025 (2)0.026 (3)0.0048 (19)0.006 (2)0.0023 (19)
C60.052 (3)0.031 (2)0.029 (2)0.009 (2)0.013 (2)0.0021 (18)
C70.035 (2)0.0229 (18)0.036 (2)0.0059 (16)0.0075 (19)0.0023 (17)
C80.072 (5)0.048 (4)0.067 (5)0.018 (3)0.044 (4)0.021 (3)
C90.041 (2)0.0195 (17)0.030 (2)0.0031 (16)0.0007 (18)0.0028 (15)
C100.027 (2)0.032 (2)0.040 (3)0.0008 (17)0.003 (2)0.0026 (19)
C110.050 (3)0.036 (3)0.036 (3)0.011 (2)0.002 (3)0.008 (2)
Cu20.0230 (4)0.0224 (3)0.0236 (4)0.0011 (2)0.0049 (3)0.0016 (3)
Fe20.0186 (4)0.0160 (3)0.0179 (4)0.0002 (3)0.0050 (3)0.0009 (3)
O20.016 (2)0.035 (2)0.042 (3)0.0022 (16)0.0003 (19)0.0019 (19)
N110.034 (3)0.026 (2)0.023 (3)0.006 (2)0.006 (2)0.0050 (19)
N120.021 (2)0.0192 (18)0.018 (2)0.0023 (16)0.0054 (19)0.0003 (16)
N130.030 (3)0.040 (3)0.041 (3)0.006 (2)0.004 (3)0.006 (2)
N140.031 (3)0.026 (2)0.044 (3)0.0030 (19)0.013 (2)0.003 (2)
N150.040 (3)0.024 (2)0.039 (3)0.0061 (19)0.015 (3)0.005 (2)
N160.035 (2)0.036 (2)0.028 (2)0.0027 (17)0.0111 (19)0.0032 (16)
N170.024 (2)0.026 (2)0.027 (2)0.0036 (18)0.008 (2)0.0051 (18)
N180.025 (3)0.032 (2)0.032 (3)0.0036 (19)0.001 (2)0.009 (2)
N190.042 (3)0.026 (2)0.039 (3)0.0089 (18)0.016 (2)0.0073 (18)
N200.032 (3)0.027 (2)0.036 (3)0.0015 (17)0.004 (2)0.0051 (18)
C120.029 (3)0.0151 (19)0.022 (3)0.0019 (19)0.005 (2)0.0004 (19)
C130.030 (3)0.024 (2)0.022 (3)0.006 (2)0.008 (2)0.002 (2)
C140.029 (3)0.022 (2)0.022 (3)0.003 (2)0.006 (2)0.0006 (19)
C150.021 (3)0.023 (2)0.019 (3)0.0004 (18)0.009 (2)0.0044 (18)
C160.024 (2)0.022 (2)0.024 (3)0.0032 (16)0.006 (2)0.0024 (17)
C170.043 (3)0.0188 (19)0.038 (3)0.0012 (17)0.010 (2)0.0024 (17)
C180.042 (2)0.031 (2)0.032 (2)0.0077 (19)0.003 (2)0.0015 (18)
C190.082 (6)0.039 (3)0.048 (4)0.003 (3)0.022 (4)0.016 (3)
C200.061 (3)0.028 (2)0.032 (2)0.007 (2)0.005 (2)0.0031 (19)
C210.058 (3)0.022 (2)0.043 (3)0.005 (2)0.008 (3)0.0010 (19)
C220.066 (5)0.044 (3)0.050 (4)0.013 (3)0.009 (3)0.005 (3)
O1W0.028 (2)0.038 (2)0.047 (3)0.0050 (17)0.005 (2)0.0024 (19)
O2W0.036 (2)0.0306 (19)0.042 (3)0.0019 (16)0.002 (2)0.0006 (17)
Geometric parameters (Å, º) top
Cu1—N101.998 (5)Cu2—N202.013 (6)
Cu1—N82.001 (5)Cu2—N182.017 (5)
Cu1—N72.003 (5)Cu2—N112.290 (5)
Cu1—N92.026 (5)Cu2—N3ii3.112 (8)
Cu1—N12.333 (5)Fe2—N121.646 (5)
Cu1—N13i2.980 (9)Fe2—C141.933 (5)
Fe1—N21.667 (5)Fe2—C131.933 (6)
Fe1—C31.926 (5)Fe2—C161.933 (6)
Fe1—C11.927 (6)Fe2—C121.936 (6)
Fe1—C51.941 (6)Fe2—C151.942 (5)
Fe1—C41.945 (5)O2—N121.139 (6)
Fe1—C21.954 (6)N11—C121.135 (8)
O1—N21.121 (6)N13—C131.148 (8)
N1—C11.162 (8)N14—C141.141 (8)
N3—C21.139 (8)N15—C151.150 (7)
N4—C31.148 (7)N16—C161.139 (8)
N5—C41.141 (7)N17—C171.478 (7)
N6—C51.140 (8)N17—H17X0.8900
N7—C61.479 (7)N17—H17Y0.8900
N7—H7X0.8900N18—C181.457 (8)
N7—H7Y0.8900N18—H18X0.8900
N8—C71.482 (6)N18—H18Y0.8900
N8—H8X0.8900N19—C201.498 (8)
N8—H8Y0.8900N19—H19X0.8900
N9—C91.484 (6)N19—H19Y0.8900
N9—H9X0.8900N20—C211.475 (8)
N9—H9Y0.8900N20—H20X0.8900
N10—C101.454 (8)N20—H20Y0.8900
N10—H10X0.8900C17—C181.497 (7)
N10—H10Y0.8900C17—C191.534 (9)
C6—C71.506 (7)C17—H171.0000
C6—C81.519 (9)C18—H18A0.9900
C6—H61.0000C18—H18B0.9900
C7—H7A0.9900C19—H19A0.9800
C7—H7B0.9900C19—H19B0.9800
C8—H8A0.9800C19—H19C0.9800
C8—H8B0.9800C20—C211.465 (8)
C8—H8C0.9800C20—C221.513 (9)
C9—C101.511 (6)C20—H201.0000
C9—C111.512 (8)C21—H21A0.9900
C9—H91.0000C21—H21B0.9900
C10—H10A0.9900C22—H22A0.9800
C10—H10B0.9900C22—H22B0.9800
C11—H11A0.9800C22—H22C0.9800
C11—H11B0.9800O1W—H1WA0.82 (3)
C11—H11C0.9800O1W—H1WB0.84 (3)
Cu2—N192.006 (6)O2W—H2WA0.83 (3)
Cu2—N172.009 (5)O2W—H2WB0.80 (3)
N10—Cu1—N8175.5 (2)N19—Cu2—N2084.8 (2)
N10—Cu1—N795.2 (2)N17—Cu2—N2092.6 (2)
N8—Cu1—N785.0 (2)N19—Cu2—N1897.6 (3)
N10—Cu1—N984.3 (2)N17—Cu2—N1884.9 (2)
N8—Cu1—N995.2 (2)N20—Cu2—N18163.6 (2)
N7—Cu1—N9175.3 (2)N19—Cu2—N1189.6 (2)
N10—Cu1—N194.7 (2)N17—Cu2—N1190.9 (2)
N8—Cu1—N189.8 (2)N20—Cu2—N11101.0 (2)
N7—Cu1—N191.7 (2)N18—Cu2—N1195.2 (2)
N9—Cu1—N193.0 (2)N12—Fe2—C1495.8 (2)
N2—Fe1—C394.0 (2)N12—Fe2—C13178.5 (2)
N2—Fe1—C194.7 (3)C14—Fe2—C1382.7 (3)
C3—Fe1—C188.7 (3)N12—Fe2—C1694.3 (2)
N2—Fe1—C595.8 (3)C14—Fe2—C1687.5 (2)
C3—Fe1—C588.8 (3)C13—Fe2—C1685.6 (3)
C1—Fe1—C5169.4 (2)N12—Fe2—C1294.3 (2)
N2—Fe1—C493.7 (2)C14—Fe2—C1288.7 (2)
C3—Fe1—C4172.2 (3)C13—Fe2—C1285.7 (3)
C1—Fe1—C491.5 (2)C16—Fe2—C12170.9 (2)
C5—Fe1—C489.6 (3)N12—Fe2—C1595.0 (2)
N2—Fe1—C2177.8 (2)C14—Fe2—C15169.2 (3)
C3—Fe1—C284.1 (2)C13—Fe2—C1586.5 (2)
C1—Fe1—C284.3 (3)C16—Fe2—C1590.6 (2)
C5—Fe1—C285.2 (3)C12—Fe2—C1591.6 (2)
C4—Fe1—C288.2 (2)C12—N11—Cu2150.5 (5)
C1—N1—Cu1152.2 (5)O2—N12—Fe2179.6 (5)
O1—N2—Fe1178.7 (5)C17—N17—Cu2109.0 (3)
C6—N7—Cu1109.8 (4)C17—N17—H17X109.9
C6—N7—H7X110.1Cu2—N17—H17X109.9
Cu1—N7—H7X109.6C17—N17—H17Y110.0
C6—N7—H7Y109.6Cu2—N17—H17Y109.8
Cu1—N7—H7Y109.6H17X—N17—H17Y108.2
H7X—N7—H7Y108.2C18—N18—Cu2107.7 (4)
C7—N8—Cu1108.0 (3)C18—N18—H18X110.0
C7—N8—H8X109.6Cu2—N18—H18X109.8
Cu1—N8—H8X109.9C18—N18—H18Y110.5
C7—N8—H8Y110.4Cu2—N18—H18Y110.4
Cu1—N8—H8Y110.4H18X—N18—H18Y108.4
H8X—N8—H8Y108.5C20—N19—Cu2106.7 (4)
C9—N9—Cu1109.2 (4)C20—N19—H19X110.6
C9—N9—H9X110.1Cu2—N19—H19X110.4
Cu1—N9—H9X109.8C20—N19—H19Y110.3
C9—N9—H9Y109.7Cu2—N19—H19Y110.2
Cu1—N9—H9Y109.7H19X—N19—H19Y108.5
H9X—N9—H9Y108.3C21—N20—Cu2108.4 (4)
C10—N10—Cu1109.1 (4)C21—N20—H20X110.1
C10—N10—H10X109.5Cu2—N20—H20X109.9
Cu1—N10—H10X109.7C21—N20—H20Y110.0
C10—N10—H10Y110.1Cu2—N20—H20Y110.1
Cu1—N10—H10Y110.0H20X—N20—H20Y108.4
H10X—N10—H10Y108.3N11—C12—Fe2176.0 (5)
N1—C1—Fe1176.2 (5)N13—C13—Fe2177.3 (5)
N3—C2—Fe1176.4 (6)N14—C14—Fe2178.3 (6)
N4—C3—Fe1178.1 (6)N15—C15—Fe2176.9 (5)
N5—C4—Fe1175.3 (6)N16—C16—Fe2175.4 (5)
N6—C5—Fe1178.6 (6)N17—C17—C18107.4 (4)
N7—C6—C7106.9 (4)N17—C17—C19112.0 (5)
N7—C6—C8112.3 (6)C18—C17—C19111.6 (5)
C7—C6—C8110.5 (5)N17—C17—H17108.6
N7—C6—H6109.0C18—C17—H17108.6
C7—C6—H6109.0C19—C17—H17108.6
C8—C6—H6109.0N18—C18—C17110.3 (4)
N8—C7—C6109.0 (4)N18—C18—H18A109.6
N8—C7—H7A109.9C17—C18—H18A109.6
C6—C7—H7A109.9N18—C18—H18B109.6
N8—C7—H7B109.9C17—C18—H18B109.6
C6—C7—H7B109.9H18A—C18—H18B108.1
H7A—C7—H7B108.3C17—C19—H19A109.5
C6—C8—H8A109.5C17—C19—H19B109.5
C6—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8B109.5C17—C19—H19C109.5
C6—C8—H8C109.5H19A—C19—H19C109.5
H8A—C8—H8C109.5H19B—C19—H19C109.5
H8B—C8—H8C109.5C21—C20—N19107.5 (4)
N9—C9—C10106.6 (4)C21—C20—C22110.8 (5)
N9—C9—C11112.1 (5)N19—C20—C22113.9 (5)
C10—C9—C11113.8 (4)C21—C20—H20108.2
N9—C9—H9108.1N19—C20—H20108.2
C10—C9—H9108.1C22—C20—H20108.2
C11—C9—H9108.1C20—C21—N20108.6 (4)
N10—C10—C9109.1 (4)C20—C21—H21A110.0
N10—C10—H10A109.9N20—C21—H21A110.0
C9—C10—H10A109.9C20—C21—H21B110.0
N10—C10—H10B109.9N20—C21—H21B110.0
C9—C10—H10B109.9H21A—C21—H21B108.4
H10A—C10—H10B108.3C20—C22—H22A109.5
C9—C11—H11A109.5C20—C22—H22B109.5
C9—C11—H11B109.5H22A—C22—H22B109.5
H11A—C11—H11B109.5C20—C22—H22C109.5
C9—C11—H11C109.5H22A—C22—H22C109.5
H11A—C11—H11C109.5H22B—C22—H22C109.5
H11B—C11—H11C109.5H1WA—O1W—H1WB105 (4)
N19—Cu2—N17177.4 (2)H2WA—O2W—H2WB114 (4)
Cu1—N7—C6—C737.2 (5)Cu2—N17—C17—C1837.3 (5)
Cu1—N7—C6—C8158.6 (5)Cu2—N17—C17—C19160.2 (5)
Cu1—N8—C7—C639.8 (5)Cu2—N18—C18—C1738.5 (5)
N7—C6—C7—N850.9 (6)N17—C17—C18—N1850.7 (5)
C8—C6—C7—N8173.3 (6)C19—C17—C18—N18173.9 (5)
Cu1—N9—C9—C1037.3 (5)Cu2—N19—C20—C2144.0 (5)
Cu1—N9—C9—C11162.4 (4)Cu2—N19—C20—C22167.2 (5)
Cu1—N10—C10—C940.4 (5)N19—C20—C21—N2054.1 (6)
N9—C9—C10—N1051.3 (5)C22—C20—C21—N20179.1 (5)
C11—C9—C10—N10175.4 (5)Cu2—N20—C21—C2037.2 (5)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7X···N15iii0.892.393.257 (8)166
N7—H7Y···N14iv0.892.123.008 (8)173
N8—H8X···N14i0.892.273.120 (8)160
N8—H8Y···N150.892.453.209 (7)144
N9—H9X···O1W0.892.523.207 (7)135
N9—H9Y···N16i0.892.393.157 (7)144
N10—H10X···N16iv0.892.523.189 (7)132
N10—H10Y···O1Wiii0.892.112.962 (7)159
C11—H11A···N16i0.982.683.427 (9)134
N17—H17X···N4v0.892.223.051 (8)155
N17—H17Y···N5vi0.892.323.197 (7)169
N18—H18X···N50.892.373.224 (8)161
N18—H18Y···N4ii0.892.273.080 (8)151
N19—H19X···N6ii0.892.443.295 (8)160
N19—H19Y···O2Wiii0.892.303.142 (8)159
N20—H20X···O2W0.892.112.990 (8)172
O1W—H1WB···N150.84 (3)2.11 (3)2.928 (7)163 (6)
O2W—H2WA···N130.83 (3)2.65 (4)3.419 (9)155 (6)
O2W—H2WB···N200.80 (3)2.37 (5)2.990 (8)135 (6)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z; (iii) x1, y, z; (iv) x, y1/2, z+1; (v) x+1, y+1/2, z; (vi) x+1, y, z.
(II) Poly[[hexa-µ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N']dichromiun(III)tricopper(II)] pentahydrate] top
Crystal data top
[Cr2Cu3(CN)12(C3H10N2)6]·5H2OF(000) = 1186
Mr = 1141.72Dx = 1.407 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.1474 (10) ÅCell parameters from 21484 reflections
b = 17.6136 (10) Åθ = 0.1–24.9°
c = 15.5376 (14) ŵ = 1.61 mm1
β = 103.973 (11)°T = 173 K
V = 2694.9 (4) Å3Block, blue
Z = 20.40 × 0.30 × 0.30 mm
Data collection top
Stoe IPDS 2
diffractometer
10308 independent reflections
Radiation source: fine-focus sealed tube4948 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.085
φ + ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1212
Tmin = 0.583, Tmax = 0.678k = 2121
21461 measured reflectionsl = 1819
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max < 0.001
S = 0.79Δρmax = 0.61 e Å3
10308 reflectionsΔρmin = 1.05 e Å3
594 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 restraintsExtinction coefficient: 0.0020 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1754 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.51532 (17)0.16435 (9)0.17076 (10)0.0541 (5)
Cu21.02528 (15)0.55090 (9)0.33881 (9)0.0478 (5)
Cu30.73882 (16)0.20223 (11)0.24976 (12)0.0445 (4)
Cr10.48267 (17)0.07601 (10)0.02939 (11)0.0342 (5)
Cr20.99071 (17)0.31948 (10)0.52845 (11)0.0338 (5)
N10.5975 (11)0.2178 (7)0.0977 (7)0.051 (3)
N20.5099 (12)0.0213 (7)0.1496 (8)0.058 (3)
N30.4666 (13)0.1845 (8)0.1992 (8)0.065 (4)
N40.4687 (12)0.1554 (8)0.2882 (7)0.068 (4)
H4X0.53070.17930.32960.081*
H4Y0.46760.10680.30350.081*
N50.3166 (13)0.1839 (9)0.1257 (8)0.085 (4)
H5X0.28340.15340.07990.102*
H5Y0.30410.23170.10670.102*
N60.7170 (11)0.1651 (7)0.2205 (7)0.060 (3)
H6X0.74470.11950.24230.071*
H6Y0.73870.19880.26430.071*
N70.5640 (11)0.1689 (7)0.0541 (7)0.057 (3)
H7X0.54950.21570.03210.068*
H7Y0.51120.13720.01630.068*
N80.1712 (12)0.1231 (8)0.0411 (10)0.065 (4)
N90.3824 (11)0.0737 (7)0.1487 (8)0.057 (3)
N100.7910 (13)0.0303 (7)0.0181 (9)0.063 (4)
N110.8801 (12)0.1718 (7)0.4122 (8)0.059 (4)
N121.0084 (10)0.4105 (7)0.3515 (8)0.047 (3)
N130.9876 (12)0.2109 (8)0.6935 (8)0.059 (3)
N140.8281 (10)0.5536 (7)0.2720 (7)0.052 (3)
H14X0.80910.59800.24430.063*
H14Y0.81140.51690.23150.063*
N150.9496 (11)0.5592 (7)0.4455 (7)0.057 (3)
H15X0.95280.51410.47170.068*
H15Y0.99920.59160.48400.068*
N161.2223 (12)0.5567 (8)0.4047 (9)0.081 (4)
H16X1.23090.58680.45180.098*
H16Y1.25200.51070.42370.098*
N171.1002 (11)0.5557 (7)0.2339 (8)0.067 (3)
H17X1.06590.51800.19710.081*
H17Y1.07620.59940.20570.081*
N181.0917 (12)0.4670 (7)0.6493 (8)0.056 (3)
N191.3045 (12)0.2783 (7)0.5541 (8)0.056 (3)
N200.6777 (12)0.3732 (7)0.4901 (8)0.060 (3)
N210.8943 (12)0.2578 (8)0.2240 (8)0.066 (4)
H21X0.86770.28310.17310.079*
H21Y0.92670.29100.26700.079*
N220.8271 (12)0.1100 (8)0.2148 (8)0.063 (4)
H22X0.86290.08250.26290.075*
H22Y0.76500.08170.17850.075*
N230.6505 (12)0.2948 (7)0.2834 (7)0.059 (3)
H23X0.69790.31200.33560.071*
H23Y0.64810.33100.24310.071*
N240.5846 (11)0.1492 (8)0.2809 (8)0.059 (3)
H24X0.52730.13250.23180.071*
H24Y0.61500.10930.31510.071*
C10.5538 (12)0.1684 (8)0.0494 (9)0.042 (3)
C20.4959 (12)0.0149 (8)0.0868 (9)0.042 (3)
C30.4714 (13)0.1428 (8)0.1401 (10)0.046 (3)
C40.336 (2)0.1892 (14)0.2814 (12)0.111 (4)
H4A0.29840.17050.33070.133*
H4B0.34540.24500.28710.133*
C50.241 (2)0.1708 (17)0.1968 (12)0.111 (4)
H50.15920.20440.18700.133*
C60.199 (2)0.0890 (13)0.1930 (13)0.111 (4)
H6A0.14380.07720.13360.166*
H6B0.28020.05670.20610.166*
H6C0.14590.07950.23680.166*
C70.7840 (14)0.1851 (9)0.1491 (9)0.064 (4)
H7A0.78440.24090.14170.076*
H7B0.87930.16720.16470.076*
C80.7079 (15)0.1482 (9)0.0637 (9)0.064 (4)
H80.71680.09190.07060.077*
C90.7626 (17)0.1715 (12)0.0140 (12)0.083 (5)
H9A0.71480.14370.06690.124*
H9B0.74890.22620.02420.124*
H9C0.85990.16000.00140.124*
C100.2848 (15)0.1048 (8)0.0364 (10)0.048 (4)
C110.4177 (13)0.0199 (9)0.1051 (9)0.045 (3)
C120.6798 (14)0.0468 (9)0.0239 (8)0.045 (3)
C130.9223 (11)0.2246 (8)0.4512 (7)0.038 (3)
C141.0025 (12)0.3780 (8)0.4143 (10)0.040 (3)
C150.9862 (12)0.2523 (8)0.6373 (9)0.044 (3)
C160.7459 (13)0.5435 (9)0.3339 (9)0.058 (4)
H16A0.74010.48880.34720.070*
H16B0.65280.56220.30770.070*
C170.8058 (14)0.5863 (9)0.4186 (9)0.059 (4)
H170.80770.64130.40320.071*
C180.7343 (17)0.5794 (11)0.4909 (11)0.080 (5)
H18A0.79160.60020.54590.120*
H18B0.71530.52580.49970.120*
H18C0.64870.60770.47500.120*
C191.3002 (18)0.5853 (13)0.3487 (14)0.108 (7)
H19A1.39730.57310.37320.130*
H19B1.29050.64110.34400.130*
C201.2512 (16)0.5496 (11)0.2590 (14)0.089 (6)
H201.28800.57960.21550.107*
C211.2885 (19)0.4656 (13)0.2508 (12)0.112 (7)
H21C1.38690.45910.27220.169*
H21B1.26030.44990.18860.169*
H21A1.24210.43420.28650.169*
C221.0531 (12)0.4149 (8)0.6067 (8)0.041 (3)
C231.1914 (14)0.2903 (7)0.5443 (8)0.041 (3)
C240.7905 (14)0.3520 (8)0.5069 (8)0.044 (3)
C251.0019 (17)0.2019 (12)0.2175 (12)0.087 (3)
H25A1.05750.18920.27730.104*
H25B1.06230.22340.18230.104*
C260.9301 (17)0.1304 (12)0.1719 (12)0.087 (3)
H260.88840.14160.10800.104*
C271.0398 (15)0.0766 (11)0.1785 (11)0.087 (3)
H27A1.07450.06160.24060.130*
H27B1.11300.10020.15660.130*
H27C1.00630.03170.14270.130*
C280.5164 (19)0.2764 (10)0.2887 (11)0.084 (6)
H28A0.45520.27680.22850.101*
H28B0.48360.31490.32500.101*
C290.5137 (17)0.2017 (11)0.3283 (11)0.078 (5)
H290.57140.20550.39020.094*
C300.3779 (18)0.1714 (12)0.3362 (13)0.111 (7)
H30A0.38820.11850.35640.166*
H30B0.31300.17390.27820.166*
H30C0.34440.20200.37910.166*
O1W0.4077 (9)0.4169 (5)0.4832 (7)0.065 (3)
H1WA0.387 (13)0.379 (6)0.511 (10)0.098*
H1WB0.485 (8)0.407 (8)0.475 (10)0.098*
O2W0.9673 (10)0.4758 (7)0.0537 (9)0.087 (3)
H2WA1.028 (14)0.477 (10)0.025 (11)0.130*
H2WB0.931 (17)0.432 (5)0.046 (13)0.130*
O3W0.6417 (16)0.0077 (9)0.3872 (9)0.116 (5)
H3WA0.726 (5)0.001 (15)0.404 (14)0.174*
H3WB0.606 (18)0.012 (15)0.426 (12)0.174*
O4W0.1006 (11)0.3169 (7)0.0730 (9)0.095 (4)
H4WA0.114 (15)0.338 (12)0.027 (8)0.143*
H4WB0.016 (4)0.314 (12)0.066 (11)0.143*
O5WA0.815 (4)0.362 (3)0.064 (3)0.056 (14)0.43 (17)
O5WB0.857 (12)0.327 (7)0.052 (4)0.13 (4)0.57 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0756 (11)0.0442 (11)0.0307 (8)0.0028 (8)0.0101 (7)0.0017 (7)
Cu20.0593 (10)0.0442 (10)0.0313 (8)0.0020 (8)0.0058 (7)0.0040 (7)
Cu30.0575 (9)0.0389 (8)0.0291 (6)0.0067 (7)0.0051 (6)0.0014 (6)
Cr10.0428 (10)0.0268 (12)0.0283 (10)0.0036 (8)0.0008 (8)0.0002 (9)
Cr20.0452 (10)0.0256 (12)0.0250 (10)0.0010 (8)0.0026 (8)0.0009 (8)
N10.068 (7)0.043 (8)0.024 (5)0.001 (6)0.023 (5)0.002 (5)
N20.102 (10)0.032 (7)0.037 (7)0.000 (6)0.012 (6)0.007 (6)
N30.106 (10)0.040 (8)0.045 (7)0.012 (7)0.008 (7)0.012 (6)
N40.080 (8)0.064 (9)0.047 (7)0.013 (7)0.008 (6)0.002 (6)
N50.097 (9)0.085 (11)0.060 (8)0.029 (9)0.007 (7)0.007 (8)
N60.085 (8)0.038 (7)0.040 (6)0.003 (6)0.016 (6)0.005 (6)
N70.078 (8)0.040 (7)0.040 (6)0.005 (7)0.010 (5)0.004 (6)
N80.049 (7)0.052 (8)0.088 (10)0.002 (6)0.007 (6)0.004 (7)
N90.064 (7)0.043 (8)0.049 (7)0.003 (6)0.015 (6)0.010 (6)
N100.064 (8)0.042 (8)0.084 (10)0.008 (6)0.018 (7)0.002 (7)
N110.086 (8)0.028 (7)0.045 (7)0.001 (6)0.023 (6)0.012 (6)
N120.061 (7)0.041 (8)0.036 (7)0.003 (5)0.008 (5)0.001 (6)
N130.089 (8)0.050 (8)0.041 (7)0.005 (7)0.020 (6)0.020 (7)
N140.070 (7)0.038 (7)0.041 (6)0.005 (6)0.003 (5)0.001 (6)
N150.079 (7)0.029 (7)0.046 (7)0.001 (6)0.016 (5)0.008 (6)
N160.067 (8)0.062 (9)0.099 (11)0.003 (7)0.010 (7)0.010 (8)
N170.081 (8)0.053 (8)0.064 (8)0.009 (7)0.007 (6)0.012 (6)
N180.077 (8)0.026 (7)0.054 (7)0.006 (6)0.007 (6)0.010 (6)
N190.058 (8)0.050 (8)0.056 (8)0.003 (6)0.009 (6)0.001 (6)
N200.056 (7)0.060 (8)0.061 (8)0.011 (6)0.006 (6)0.013 (6)
N210.097 (9)0.055 (8)0.032 (7)0.029 (7)0.008 (6)0.000 (6)
N220.069 (8)0.063 (9)0.039 (7)0.005 (6)0.018 (6)0.005 (6)
N230.078 (9)0.061 (9)0.031 (6)0.003 (6)0.000 (6)0.005 (6)
N240.079 (8)0.060 (9)0.032 (6)0.005 (6)0.001 (6)0.001 (6)
C10.047 (7)0.036 (8)0.035 (7)0.005 (6)0.008 (6)0.018 (7)
C20.045 (7)0.041 (9)0.037 (8)0.006 (6)0.005 (6)0.006 (7)
C30.054 (8)0.028 (8)0.049 (9)0.003 (6)0.001 (6)0.011 (7)
C40.123 (9)0.132 (11)0.079 (7)0.000 (9)0.028 (6)0.008 (9)
C50.123 (9)0.132 (11)0.079 (7)0.000 (9)0.028 (6)0.008 (9)
C60.123 (9)0.132 (11)0.079 (7)0.000 (9)0.028 (6)0.008 (9)
C70.072 (9)0.055 (10)0.054 (9)0.005 (8)0.004 (7)0.009 (8)
C80.093 (11)0.049 (10)0.048 (8)0.009 (8)0.014 (7)0.007 (7)
C90.112 (12)0.058 (11)0.086 (12)0.002 (10)0.039 (10)0.012 (10)
C100.068 (9)0.027 (8)0.046 (9)0.009 (7)0.004 (7)0.001 (6)
C110.051 (8)0.037 (9)0.042 (8)0.011 (6)0.002 (6)0.015 (7)
C120.047 (8)0.046 (9)0.038 (7)0.016 (7)0.005 (6)0.004 (7)
C130.048 (7)0.037 (9)0.020 (6)0.013 (6)0.011 (5)0.009 (6)
C140.045 (7)0.023 (8)0.046 (9)0.009 (5)0.000 (6)0.005 (7)
C150.055 (8)0.040 (9)0.036 (8)0.005 (6)0.007 (6)0.015 (7)
C160.045 (8)0.053 (10)0.069 (10)0.002 (7)0.003 (7)0.009 (8)
C170.080 (10)0.042 (9)0.061 (9)0.008 (7)0.030 (8)0.002 (7)
C180.108 (13)0.061 (12)0.081 (12)0.011 (10)0.045 (10)0.002 (10)
C190.080 (13)0.104 (16)0.121 (17)0.026 (11)0.015 (12)0.039 (14)
C200.061 (10)0.077 (13)0.144 (18)0.011 (10)0.050 (11)0.026 (13)
C210.105 (14)0.15 (2)0.084 (13)0.036 (14)0.020 (10)0.028 (13)
C220.055 (8)0.033 (8)0.030 (7)0.010 (6)0.000 (6)0.013 (6)
C230.053 (8)0.033 (8)0.028 (7)0.010 (6)0.007 (6)0.008 (6)
C240.068 (9)0.031 (8)0.032 (7)0.000 (7)0.007 (6)0.001 (6)
C250.077 (7)0.105 (9)0.074 (7)0.009 (6)0.012 (5)0.006 (6)
C260.077 (7)0.105 (9)0.074 (7)0.009 (6)0.012 (5)0.006 (6)
C270.077 (7)0.105 (9)0.074 (7)0.009 (6)0.012 (5)0.006 (6)
C280.108 (15)0.086 (14)0.059 (10)0.040 (11)0.023 (9)0.010 (9)
C290.087 (12)0.087 (14)0.065 (10)0.012 (11)0.028 (9)0.012 (10)
C300.104 (14)0.135 (18)0.115 (16)0.022 (13)0.066 (12)0.006 (13)
O1W0.053 (6)0.052 (6)0.092 (8)0.005 (5)0.018 (5)0.015 (5)
O2W0.047 (7)0.091 (9)0.123 (10)0.004 (6)0.020 (6)0.018 (8)
O3W0.155 (13)0.102 (11)0.098 (10)0.047 (10)0.046 (9)0.047 (8)
O4W0.090 (8)0.076 (9)0.131 (11)0.023 (7)0.050 (7)0.041 (7)
O5WA0.06 (2)0.04 (2)0.057 (17)0.009 (18)0.007 (11)0.006 (16)
O5WB0.17 (5)0.11 (6)0.09 (2)0.10 (5)0.04 (3)0.06 (3)
Geometric parameters (Å, º) top
Cu1—N71.992 (12)N21—H21Y0.8900
Cu1—N51.998 (12)N22—C261.42 (2)
Cu1—N41.999 (12)N22—H22X0.8900
Cu1—N62.006 (10)N22—H22Y0.8900
Cu1—N22.540 (12)N23—C281.42 (2)
Cu1—N3i2.698 (14)N23—H23X0.8900
Cu2—N171.960 (12)N23—H23Y0.8900
Cu2—N151.993 (12)N24—C291.47 (2)
Cu2—N162.017 (11)N24—H24X0.8900
Cu2—N142.020 (10)N24—H24Y0.8900
Cu2—N122.490 (12)C4—C51.47 (2)
Cu2—N13ii2.860 (14)C4—H4A0.9900
Cu3—N211.978 (12)C4—H4B0.9900
Cu3—N241.981 (12)C5—C61.50 (3)
Cu3—N231.990 (13)C5—H51.0000
Cu3—N221.993 (14)C6—H6A0.9800
Cu3—N12.465 (9)C6—H6B0.9800
Cu3—N112.639 (12)C6—H6C0.9800
Cr1—C122.047 (15)C7—C81.512 (18)
Cr1—C102.049 (16)C7—H7A0.9900
Cr1—C12.060 (14)C7—H7B0.9900
Cr1—C32.065 (16)C8—C91.50 (2)
Cr1—C112.073 (16)C8—H81.0000
Cr1—C22.078 (15)C9—H9A0.9800
Cr2—C232.057 (15)C9—H9B0.9800
Cr2—C242.059 (15)C9—H9C0.9800
Cr2—C152.074 (16)C16—C171.511 (19)
Cr2—C132.077 (13)C16—H16A0.9900
Cr2—C142.080 (16)C16—H16B0.9900
Cr2—C222.081 (15)C17—C181.48 (2)
N1—C11.163 (16)C17—H171.0000
N2—C21.146 (16)C18—H18A0.9800
N3—C31.168 (17)C18—H18B0.9800
N4—C41.45 (2)C18—H18C0.9800
N4—H4X0.8900C19—C201.50 (3)
N4—H4Y0.8900C19—H19A0.9900
N5—C51.51 (2)C19—H19B0.9900
N5—H5X0.8900C20—C211.54 (3)
N5—H5Y0.8900C20—H201.0000
N6—C71.476 (18)C21—H21C0.9800
N6—H6X0.8900C21—H21B0.9800
N6—H6Y0.8900C21—H21A0.9800
N7—C81.478 (17)C25—C261.54 (3)
N7—H7X0.8900C25—H25A0.9900
N7—H7Y0.8900C25—H25B0.9900
N8—C101.182 (17)C26—C271.45 (2)
N9—C111.171 (18)C26—H261.0000
N10—C121.148 (16)C27—H27A0.9800
N11—C131.136 (16)C27—H27B0.9800
N12—C141.145 (16)C27—H27C0.9800
N13—C151.135 (17)C28—C291.46 (2)
N14—C161.429 (17)C28—H28A0.9900
N14—H14X0.8900C28—H28B0.9900
N14—H14Y0.8900C29—C301.51 (2)
N15—C171.496 (17)C29—H291.0000
N15—H15X0.8900C30—H30A0.9800
N15—H15Y0.8900C30—H30B0.9800
N16—C191.40 (2)C30—H30C0.9800
N16—H16X0.8900O1W—H1WA0.85 (3)
N16—H16Y0.8900O1W—H1WB0.84 (3)
N17—C201.491 (18)O2W—H2WA0.85 (3)
N17—H17X0.8900O2W—H2WB0.85 (3)
N17—H17Y0.8900O3W—H3WA0.85 (3)
N18—C221.143 (17)O3W—H3WB0.85 (3)
N19—C231.140 (15)O4W—H4WA0.84 (3)
N20—C241.172 (15)O4W—H4WB0.84 (3)
N21—C251.49 (2)O5WA—O5WB0.80 (16)
N21—H21X0.8900
N7—Cu1—N597.2 (5)N1—C1—Cr1176.1 (10)
N7—Cu1—N4177.7 (6)N2—C2—Cr1175.7 (12)
N5—Cu1—N483.8 (5)N3—C3—Cr1175.7 (12)
N7—Cu1—N684.1 (5)N4—C4—C5111.8 (17)
N5—Cu1—N6169.5 (6)N4—C4—H4A109.2
N4—Cu1—N695.3 (5)C5—C4—H4A109.2
N17—Cu2—N15173.3 (5)N4—C4—H4B109.2
N17—Cu2—N1683.4 (6)C5—C4—H4B109.2
N15—Cu2—N1696.2 (5)H4A—C4—H4B107.9
N17—Cu2—N1496.1 (5)C4—C5—C6112 (2)
N15—Cu2—N1483.9 (4)C4—C5—N5106.4 (16)
N16—Cu2—N14175.7 (6)C6—C5—N5107.9 (19)
N21—Cu3—N24177.3 (6)C4—C5—H5110.3
N21—Cu3—N2394.6 (6)C6—C5—H5110.3
N24—Cu3—N2383.7 (6)N5—C5—H5110.3
N21—Cu3—N2285.1 (6)C5—C6—H6A109.5
N24—Cu3—N2296.6 (5)C5—C6—H6B109.5
N23—Cu3—N22179.4 (6)H6A—C6—H6B109.5
N21—Cu3—N193.4 (4)C5—C6—H6C109.5
N24—Cu3—N188.6 (4)H6A—C6—H6C109.5
N23—Cu3—N188.1 (4)H6B—C6—H6C109.5
N22—Cu3—N191.4 (4)N6—C7—C8109.1 (12)
C12—Cr1—C10179.4 (6)N6—C7—H7A109.9
C12—Cr1—C188.6 (5)C8—C7—H7A109.9
C10—Cr1—C191.9 (5)N6—C7—H7B109.9
C12—Cr1—C392.0 (5)C8—C7—H7B109.9
C10—Cr1—C387.6 (6)H7A—C7—H7B108.3
C1—Cr1—C389.2 (5)N7—C8—C9113.6 (12)
C12—Cr1—C1189.6 (5)N7—C8—C7105.4 (11)
C10—Cr1—C1189.9 (5)C9—C8—C7112.3 (14)
C1—Cr1—C11177.5 (5)N7—C8—H8108.5
C3—Cr1—C1192.6 (5)C9—C8—H8108.5
C12—Cr1—C288.6 (5)C7—C8—H8108.5
C10—Cr1—C291.8 (5)C8—C9—H9A109.5
C1—Cr1—C287.3 (5)C8—C9—H9B109.5
C3—Cr1—C2176.4 (5)H9A—C9—H9B109.5
C11—Cr1—C290.9 (5)C8—C9—H9C109.5
C23—Cr2—C24177.0 (5)H9A—C9—H9C109.5
C23—Cr2—C1588.6 (5)H9B—C9—H9C109.5
C24—Cr2—C1594.4 (5)N8—C10—Cr1178.5 (13)
C23—Cr2—C1392.9 (5)N9—C11—Cr1178.9 (14)
C24—Cr2—C1387.2 (5)N10—C12—Cr1178.0 (12)
C15—Cr2—C1386.7 (5)N11—C13—Cr2175.9 (13)
C23—Cr2—C1488.1 (5)N12—C14—Cr2179.6 (12)
C24—Cr2—C1488.9 (5)N13—C15—Cr2174.5 (13)
C15—Cr2—C14174.6 (5)N14—C16—C17110.3 (11)
C13—Cr2—C1489.2 (5)N14—C16—H16A109.6
C23—Cr2—C2288.8 (5)C17—C16—H16A109.6
C24—Cr2—C2291.1 (5)N14—C16—H16B109.6
C15—Cr2—C2292.7 (5)C17—C16—H16B109.6
C13—Cr2—C22178.2 (5)H16A—C16—H16B108.1
C14—Cr2—C2291.5 (5)C18—C17—N15112.7 (12)
C1—N1—Cu3125.3 (10)C18—C17—C16116.9 (14)
C4—N4—Cu1108.7 (9)N15—C17—C16104.1 (10)
C4—N4—H4X109.9C18—C17—H17107.6
Cu1—N4—H4X109.9N15—C17—H17107.6
C4—N4—H4Y110.0C16—C17—H17107.6
Cu1—N4—H4Y109.9C17—C18—H18A109.5
H4X—N4—H4Y108.3C17—C18—H18B109.5
C5—N5—Cu1111.5 (10)H18A—C18—H18B109.5
C5—N5—H5X109.3C17—C18—H18C109.5
Cu1—N5—H5X109.3H18A—C18—H18C109.5
C5—N5—H5Y109.3H18B—C18—H18C109.5
Cu1—N5—H5Y109.3N16—C19—C20108.4 (15)
H5X—N5—H5Y108.0N16—C19—H19A110.0
C7—N6—Cu1108.9 (8)C20—C19—H19A110.0
C7—N6—H6X109.9N16—C19—H19B110.0
Cu1—N6—H6X109.9C20—C19—H19B110.0
C7—N6—H6Y109.9H19A—C19—H19B108.4
Cu1—N6—H6Y109.9N17—C20—C19107.6 (14)
H6X—N6—H6Y108.3N17—C20—C21107.8 (15)
C8—N7—Cu1110.8 (8)C19—C20—C21116.5 (17)
C8—N7—H7X109.5N17—C20—H20108.2
Cu1—N7—H7X109.5C19—C20—H20108.2
C8—N7—H7Y109.5C21—C20—H20108.2
Cu1—N7—H7Y109.5C20—C21—H21C109.5
H7X—N7—H7Y108.1C20—C21—H21B109.5
C16—N14—Cu2108.5 (8)H21C—C21—H21B109.5
C16—N14—H14X110.0C20—C21—H21A109.5
Cu2—N14—H14X110.0H21C—C21—H21A109.5
C16—N14—H14Y110.0H21B—C21—H21A109.5
Cu2—N14—H14Y110.0N18—C22—Cr2177.7 (13)
H14X—N14—H14Y108.4N19—C23—Cr2176.2 (12)
C17—N15—Cu2109.7 (7)N20—C24—Cr2175.8 (12)
C17—N15—H15X109.7N21—C25—C26107.4 (13)
Cu2—N15—H15X109.7N21—C25—H25A110.2
C17—N15—H15Y109.7C26—C25—H25A110.2
Cu2—N15—H15Y109.7N21—C25—H25B110.2
H15X—N15—H15Y108.2C26—C25—H25B110.2
C19—N16—Cu2110.0 (11)H25A—C25—H25B108.5
C19—N16—H16X109.7N22—C26—C27116.4 (17)
Cu2—N16—H16X109.7N22—C26—C25108.2 (15)
C19—N16—H16Y109.7C27—C26—C25103.5 (14)
Cu2—N16—H16Y109.7N22—C26—H26109.5
H16X—N16—H16Y108.2C27—C26—H26109.5
C20—N17—Cu2111.1 (10)C25—C26—H26109.5
C20—N17—H17X109.4C26—C27—H27A109.5
Cu2—N17—H17X109.4C26—C27—H27B109.5
C20—N17—H17Y109.4H27A—C27—H27B109.5
Cu2—N17—H17Y109.4C26—C27—H27C109.5
H17X—N17—H17Y108.0H27A—C27—H27C109.5
C25—N21—Cu3108.7 (11)H27B—C27—H27C109.5
C25—N21—H21X109.9N23—C28—C29110.3 (13)
Cu3—N21—H21X109.9N23—C28—H28A109.6
C25—N21—H21Y110.0C29—C28—H28A109.6
Cu3—N21—H21Y110.0N23—C28—H28B109.6
H21X—N21—H21Y108.4C29—C28—H28B109.6
C26—N22—Cu3110.7 (11)H28A—C28—H28B108.1
C26—N22—H22X109.5C28—C29—N24107.1 (13)
Cu3—N22—H22X109.5C28—C29—C30117.7 (16)
C26—N22—H22Y109.5N24—C29—C30112.6 (16)
Cu3—N22—H22Y109.5C28—C29—H29106.2
H22X—N22—H22Y108.1N24—C29—H29106.2
C28—N23—Cu3109.1 (10)C30—C29—H29106.2
C28—N23—H23X109.9C29—C30—H30A109.5
Cu3—N23—H23X109.9C29—C30—H30B109.5
C28—N23—H23Y109.9H30A—C30—H30B109.5
Cu3—N23—H23Y109.9C29—C30—H30C109.5
H23X—N23—H23Y108.3H30A—C30—H30C109.5
C29—N24—Cu3109.7 (10)H30B—C30—H30C109.5
C29—N24—H24X109.7H1WA—O1W—H1WB106 (5)
Cu3—N24—H24X109.7H2WA—O2W—H2WB107 (5)
C29—N24—H24Y109.7H3WA—O3W—H3WB106 (5)
Cu3—N24—H24Y109.8H4WA—O4W—H4WB106 (5)
H24X—N24—H24Y108.2
Cu1—N4—C4—C540 (2)Cu2—N16—C19—C2041.6 (19)
N4—C4—C5—C671 (2)Cu2—N17—C20—C1931.8 (17)
N4—C4—C5—N546 (3)Cu2—N17—C20—C2194.5 (15)
Cu1—N5—C5—C431 (2)N16—C19—C20—N1748 (2)
Cu1—N5—C5—C689.2 (15)N16—C19—C20—C2173 (2)
Cu1—N6—C7—C838.0 (14)Cu3—N21—C25—C2637.3 (16)
Cu1—N7—C8—C9163.4 (11)Cu3—N22—C26—C27153.0 (12)
Cu1—N7—C8—C740.1 (14)Cu3—N22—C26—C2537.1 (16)
N6—C7—C8—N750.8 (15)N21—C25—C26—N2249.1 (19)
N6—C7—C8—C9174.9 (13)N21—C25—C26—C27173.1 (13)
Cu2—N14—C16—C1739.5 (14)Cu3—N23—C28—C2939.2 (15)
Cu2—N15—C17—C18168.7 (12)N23—C28—C29—N2449.8 (18)
Cu2—N15—C17—C1641.0 (13)N23—C28—C29—C30177.9 (14)
N14—C16—C17—C18178.1 (13)Cu3—N24—C29—C2836.3 (15)
N14—C16—C17—N1553.1 (15)Cu3—N24—C29—C30167.2 (12)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4X···N19iii0.892.273.153 (16)171
N5—H5X···O5WAi0.892.243.04 (4)150
N5—H5X···O5WBi0.892.222.89 (3)133
N5—H5Y···O4W0.892.503.177 (17)133
N6—H6X···N18iii0.892.563.373 (17)152
N7—H7X···N1i0.892.493.219 (15)139
N14—H14Y···N9iv0.892.623.360 (16)142
N15—H15Y···N11ii0.892.273.156 (15)177
N16—H16Y···O1Wv0.892.323.159 (16)158
N17—H17X···O2W0.892.333.132 (18)150
N17—H17Y···N13ii0.892.693.166 (19)115
N17—H17Y···O4Wvi0.892.603.361 (18)145
N21—H21X···O5WA0.892.163.04 (5)170
N21—H21X···O5WB0.892.022.88 (3)163
N21—H21Y···N120.892.513.376 (17)164
N22—H22X···N18iii0.892.433.262 (17)155
N23—H23X···N200.892.683.445 (18)144
N23—H23Y···N9iv0.892.203.086 (17)172
N24—H24Y···O3W0.892.092.969 (18)167
O1W—H1WA···N19vii0.85 (3)2.14 (5)2.972 (16)167 (16)
O1W—H1WB···N200.84 (3)2.00 (5)2.822 (15)164 (14)
O2W—H2WA···N10viii0.85 (3)2.09 (10)2.811 (17)143 (15)
O2W—H2WB···O5WA0.85 (3)1.78 (9)2.56 (6)153 (16)
O2W—H2WB···O5WB0.85 (3)2.01 (8)2.85 (7)169 (20)
O3W—H3WA···N18iii0.85 (3)2.27 (14)2.982 (19)142 (20)
O3W—H3WB···O1Wix0.85 (3)1.92 (10)2.712 (17)156 (21)
O4W—H4WA···N10i0.84 (3)2.53 (18)3.104 (17)126 (18)
O4W—H4WB···N8x0.84 (3)2.16 (13)2.883 (16)145 (19)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+1; (iv) x+1, y+1/2, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x1, y, z; (viii) x+2, y+1/2, z; (ix) x+1, y1/2, z+1; (x) x, y1/2, z.
 

Footnotes

Current address: Characterization & Quality Assurance, Micosystems Division, Swiss Center for Electronics and Microelectronics, rue Jaquet-Droz 1, CH-2001 Neuchâtel, Switzerland.

Acknowledgements

This work was financed by the Swiss National Science Foundation (grant No. 111732). We thank Professor K. Bernaur, University of Neuchâtel, for the gift of the ligand (R)-propane-1,2-di­amine.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc., Dalton Trans. pp. 1349–1356.  Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006). Inorg. Chem. 45, 9826–9833.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernauer, K. (1971). Patentschrift (Switz.) CH 509239, A 19710630.  Google Scholar
First citationChen, Z. N., Wang, J. L., Qiu, J., Miao, F. G. & Tang, W. X. (1995). Inorg. Chem. 34, 2255–2257.  CSD CrossRef CAS Google Scholar
First citationCoronado, E., Giménez-Saiz, C., Martínez-Agudo, J. M., Nuez, A., Romero, F. M. & Stoeckli-Evans, H. (2003). Polyhedron, 22, 2435–2440.  CSD CrossRef CAS Google Scholar
First citationCui, Y., Evans, O. R., Ngo, H. L., White, P. S. & Lin, W. (2002). Angew. Chem. Int. Ed. 41, 1159–1162.  CrossRef CAS Google Scholar
First citationFukita, N., Ohba, M., Ōkawa, H., Matsuda, K. & Iwamura, N. (1998). Inorg. Chem. 37, 842–848.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashikawa, H., Okuda, K., Kishine, J., Masuhara, N. & Inoue, K. (2007). Chem. Lett. 36, 1022–1023.  CSD CrossRef CAS Google Scholar
First citationImai, H., Inoue, K., Kikuchi, K., Yoshida, Y., Ito, M., Sunahara, T. & Onaka, S. (2004). Angew. Chem. Int. Ed. 43, 5618–5621.  Web of Science CSD CrossRef CAS Google Scholar
First citationImai, H., Inoue, K., Ohba, M., Okawa, M. & Kikuchi, K. (2003). Synth. Met. 137, 919–920.  CSD CrossRef CAS Google Scholar
First citationInoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. & Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 140, 4242–4245.  CrossRef Google Scholar
First citationKahn, O. (1993). Molecular Magnetism, pp. 1–380. Weinheim: VCH.  Google Scholar
First citationKaneko, W., Kitagawa, S. & Ohba, M. (2006). J. Am. Chem. Soc. 129, 248–249.  Web of Science CSD CrossRef Google Scholar
First citationKou, H.-Z., Bu, W.-M., Gao, S., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (2000). J. Chem. Soc. Dalton. Trans. pp. 2996–3000.  CSD CrossRef Google Scholar
First citationKou, H.-Z., Gao, S., Bu, W.-M., Liao, D.-Z., Ma, B.-Q., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (1999). J. Chem. Soc. Dalton. Trans. pp. 2477–2480.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMironov, Y. V., Naumov, N. G., Brylev, K. A., Efremova, O. A., Fedorov, V. E. & Hegetschweiler, K. (2004). Angew. Chem. Int. Ed. 43, 1297–1300.  CSD CrossRef CAS Google Scholar
First citationOhba, M., Usuki, N., Fukita, N. & Ōkawa, H. (1999). Angew. Chem. Int. Ed. 38, 1795–1798.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81–86.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmékal, Z., Trávnícek, Z., Marek, J. & Nádvornik, N. (2000). Aust. J. Chem. 53, 225–228.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanase, S. & Reedijk, J. (2006). Coord. Chem. Rev. 250, 2501–2510.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Q. & Luo, C.-L. (2006). J. Mater. Chem. 16, 4657–4664.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 392-397
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds