organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o249-o250

Crystal structure of 1-benzyl­sulfonyl-1,2,3,4-tetra­hydro­quinoline

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 March 2015; accepted 7 March 2015; online 21 March 2015)

In the title compound, C16H17NO2S, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 354.6°. The dihedral angle between the planes of the aromatic rings is 74.15 (10)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating C(8) and C(4) chains propagating along [100] and [010], respectively, which together generate (001) sheets.

1. Related literature

For the biological properties of 1,2,3,4-tetra­hydro­quinoline derivatives, see: Bendale et al. (2007[Bendale, P., et al. (2007). J. Med. Chem. 50, 4585-4605.]); Singer et al. (2005[Singer, J. M., Barr, B. M., Coughenour, L. L., Gregory, T. F. & Walters, M. A. (2005). Bioorg. Med. Chem. Lett. 15, 4560-4563.]). For related structures, see: Jeyaseelan et al. (2014[Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.], 2015[Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o20.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17NO2S

  • Mr = 287.36

  • Monoclinic, P 21 /n

  • a = 13.5690 (5) Å

  • b = 6.7128 (2) Å

  • c = 16.8317 (6) Å

  • β = 110.243 (1)°

  • V = 1438.44 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.960

  • 19601 measured reflections

  • 2529 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.08

  • 2529 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.69 3.573 (2) 158
C10—H10A⋯O2ii 0.97 2.68 3.575 (2) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Introduction top

Heterocyclic compounds of 1,2,3,4-tetra­hydro­quinoline derivatives play important role in synthesize anti­malarial (Bendale et al., 2007), anti­psychotic (Singer et al., 2005) drugs. Keeping this in mind we have synthised a series of 1,2,3,4-tetra­hydro­quinoline with derivatives of Sulfonyl chlorides they exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound(I) and the results are compared with crystal structure of 1- tosyl-1,2,3,4-tetra­hydro­quinoline­(II) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline­(III) (Jeyaseelan et al., 2014a & 2014b).

Structural commentary top

The molecular structure of the title compound (I) is shown in Fig. 1. In all the compounds (I),(II) and (III), the C1/C6–C9/N1 rings are in a half-chair conformation, but the bond-angle sum at the N atom in the compound (I), (II) and (III) are 354.61°, 347.9° and 350.2°, respectively.

The crystal structure of (I) features C14–H14···O1 weak hydrogen bonds generating C(8) chain along [100] and C10–H10A···O2 weak hydrogen bonds generating C(4) along [010]: together these generate (001) sheets.

Experimental top

To a stirred solution of 1,2,3,4-tetra­hydro­quinoline (10 mmol) in 30 ml dry methyl­ene dichloride, tri­ethyl­amine (15 mmol) was added at 0–5°C. To this reaction mixture phenyl­methane­sulfonyl chloride (12 mmol) in 10 ml dry di­chloro­methane was added drop wise. After 2h of stirring at 15–20°C, the reaction mixture was washed with 5% Na2CO3 and brine. The organic phase was dried over Na2SO4 and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized from a solvent mixture of ethyl acetate and hexane (1:2) to yield colourless prisms of (I).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.97 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Related literature top

For the biological properties of 1,2,3,4-tetrahydroquinoline derivatives, see: Bendale et al. (2007); Singer et al. (2005). For related structures, see: Jeyaseelan et al. (2014, 2015).

Structure description top

Heterocyclic compounds of 1,2,3,4-tetra­hydro­quinoline derivatives play important role in synthesize anti­malarial (Bendale et al., 2007), anti­psychotic (Singer et al., 2005) drugs. Keeping this in mind we have synthised a series of 1,2,3,4-tetra­hydro­quinoline with derivatives of Sulfonyl chlorides they exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound(I) and the results are compared with crystal structure of 1- tosyl-1,2,3,4-tetra­hydro­quinoline­(II) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline­(III) (Jeyaseelan et al., 2014a & 2014b).

The molecular structure of the title compound (I) is shown in Fig. 1. In all the compounds (I),(II) and (III), the C1/C6–C9/N1 rings are in a half-chair conformation, but the bond-angle sum at the N atom in the compound (I), (II) and (III) are 354.61°, 347.9° and 350.2°, respectively.

The crystal structure of (I) features C14–H14···O1 weak hydrogen bonds generating C(8) chain along [100] and C10–H10A···O2 weak hydrogen bonds generating C(4) along [010]: together these generate (001) sheets.

To a stirred solution of 1,2,3,4-tetra­hydro­quinoline (10 mmol) in 30 ml dry methyl­ene dichloride, tri­ethyl­amine (15 mmol) was added at 0–5°C. To this reaction mixture phenyl­methane­sulfonyl chloride (12 mmol) in 10 ml dry di­chloro­methane was added drop wise. After 2h of stirring at 15–20°C, the reaction mixture was washed with 5% Na2CO3 and brine. The organic phase was dried over Na2SO4 and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized from a solvent mixture of ethyl acetate and hexane (1:2) to yield colourless prisms of (I).

For the biological properties of 1,2,3,4-tetrahydroquinoline derivatives, see: Bendale et al. (2007); Singer et al. (2005). For related structures, see: Jeyaseelan et al. (2014, 2015).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.97 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, dashed lines indicates the C—H···O weak hydrogen bonds in the ab plane.
1-Benzylsulfonyl-1,2,3,4-tetrahydroquinoline top
Crystal data top
C16H17NO2SPrism
Mr = 287.36Dx = 1.327 Mg m3
Monoclinic, P21/nMelting point: 514 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.5690 (5) ÅCell parameters from 2529 reflections
b = 6.7128 (2) Åθ = 1.7–25°
c = 16.8317 (6) ŵ = 0.23 mm1
β = 110.243 (1)°T = 295 K
V = 1438.44 (9) Å3Prism, colourless
Z = 40.24 × 0.20 × 0.18 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 1.90 pixels mm-1θmax = 25.0°, θmin = 1.7°
phi and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 77
Tmin = 0.947, Tmax = 0.960l = 1920
19601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3073P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.38 e Å3
0 constraints
Crystal data top
C16H17NO2SV = 1438.44 (9) Å3
Mr = 287.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5690 (5) ŵ = 0.23 mm1
b = 6.7128 (2) ÅT = 295 K
c = 16.8317 (6) Å0.24 × 0.20 × 0.18 mm
β = 110.243 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2264 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.960Rint = 0.051
19601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
2529 reflectionsΔρmin = 0.38 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36706 (3)0.52581 (6)0.20696 (2)0.04077 (16)
N10.47088 (9)0.40403 (18)0.20485 (8)0.0377 (3)
O10.37882 (9)0.73063 (17)0.18920 (8)0.0515 (3)
C110.47391 (11)0.5739 (2)0.37732 (10)0.0395 (4)
C10.60202 (12)0.6674 (2)0.22242 (10)0.0419 (4)
H10.58270.72250.26560.050*
O20.27373 (9)0.4236 (2)0.15618 (8)0.0634 (4)
C60.55139 (11)0.4980 (2)0.18039 (9)0.0334 (3)
C120.55291 (13)0.4389 (3)0.41491 (11)0.0488 (4)
H120.54300.30510.39990.059*
C50.58183 (13)0.4084 (2)0.11812 (10)0.0448 (4)
C100.37241 (13)0.5045 (3)0.31416 (11)0.0477 (4)
H10A0.31550.58180.32110.057*
H10B0.36150.36620.32570.057*
C90.46039 (15)0.1865 (2)0.19022 (11)0.0516 (4)
H9A0.40170.13680.20470.062*
H9B0.52360.12000.22600.062*
C160.49091 (15)0.7733 (3)0.40037 (12)0.0547 (4)
H160.43870.86690.37580.066*
C20.68073 (13)0.7538 (3)0.20020 (13)0.0555 (5)
H20.71370.86890.22750.067*
C30.71051 (15)0.6695 (3)0.13749 (14)0.0679 (6)
H30.76330.72800.12210.081*
C130.64626 (15)0.4993 (3)0.47439 (12)0.0632 (5)
H130.69840.40610.49960.076*
C140.66280 (15)0.6951 (4)0.49666 (12)0.0646 (6)
H140.72620.73540.53660.078*
C70.53441 (17)0.2149 (3)0.07532 (12)0.0625 (5)
H7A0.51130.23330.01450.075*
H7B0.58850.11310.09030.075*
C40.66236 (16)0.4995 (3)0.09785 (14)0.0634 (5)
H40.68400.44310.05620.076*
C80.44285 (18)0.1420 (3)0.09850 (13)0.0667 (6)
H8A0.43460.00050.08880.080*
H8B0.37890.20670.06290.080*
C150.58539 (18)0.8325 (3)0.45973 (13)0.0654 (5)
H150.59660.96620.47470.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0284 (2)0.0475 (3)0.0419 (3)0.00260 (14)0.00645 (17)0.00823 (16)
N10.0394 (7)0.0304 (6)0.0437 (7)0.0068 (5)0.0147 (5)0.0008 (5)
O10.0455 (7)0.0438 (7)0.0627 (7)0.0085 (5)0.0155 (6)0.0154 (5)
C110.0358 (8)0.0506 (9)0.0373 (8)0.0036 (7)0.0193 (6)0.0022 (7)
C10.0376 (8)0.0386 (8)0.0478 (9)0.0041 (6)0.0127 (7)0.0021 (7)
O20.0352 (6)0.0850 (9)0.0578 (8)0.0170 (6)0.0004 (5)0.0074 (7)
C60.0308 (7)0.0326 (7)0.0349 (8)0.0002 (5)0.0088 (6)0.0035 (6)
C120.0503 (10)0.0531 (10)0.0431 (9)0.0111 (8)0.0165 (8)0.0011 (7)
C50.0502 (9)0.0451 (9)0.0392 (8)0.0065 (7)0.0157 (7)0.0047 (7)
C100.0347 (8)0.0621 (10)0.0496 (10)0.0006 (7)0.0187 (7)0.0069 (8)
C90.0659 (11)0.0311 (8)0.0573 (10)0.0103 (7)0.0205 (9)0.0010 (7)
C160.0605 (11)0.0515 (10)0.0575 (11)0.0093 (8)0.0272 (9)0.0028 (8)
C20.0405 (9)0.0500 (10)0.0697 (12)0.0115 (7)0.0108 (8)0.0085 (9)
C30.0477 (10)0.0809 (14)0.0836 (14)0.0053 (10)0.0336 (10)0.0238 (12)
C130.0463 (10)0.0953 (16)0.0442 (10)0.0197 (10)0.0107 (8)0.0000 (10)
C140.0509 (10)0.1025 (17)0.0424 (10)0.0162 (11)0.0185 (8)0.0123 (10)
C70.0889 (14)0.0505 (10)0.0481 (10)0.0043 (10)0.0236 (10)0.0111 (8)
C40.0630 (12)0.0794 (14)0.0605 (12)0.0072 (10)0.0375 (10)0.0079 (10)
C80.0895 (15)0.0432 (10)0.0611 (12)0.0192 (10)0.0180 (10)0.0149 (9)
C150.0842 (14)0.0607 (12)0.0607 (12)0.0209 (11)0.0368 (11)0.0156 (10)
Geometric parameters (Å, º) top
S1—O11.4277 (12)C9—H9A0.9700
S1—O21.4341 (12)C9—H9B0.9700
S1—N11.6397 (13)C16—C151.383 (3)
S1—C101.7863 (18)C16—H160.9300
N1—C61.4397 (18)C2—C31.376 (3)
N1—C91.4794 (19)C2—H20.9300
C11—C121.379 (2)C3—C41.368 (3)
C11—C161.390 (2)C3—H30.9300
C11—C101.494 (2)C13—C141.364 (3)
C1—C21.376 (2)C13—H130.9300
C1—C61.389 (2)C14—C151.374 (3)
C1—H10.9300C14—H140.9300
C6—C51.389 (2)C7—C81.507 (3)
C12—C131.376 (3)C7—H7A0.9700
C12—H120.9300C7—H7B0.9700
C5—C41.394 (3)C4—H40.9300
C5—C71.517 (2)C8—H8A0.9700
C10—H10A0.9700C8—H8B0.9700
C10—H10B0.9700C15—H150.9300
C9—C81.508 (3)
O1—S1—O2118.41 (8)H9A—C9—H9B108.2
O1—S1—N1108.44 (7)C15—C16—C11120.08 (18)
O2—S1—N1109.67 (8)C15—C16—H16120.0
O1—S1—C10108.68 (8)C11—C16—H16120.0
O2—S1—C10106.42 (8)C1—C2—C3119.78 (17)
N1—S1—C10104.30 (7)C1—C2—H2120.1
C6—N1—C9115.08 (12)C3—C2—H2120.1
C6—N1—S1122.03 (10)C4—C3—C2119.99 (17)
C9—N1—S1117.50 (10)C4—C3—H3120.0
C12—C11—C16118.48 (16)C2—C3—H3120.0
C12—C11—C10120.05 (15)C14—C13—C12120.44 (18)
C16—C11—C10121.46 (15)C14—C13—H13119.8
C2—C1—C6120.02 (16)C12—C13—H13119.8
C2—C1—H1120.0C13—C14—C15119.68 (18)
C6—C1—H1120.0C13—C14—H14120.2
C1—C6—C5120.99 (14)C15—C14—H14120.2
C1—C6—N1120.25 (13)C8—C7—C5114.05 (15)
C5—C6—N1118.62 (13)C8—C7—H7A108.7
C13—C12—C11120.92 (17)C5—C7—H7A108.7
C13—C12—H12119.5C8—C7—H7B108.7
C11—C12—H12119.5C5—C7—H7B108.7
C6—C5—C4117.24 (16)H7A—C7—H7B107.6
C6—C5—C7122.76 (15)C3—C4—C5121.93 (18)
C4—C5—C7119.95 (16)C3—C4—H4119.0
C11—C10—S1113.53 (11)C5—C4—H4119.0
C11—C10—H10A108.9C7—C8—C9110.39 (15)
S1—C10—H10A108.9C7—C8—H8A109.6
C11—C10—H10B108.9C9—C8—H8A109.6
S1—C10—H10B108.9C7—C8—H8B109.6
H10A—C10—H10B107.7C9—C8—H8B109.6
N1—C9—C8109.76 (14)H8A—C8—H8B108.1
N1—C9—H9A109.7C14—C15—C16120.39 (19)
C8—C9—H9A109.7C14—C15—H15119.8
N1—C9—H9B109.7C16—C15—H15119.8
C8—C9—H9B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.693.573 (2)158
C10—H10A···O2ii0.972.683.575 (2)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.693.573 (2)158
C10—H10A···O2ii0.972.683.575 (2)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

SJ thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISE scheme (reference No. VGST/CISE/GRD-192/2013-14). BSPM thanks Rajegowda, Department of Studies and Research in Chemistry, UCS, Tumkur University, Karnataka 572 103, India, for his support.

References

First citationBendale, P., et al. (2007). J. Med. Chem. 50, 4585–4605.  CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o20.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinger, J. M., Barr, B. M., Coughenour, L. L., Gregory, T. F. & Walters, M. A. (2005). Bioorg. Med. Chem. Lett. 15, 4560–4563.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o249-o250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds