organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o244-o245

Crystal structure of 2′-hy­dr­oxy­aceto­phenone 4-methyl­thio­semicarbazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: thahira@upm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 March 2015; accepted 11 March 2015; online 18 March 2015)

In the organic mol­ecule of the title hydrate, C11H15N3OS·H2O, {systematic name: 3-ethyl-1-{(E)-[1-(2-hy­droxy­phen­yl)ethyl­idene]amino}­thio­urea monohydrate}, a dihedral angle of 5.39 (2)° is formed between the hy­droxy­benzene ring and the non-H atoms comprising the side chain (r.m.s. deviation = 0.0625 Å), with the major deviation from planarity noted for the terminal ethyl group [the C—N—C—C torsion angle = −172.17 (13)°]. The N—H H atoms are syn and an intra­molecular hy­droxy–imine O—H⋯N hydrogen bond is noted. In the crystal, the N-bonded H atoms form hydrogen bonds to symmetry-related water mol­ecules, and the latter form donor inter­actions with the hy­droxy O atom and with a hy­droxy­benzene ring, forming a O—H⋯π inter­action. The hydrogen bonding leads to supra­molecular tubes aligned along the b axis. The tubes are connected into layers via C—H⋯O inter­actions, and these stack along the c axis with no directional inter­actions between them.

1. Related literature

For background to thio­semicarbazones and their coordination chemistry, see: Mazlan et al. (2014[Mazlan, N. A., Ravoof, T. B. S., Tiekink, E. R. T., Tahir, M. I. M., Veerakumarasivam, A. & Crouse, K. A. (2014). Transition Met. Chem. 39, 633-639.]). The conformational flexibility in these mol­ecules is reflected in the structure of the 4-methyl derivative where one mol­ecule comprising the asymmetric unit is approximately planar and the other exhibits a clear twist between the hy­droxy­benzene and side chain, and in the structure of the 6-meth­oxy derivative where these residues are almost normal to each other, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2014[Anderson, B. J., Hall, J. R. & Jasinski, J. P. (2014). Acta Cryst. E70, o735.]). For synthesis and methodology, see: Omar et al. (2014[Omar, S. A., Ravoof, T. B., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119-126.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H15N3OS·H2O

  • Mr = 255.33

  • Triclinic, [P \overline 1]

  • a = 6.7947 (5) Å

  • b = 8.5169 (8) Å

  • c = 11.1199 (9) Å

  • α = 84.948 (7)°

  • β = 81.825 (6)°

  • γ = 84.084 (7)°

  • V = 631.81 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.25 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

2.2. Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.923, Tmax = 1.000

  • 8119 measured reflections

  • 2408 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.03

  • 2408 reflections

  • 171 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.84 (1) 1.76 (1) 2.5292 (16) 150 (2)
N1—H1N⋯O1Wi 0.86 (2) 2.09 (2) 2.8918 (17) 156 (2)
N3—H3N⋯O1Wi 0.87 (2) 2.16 (2) 2.9625 (18) 154 (2)
O1W—H1W⋯O1 0.84 (2) 1.96 (2) 2.7894 (16) 174 (2)
O1W—H2WCg1ii 0.83 (1) 2.86 (1) 3.4165 (13) 127 (1)
C5—H5⋯O1iii 0.95 2.56 3.3702 (18) 143
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background to thiosemicarbazones and their coordination chemistry, see: Mazlan et al. (2014). The conformational flexibility in these molecules is reflected in the structure of the 4-methyl derivative where one molecule comprising the asymmetric unit is approximately planar and the other exhibits a clear twist between the hydroxybenzene and side chain, and in the structure of the 6-methoxy derivative where these residues are almost normal to each other, see: Anderson et al. (2012, 2014). For synthesis and methodology, see: Omar et al. (2014).

Experimental top

4-Methyl-3-thiosemicarbazide (0.02 mol) was dissolved in hot ethanol (95%; 40 ml). A solution of 0.02 mol of 2'-hydroxyacetophenone was added drop-wise into the first solution. The mixture was heated and stirred to reduce the volume to half of its initial volume. Then, it was allowed to stand at room temperature until a white crystalline precipitate formed. The precipitate was then collected and recrystallized from ethanol and dried over silica gel. Colourless crystals were obtained from the ethanolic solution. Yield: 92%. M.pt: 116 °C. Anal. Found (Calc): C: 56.1 (55.7); H: 5.9 (6.4); N: 18.5 (17.7).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The O—H H atoms were refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The N—H H atoms were refined similarly with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

For background to thiosemicarbazones and their coordination chemistry, see: Mazlan et al. (2014). The conformational flexibility in these molecules is reflected in the structure of the 4-methyl derivative where one molecule comprising the asymmetric unit is approximately planar and the other exhibits a clear twist between the hydroxybenzene and side chain, and in the structure of the 6-methoxy derivative where these residues are almost normal to each other, see: Anderson et al. (2012, 2014). For synthesis and methodology, see: Omar et al. (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Two views of the supramolecular tube along the b axis sustained by O—H···O, N—H···O and O—H···π hydrogen bonding, shown as orange, blue and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the b axis. The O—H···O, N—H···O, O—H···π and C—H···O interactions are shown as orange, blue, purple and brown dashed lines, respectively.
3-Ethyl-1-[(E)-[1-(2-hydroxyphenyl)ethylidene]amino]thiourea monohydrate top
Crystal data top
C11H15N3OS·H2OZ = 2
Mr = 255.33F(000) = 272
Triclinic, P1Dx = 1.342 Mg m3
a = 6.7947 (5) ÅCu Kα radiation, λ = 1.5418 Å
b = 8.5169 (8) ÅCell parameters from 4230 reflections
c = 11.1199 (9) Åθ = 4.0–71.4°
α = 84.948 (7)°µ = 2.25 mm1
β = 81.825 (6)°T = 100 K
γ = 84.084 (7)°Prism, pale-yellow
V = 631.81 (9) Å30.30 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.1952 pixels mm-1θmax = 71.5°, θmin = 4.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 109
Tmin = 0.923, Tmax = 1.000l = 1313
8119 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1686P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2408 reflectionsΔρmax = 0.33 e Å3
171 parametersΔρmin = 0.25 e Å3
Crystal data top
C11H15N3OS·H2Oγ = 84.084 (7)°
Mr = 255.33V = 631.81 (9) Å3
Triclinic, P1Z = 2
a = 6.7947 (5) ÅCu Kα radiation
b = 8.5169 (8) ŵ = 2.25 mm1
c = 11.1199 (9) ÅT = 100 K
α = 84.948 (7)°0.30 × 0.20 × 0.10 mm
β = 81.825 (6)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2187 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.000Rint = 0.026
8119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
2408 reflectionsΔρmin = 0.25 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28553 (5)0.84923 (4)0.30332 (3)0.01932 (14)
O10.34603 (16)0.67711 (12)0.02373 (9)0.0193 (2)
H1O0.325 (3)0.7637 (15)0.0568 (16)0.029*
N10.24861 (18)1.08372 (15)0.12735 (11)0.0163 (3)
H1N0.224 (3)1.1825 (17)0.1053 (16)0.020*
N20.26593 (17)0.97046 (14)0.04679 (11)0.0150 (3)
N30.24119 (18)1.16243 (16)0.31656 (11)0.0174 (3)
H3N0.227 (3)1.2558 (18)0.2795 (15)0.021*
C10.2583 (2)1.03944 (18)0.24810 (13)0.0160 (3)
C20.2391 (2)1.00570 (18)0.06558 (13)0.0153 (3)
C2'0.1872 (2)1.16980 (18)0.12094 (13)0.0192 (3)
H2'10.14971.24230.05610.029*
H2'20.07501.16860.16720.029*
H2'30.30301.20530.17550.029*
C30.2674 (2)0.86995 (18)0.14260 (13)0.0154 (3)
C40.3216 (2)0.71390 (18)0.09556 (13)0.0164 (3)
C50.3532 (2)0.58929 (18)0.17128 (14)0.0193 (3)
H50.39140.48540.13910.023*
C60.3291 (2)0.61601 (19)0.29349 (14)0.0214 (3)
H60.35030.53030.34450.026*
C70.2739 (2)0.76788 (19)0.34155 (13)0.0206 (3)
H70.25620.78630.42500.025*
C80.2451 (2)0.89188 (19)0.26665 (13)0.0179 (3)
H80.20890.99550.30040.021*
C90.2364 (2)1.14844 (19)0.44845 (13)0.0202 (3)
H9A0.36781.10220.46970.024*
H9B0.13441.07730.48590.024*
C100.1872 (3)1.3101 (2)0.49712 (14)0.0271 (4)
H10A0.28921.37970.46050.041*
H10B0.18401.30030.58580.041*
H10C0.05631.35490.47660.041*
O1W0.14391 (17)0.42112 (13)0.13237 (11)0.0243 (3)
H1W0.200 (3)0.5018 (17)0.1042 (17)0.036*
H2W0.0232 (16)0.452 (2)0.1447 (19)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0267 (2)0.0159 (2)0.01519 (19)0.00163 (15)0.00399 (14)0.00149 (14)
O10.0279 (6)0.0139 (5)0.0164 (5)0.0010 (4)0.0056 (4)0.0005 (4)
N10.0221 (6)0.0121 (6)0.0147 (6)0.0017 (5)0.0036 (5)0.0003 (5)
N20.0142 (6)0.0156 (6)0.0151 (6)0.0024 (5)0.0014 (4)0.0012 (5)
N30.0215 (6)0.0155 (7)0.0151 (6)0.0020 (5)0.0033 (5)0.0005 (5)
C10.0126 (6)0.0191 (8)0.0166 (7)0.0030 (6)0.0022 (5)0.0002 (6)
C20.0126 (6)0.0168 (8)0.0165 (7)0.0037 (5)0.0014 (5)0.0014 (6)
C2'0.0239 (7)0.0174 (8)0.0164 (7)0.0017 (6)0.0036 (6)0.0003 (6)
C30.0120 (6)0.0179 (8)0.0164 (7)0.0034 (5)0.0016 (5)0.0007 (6)
C40.0146 (6)0.0187 (8)0.0162 (7)0.0045 (6)0.0028 (5)0.0017 (6)
C50.0191 (7)0.0152 (8)0.0239 (7)0.0037 (6)0.0032 (6)0.0006 (6)
C60.0202 (7)0.0235 (9)0.0218 (7)0.0070 (6)0.0013 (6)0.0066 (6)
C70.0198 (7)0.0276 (9)0.0156 (7)0.0063 (6)0.0036 (5)0.0014 (6)
C80.0162 (7)0.0194 (8)0.0179 (7)0.0027 (6)0.0027 (5)0.0021 (6)
C90.0232 (7)0.0228 (8)0.0151 (7)0.0049 (6)0.0028 (5)0.0006 (6)
C100.0361 (9)0.0257 (9)0.0204 (8)0.0072 (7)0.0004 (6)0.0072 (6)
O1W0.0227 (6)0.0173 (6)0.0314 (6)0.0025 (5)0.0014 (5)0.0029 (5)
Geometric parameters (Å, º) top
S1—C11.6825 (16)C4—C51.393 (2)
O1—C41.3653 (17)C5—C61.388 (2)
O1—H1O0.843 (9)C5—H50.9500
N1—N21.3586 (17)C6—C71.391 (2)
N1—C11.3713 (18)C6—H60.9500
N1—H1N0.862 (14)C7—C81.383 (2)
N2—C21.2931 (18)C7—H70.9500
N3—C11.3344 (19)C8—H80.9500
N3—C91.4569 (18)C9—C101.511 (2)
N3—H3N0.865 (14)C9—H9A0.9900
C2—C31.480 (2)C9—H9B0.9900
C2—C2'1.505 (2)C10—H10A0.9800
C2'—H2'10.9800C10—H10B0.9800
C2'—H2'20.9800C10—H10C0.9800
C2'—H2'30.9800O1W—H1W0.834 (9)
C3—C81.403 (2)O1W—H2W0.831 (9)
C3—C41.417 (2)
C4—O1—H1O105.5 (13)C6—C5—C4120.42 (14)
N2—N1—C1119.33 (12)C6—C5—H5119.8
N2—N1—H1N121.6 (12)C4—C5—H5119.8
C1—N1—H1N119.0 (12)C5—C6—C7120.19 (14)
C2—N2—N1121.39 (13)C5—C6—H6119.9
C1—N3—C9124.21 (13)C7—C6—H6119.9
C1—N3—H3N116.9 (12)C8—C7—C6119.35 (13)
C9—N3—H3N118.8 (12)C8—C7—H7120.3
N3—C1—N1112.99 (13)C6—C7—H7120.3
N3—C1—S1123.95 (11)C7—C8—C3122.27 (14)
N1—C1—S1123.06 (11)C7—C8—H8118.9
N2—C2—C3115.00 (13)C3—C8—H8118.9
N2—C2—C2'125.29 (13)N3—C9—C10109.63 (13)
C3—C2—C2'119.70 (12)N3—C9—H9A109.7
C2—C2'—H2'1109.5C10—C9—H9A109.7
C2—C2'—H2'2109.5N3—C9—H9B109.7
H2'1—C2'—H2'2109.5C10—C9—H9B109.7
C2—C2'—H2'3109.5H9A—C9—H9B108.2
H2'1—C2'—H2'3109.5C9—C10—H10A109.5
H2'2—C2'—H2'3109.5C9—C10—H10B109.5
C8—C3—C4117.28 (13)H10A—C10—H10B109.5
C8—C3—C2120.87 (13)C9—C10—H10C109.5
C4—C3—C2121.84 (13)H10A—C10—H10C109.5
O1—C4—C5116.68 (13)H10B—C10—H10C109.5
O1—C4—C3122.84 (13)H1W—O1W—H2W105 (2)
C5—C4—C3120.48 (13)
C1—N1—N2—C2173.45 (12)C2—C3—C4—O11.8 (2)
C9—N3—C1—N1176.76 (12)C8—C3—C4—C50.8 (2)
C9—N3—C1—S12.4 (2)C2—C3—C4—C5177.99 (12)
N2—N1—C1—N3179.36 (12)O1—C4—C5—C6179.21 (12)
N2—N1—C1—S11.51 (19)C3—C4—C5—C61.0 (2)
N1—N2—C2—C3178.75 (11)C4—C5—C6—C70.3 (2)
N1—N2—C2—C2'0.0 (2)C5—C6—C7—C80.6 (2)
N2—C2—C3—C8179.27 (12)C6—C7—C8—C30.7 (2)
C2'—C2—C3—C80.4 (2)C4—C3—C8—C70.1 (2)
N2—C2—C3—C40.5 (2)C2—C3—C8—C7178.85 (13)
C2'—C2—C3—C4178.29 (12)C1—N3—C9—C10172.17 (13)
C8—C3—C4—O1179.39 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.84 (1)1.76 (1)2.5292 (16)150 (2)
N1—H1N···O1Wi0.86 (2)2.09 (2)2.8918 (17)156 (2)
N3—H3N···O1Wi0.87 (2)2.16 (2)2.9625 (18)154 (2)
O1W—H1W···O10.84 (2)1.96 (2)2.7894 (16)174 (2)
O1W—H2W···Cg1ii0.83 (1)2.86 (1)3.4165 (13)127 (1)
C5—H5···O1iii0.952.563.3702 (18)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.843 (14)1.763 (13)2.5292 (16)150.2 (17)
N1—H1N···O1Wi0.862 (15)2.086 (15)2.8918 (17)155.5 (16)
N3—H3N···O1Wi0.866 (16)2.161 (17)2.9625 (18)153.8 (16)
O1W—H1W···O10.835 (17)1.958 (17)2.7894 (16)173.7 (17)
O1W—H2W···Cg1ii0.831 (13)2.856 (14)3.4165 (13)126.5 (14)
C5—H5···O1iii0.952.563.3702 (18)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 9419400), Malaysian Fundamental Research Grant Scheme (FRGS No. 5524425) and the ScienceFund (Science Fund No. 5450726). We also thank Siti Khadijah Densabali for collecting the X-ray data. JJ wishes to acknowledge the Malaysian Government for sponsorship under the SGRA Scheme.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnderson, B. J., Hall, J. R. & Jasinski, J. P. (2014). Acta Cryst. E70, o735.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMazlan, N. A., Ravoof, T. B. S., Tiekink, E. R. T., Tahir, M. I. M., Veerakumarasivam, A. & Crouse, K. A. (2014). Transition Met. Chem. 39, 633–639.  CSD CrossRef CAS Google Scholar
First citationOmar, S. A., Ravoof, T. B., Tahir, M. I. M. & Crouse, K. A. (2014). Transition Met. Chem. 39, 119–126.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o244-o245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds