research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 421-423

Crystal structure of (E)-N-[(2-chloro-6-meth­­oxy­quinolin-3-yl)methyl­­idene]-9-ethyl-9H-carbazol-3-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamilnadu, India, and bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: drgtnarayanan@rediffmail.com, smurugavel27@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 March 2015; accepted 22 March 2015; online 28 March 2015)

In the title compound, C25H20ClN3O, the C=N bond of the central imine group adopts an E conformation. The mean planes through the essentially planar carbazole [maximum deviation = 0.052 (2)Å] and quinoline [maximum deviation = 0.050 (2) Å] ring systems form a dihedral angle of 50.2 (1)°. In the crystal, mol­ecules are linked by C—H⋯π and ππ inter­actions [centroid–centroid distances ranging from 3.635 (2) to 3.739 (2) Å], forming a three-dimensional supra­molecular network.

1. Chemical context

It has been reported that carbazole derivatives possess various biological activities, such as anti­tumor (Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]), anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). Carbazole derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronic devices such as colour displays, organic semiconductor lasers and solar cells (Friend et al., 1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121-128.]). These compounds are thermally and photochemically stable, which makes them useful materials for technological applications: for instance, the carbazole ring is easily funtionalized and covalently linked to other mol­ecules (Díaz et al., 2002[Díaz, J. L., Villacampa, B., López-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]). This enables its use as a convenient building block for the design and synthesis of mol­ecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). Quinoline derivatives are known to possess a variety of biological properties such as anti­malarial and anti­viral activity (Cunico et al., 2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]; Hartline et al., 2005[Hartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97-105.]). Against this background, and in order to obtain detailed information on its mol­ecular conformation in the solid state, the crystal structure of the title compound has been determined.

[Scheme 1]

2. Structural commentary

Fig. 1[link]. shows a displacement ellipsoid plot of (I)[link], with the atom-numbering scheme. The C=N bond of the central imine group adopts an E conformation. The mean planes through the essentially planar carbazole [N1/C1–C12; maximum deviation = 0.052 (2) Å for atom C12] and quinoline [N3/C16–C24; maximum deviation = 0.050 (2) Å for atom C16] ring systems form a dihedral angle of 50.2 (1)°. The sum of the bond angles around N1 (360.05°) of the pyrrole ring is in accordance with sp2 hybridization. Atom Cl1 deviates from the plane of the attached quinoline ring system by 0.100 (1) Å. The geometric parameters of the title mol­ecule agree well with those reported for similar structures (Murugavel et al., 2009[Murugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139-o140.]; Archana et al., 2011[Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are drawn as a small spheres of arbitrary radii.

3. Supra­molecular features

In the crystal, mol­ecules are linked by two C—H⋯π inter­actions; the first one between the benzene H atom of the carbazole ring system and the benzene ring of an adjacent mol­ecule, with a C1—H1⋯Cg1i and the second one between the benzene H atom of the carbazole ring system and the benzene ring of an adjacent mol­ecule, with a C7—H7⋯Cg2ii. The mol­ecules are further linked by ππ inter­actions with Cg3–Cg3iii, Cg3–Cg2iii, Cg2–Cg3iii, Cg4–Cg1iv and Cg1–Cg4iv separations of 3.735 (2), 3.739 (2), 3.739 (2), 3.635 (2) and 3.635 (2) Å, respectively, forming a three-dimensional supra­molecular network (Table 1[link] and Fig. 2[link]; Cg1, Cg2, Cg3 and Cg4 are the centroids of C18–C23 benzene ring, the C1–C3/C10–C12 benzene ring, the N1/C3/C4/C9/C10 pyrrole ring and the N3/C16–C18/C23/C24 pyridine ring, respectively; symmetry codes: (i) −x, −y, 1 − z; (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) 1 − x, −y, 1 − z and (iv) −x, 1 − y, 1 − z).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C18–C23 and C1–C3/C10–C12 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.93 2.87 3.718 (3) 152
C7—H7⋯Cg2ii 0.93 2.97 3.688 (2) 145
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound showing the C—H⋯π and ππ inter­actions, which lead to the formation of a three-dimensional supra­molecular network. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C18–C23 benzene ring, the C1–C3/C10–C12 benzene ring, the N1/C3/C4/C9/C10 pyrrole ring and the N3/C16–C18/C23/C24 pyridine ring, respectively.

4. Synthesis and crystallization

A 25 ml round-bottom flask was charged with dimedone (1 mmol), 2-chloro-6-meth­oxy­quinoline-3-carbaldehyde (1 mmol) 9-ethyl-9H-carbazol-3-amine (1 mmol) and sulfated SnO2-fly ash catalyst (50 mg) in water (15 ml) and was refluxed at 353 K for 5–10 minutes. The completion of the reaction was monitored by TLC (ethyl acetate and hexane as an eluent 20%). After completion, the reaction mixture was cooled to ambient temperature. Then di­chloro­methane (20 ml) was added and the organic layer filtered, dried on anhydrous Na2SO4 and the solvent removed using a rotary evaporator. The crude product was purified by column chromatography on silica gel (200 mesh) with hexane and ethyl acetate (4:1) as eluent to afford the title compound in good yield (10%). Red blocks suitable for X-ray diffraction analysis were obtained by recrystallization from di­chloro­methane solution at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geom­etrically and constrained to ride on their parent atom with C—H = 0.93–0.97 Å and with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C25H20ClN3O
Mr 413.89
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.060 (3), 8.8231 (15), 15.332 (3)
β (°) 93.344 (3)
V3) 2033.9 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.24 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.951, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 20538, 4023, 2340
Rint 0.056
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.01
No. of reflections 4023
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.14
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-N-[(2-chloro-6-methoxyquinolin-3-yl)methylidene]-9-ethyl-9H-carbazol-3-amine top
Crystal data top
C25H20ClN3OF(000) = 864
Mr = 413.89Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4051 reflections
a = 15.060 (3) Åθ = 1.4–26.1°
b = 8.8231 (15) ŵ = 0.21 mm1
c = 15.332 (3) ÅT = 293 K
β = 93.344 (3)°Block, red
V = 2033.9 (6) Å30.24 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4023 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 26.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.951, Tmax = 0.967k = 1010
20538 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.145P]
where P = (Fo2 + 2Fc2)/3
4023 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06066 (5)0.06058 (9)0.30880 (4)0.0824 (3)
C100.43767 (14)0.0240 (2)0.62074 (13)0.0455 (6)
C110.35381 (15)0.0892 (3)0.61516 (14)0.0481 (6)
H110.34410.18140.64240.058*
N20.20216 (12)0.0956 (2)0.55982 (12)0.0541 (5)
O10.20036 (11)0.5826 (2)0.63150 (12)0.0760 (6)
C230.08229 (15)0.3293 (3)0.44161 (15)0.0531 (6)
N30.04814 (13)0.2485 (2)0.37581 (12)0.0585 (5)
N10.53829 (13)0.1591 (2)0.59420 (13)0.0562 (5)
C90.52392 (15)0.0703 (3)0.65834 (14)0.0484 (6)
C30.45006 (15)0.1178 (3)0.58178 (15)0.0491 (6)
C120.28459 (15)0.0167 (3)0.56899 (14)0.0497 (6)
C40.58357 (16)0.0465 (3)0.64053 (15)0.0524 (6)
C20.38021 (16)0.1946 (3)0.53925 (15)0.0566 (6)
H20.38850.29020.51550.068*
C240.02130 (16)0.1662 (3)0.39528 (15)0.0555 (6)
C180.04726 (14)0.3209 (3)0.52873 (15)0.0494 (6)
C190.08694 (15)0.4038 (3)0.59474 (15)0.0576 (6)
H190.06460.39640.65240.069*
C160.06697 (14)0.1538 (3)0.47843 (15)0.0509 (6)
C200.15802 (16)0.4946 (3)0.57397 (16)0.0583 (7)
C10.29845 (16)0.1263 (3)0.53286 (15)0.0569 (6)
H10.25100.17620.50380.068*
C220.15569 (16)0.4262 (3)0.42313 (17)0.0634 (7)
H220.17960.43450.36600.076*
C80.55487 (16)0.1987 (3)0.70283 (15)0.0590 (7)
H80.51590.27600.71610.071*
C170.02964 (14)0.2319 (3)0.54418 (15)0.0534 (6)
H170.05580.22600.60060.064*
C150.15054 (15)0.0715 (3)0.49281 (16)0.0566 (6)
H150.16640.00010.45200.068*
C60.70181 (18)0.0939 (4)0.70840 (17)0.0737 (8)
H60.76180.10430.72520.088*
C130.57753 (17)0.2968 (3)0.56101 (16)0.0649 (7)
H13A0.63990.27850.55220.078*
H13B0.54830.32150.50480.078*
C210.19161 (16)0.5068 (3)0.48695 (17)0.0635 (7)
H210.23920.57120.47310.076*
C50.67368 (17)0.0363 (3)0.66605 (16)0.0645 (7)
H50.71310.11420.65490.077*
C70.64419 (17)0.2099 (3)0.72704 (17)0.0691 (7)
H70.66580.29600.75610.083*
C250.17246 (19)0.5688 (4)0.72159 (18)0.0863 (9)
H25A0.18050.46600.74020.129*
H25B0.20730.63520.75550.129*
H25C0.11080.59570.72970.129*
C140.5698 (2)0.4287 (3)0.62109 (19)0.0851 (9)
H14A0.60010.40600.67640.128*
H14B0.59630.51640.59610.128*
H14C0.50820.44850.62930.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0740 (5)0.1134 (6)0.0590 (4)0.0144 (4)0.0030 (3)0.0197 (4)
C100.0480 (14)0.0460 (14)0.0432 (13)0.0059 (11)0.0087 (11)0.0064 (11)
C110.0540 (15)0.0480 (14)0.0428 (13)0.0056 (12)0.0066 (11)0.0009 (11)
N20.0459 (12)0.0633 (13)0.0525 (12)0.0033 (10)0.0018 (10)0.0017 (10)
O10.0624 (11)0.0998 (14)0.0659 (12)0.0237 (10)0.0059 (9)0.0051 (11)
C230.0431 (14)0.0651 (16)0.0504 (14)0.0048 (12)0.0039 (11)0.0000 (13)
N30.0499 (12)0.0747 (14)0.0498 (12)0.0013 (11)0.0053 (10)0.0042 (11)
N10.0583 (13)0.0539 (13)0.0571 (13)0.0147 (11)0.0091 (10)0.0023 (10)
C90.0499 (14)0.0558 (15)0.0401 (13)0.0044 (12)0.0069 (11)0.0048 (11)
C30.0498 (15)0.0504 (14)0.0479 (13)0.0068 (12)0.0084 (11)0.0065 (11)
C120.0471 (14)0.0561 (15)0.0460 (13)0.0032 (12)0.0035 (11)0.0032 (12)
C40.0533 (15)0.0620 (16)0.0423 (13)0.0087 (14)0.0051 (11)0.0084 (12)
C20.0667 (17)0.0448 (14)0.0584 (15)0.0052 (13)0.0043 (13)0.0011 (12)
C240.0496 (15)0.0677 (17)0.0495 (14)0.0050 (13)0.0039 (12)0.0042 (12)
C180.0382 (13)0.0596 (15)0.0500 (14)0.0034 (11)0.0004 (11)0.0039 (12)
C190.0478 (14)0.0759 (17)0.0487 (14)0.0004 (13)0.0000 (11)0.0013 (13)
C160.0425 (13)0.0601 (15)0.0496 (14)0.0034 (12)0.0005 (11)0.0004 (12)
C200.0449 (15)0.0738 (17)0.0562 (16)0.0009 (13)0.0029 (12)0.0001 (13)
C10.0579 (16)0.0567 (16)0.0559 (15)0.0036 (13)0.0012 (12)0.0006 (12)
C220.0516 (15)0.0836 (19)0.0533 (15)0.0021 (14)0.0123 (12)0.0033 (14)
C80.0562 (16)0.0674 (17)0.0535 (15)0.0046 (13)0.0048 (12)0.0007 (13)
C170.0450 (14)0.0681 (16)0.0463 (14)0.0043 (13)0.0052 (11)0.0028 (12)
C150.0510 (15)0.0649 (16)0.0542 (15)0.0012 (13)0.0058 (12)0.0031 (13)
C60.0528 (16)0.111 (2)0.0561 (16)0.0032 (17)0.0070 (13)0.0003 (17)
C130.0713 (17)0.0633 (16)0.0612 (16)0.0199 (14)0.0127 (14)0.0010 (14)
C210.0484 (15)0.0732 (17)0.0678 (18)0.0049 (13)0.0062 (13)0.0035 (15)
C50.0543 (16)0.083 (2)0.0564 (16)0.0182 (15)0.0018 (13)0.0085 (15)
C70.0610 (18)0.083 (2)0.0625 (17)0.0000 (16)0.0006 (14)0.0098 (14)
C250.083 (2)0.117 (3)0.0600 (18)0.0211 (18)0.0132 (16)0.0040 (17)
C140.117 (3)0.0603 (18)0.080 (2)0.0244 (17)0.0234 (18)0.0072 (15)
Geometric parameters (Å, º) top
Cl1—C241.752 (2)C19—C201.360 (3)
C10—C111.386 (3)C19—H190.9300
C10—C31.404 (3)C16—C171.369 (3)
C10—C91.449 (3)C16—C151.458 (3)
C11—C121.382 (3)C20—C211.403 (3)
C11—H110.9300C1—H10.9300
N2—C151.269 (3)C22—C211.348 (3)
N2—C121.423 (3)C22—H220.9300
O1—C201.361 (3)C8—C71.378 (3)
O1—C251.425 (3)C8—H80.9300
C23—N31.361 (3)C17—H170.9300
C23—C181.409 (3)C15—H150.9300
C23—C221.413 (3)C6—C51.374 (4)
N3—C241.294 (3)C6—C71.382 (4)
N1—C41.378 (3)C6—H60.9300
N1—C31.380 (3)C13—C141.493 (3)
N1—C131.456 (3)C13—H13A0.9700
C9—C81.389 (3)C13—H13B0.9700
C9—C41.404 (3)C21—H210.9300
C3—C21.382 (3)C5—H50.9300
C12—C11.399 (3)C7—H70.9300
C4—C51.393 (3)C25—H25A0.9600
C2—C11.369 (3)C25—H25B0.9600
C2—H20.9300C25—H25C0.9600
C24—C161.417 (3)C14—H14A0.9600
C18—C171.408 (3)C14—H14B0.9600
C18—C191.409 (3)C14—H14C0.9600
C11—C10—C3119.1 (2)C2—C1—C12121.5 (2)
C11—C10—C9134.5 (2)C2—C1—H1119.2
C3—C10—C9106.39 (19)C12—C1—H1119.2
C12—C11—C10119.8 (2)C21—C22—C23121.0 (2)
C12—C11—H11120.1C21—C22—H22119.5
C10—C11—H11120.1C23—C22—H22119.5
C15—N2—C12119.2 (2)C7—C8—C9119.0 (2)
C20—O1—C25117.2 (2)C7—C8—H8120.5
N3—C23—C18122.6 (2)C9—C8—H8120.5
N3—C23—C22119.6 (2)C16—C17—C18121.7 (2)
C18—C23—C22117.8 (2)C16—C17—H17119.1
C24—N3—C23117.3 (2)C18—C17—H17119.1
C4—N1—C3108.95 (19)N2—C15—C16121.4 (2)
C4—N1—C13125.7 (2)N2—C15—H15119.3
C3—N1—C13125.4 (2)C16—C15—H15119.3
C8—C9—C4119.6 (2)C5—C6—C7122.5 (3)
C8—C9—C10133.8 (2)C5—C6—H6118.8
C4—C9—C10106.5 (2)C7—C6—H6118.8
N1—C3—C2129.5 (2)N1—C13—C14112.8 (2)
N1—C3—C10109.1 (2)N1—C13—H13A109.0
C2—C3—C10121.4 (2)C14—C13—H13A109.0
C11—C12—C1119.7 (2)N1—C13—H13B109.0
C11—C12—N2116.8 (2)C14—C13—H13B109.0
C1—C12—N2123.5 (2)H13A—C13—H13B107.8
N1—C4—C5129.5 (2)C22—C21—C20120.8 (2)
N1—C4—C9109.0 (2)C22—C21—H21119.6
C5—C4—C9121.4 (2)C20—C21—H21119.6
C1—C2—C3118.3 (2)C6—C5—C4117.1 (2)
C1—C2—H2120.8C6—C5—H5121.5
C3—C2—H2120.8C4—C5—H5121.5
N3—C24—C16126.5 (2)C8—C7—C6120.4 (3)
N3—C24—Cl1115.38 (18)C8—C7—H7119.8
C16—C24—Cl1118.17 (19)C6—C7—H7119.8
C17—C18—C23116.6 (2)O1—C25—H25A109.5
C17—C18—C19123.2 (2)O1—C25—H25B109.5
C23—C18—C19120.2 (2)H25A—C25—H25B109.5
C20—C19—C18119.9 (2)O1—C25—H25C109.5
C20—C19—H19120.1H25A—C25—H25C109.5
C18—C19—H19120.1H25B—C25—H25C109.5
C17—C16—C24115.2 (2)C13—C14—H14A109.5
C17—C16—C15121.8 (2)C13—C14—H14B109.5
C24—C16—C15122.9 (2)H14A—C14—H14B109.5
C19—C20—O1125.2 (2)C13—C14—H14C109.5
C19—C20—C21120.2 (2)H14A—C14—H14C109.5
O1—C20—C21114.6 (2)H14B—C14—H14C109.5
C3—C10—C11—C122.3 (3)C22—C23—C18—C192.0 (3)
C9—C10—C11—C12176.1 (2)C17—C18—C19—C20176.0 (2)
C18—C23—N3—C242.7 (3)C23—C18—C19—C201.4 (4)
C22—C23—N3—C24177.2 (2)N3—C24—C16—C173.5 (4)
C11—C10—C9—C80.4 (4)Cl1—C24—C16—C17176.18 (17)
C3—C10—C9—C8178.2 (2)N3—C24—C16—C15173.0 (2)
C11—C10—C9—C4178.9 (2)Cl1—C24—C16—C157.3 (3)
C3—C10—C9—C40.4 (2)C18—C19—C20—O1178.3 (2)
C4—N1—C3—C2180.0 (2)C18—C19—C20—C210.4 (4)
C13—N1—C3—C21.9 (4)C25—O1—C20—C195.4 (4)
C4—N1—C3—C100.0 (2)C25—O1—C20—C21176.6 (2)
C13—N1—C3—C10178.07 (19)C3—C2—C1—C120.7 (3)
C11—C10—C3—N1179.03 (19)C11—C12—C1—C22.5 (3)
C9—C10—C3—N10.2 (2)N2—C12—C1—C2176.4 (2)
C11—C10—C3—C21.0 (3)N3—C23—C22—C21179.4 (2)
C9—C10—C3—C2179.8 (2)C18—C23—C22—C210.7 (4)
C10—C11—C12—C14.0 (3)C4—C9—C8—C71.3 (3)
C10—C11—C12—N2174.97 (19)C10—C9—C8—C7177.1 (2)
C15—N2—C12—C11150.7 (2)C24—C16—C17—C181.7 (3)
C15—N2—C12—C128.2 (3)C15—C16—C17—C18174.9 (2)
C3—N1—C4—C5178.0 (2)C23—C18—C17—C161.9 (3)
C13—N1—C4—C50.0 (4)C19—C18—C17—C16179.4 (2)
C3—N1—C4—C90.2 (2)C12—N2—C15—C16177.5 (2)
C13—N1—C4—C9177.83 (19)C17—C16—C15—N216.1 (4)
C8—C9—C4—N1178.43 (19)C24—C16—C15—N2160.2 (2)
C10—C9—C4—N10.4 (2)C4—N1—C13—C1495.5 (3)
C8—C9—C4—C50.4 (3)C3—N1—C13—C1486.8 (3)
C10—C9—C4—C5178.4 (2)C23—C22—C21—C201.1 (4)
N1—C3—C2—C1177.5 (2)C19—C20—C21—C221.7 (4)
C10—C3—C2—C12.5 (3)O1—C20—C21—C22179.8 (2)
C23—N3—C24—C161.4 (4)C7—C6—C5—C41.2 (4)
C23—N3—C24—Cl1178.33 (17)N1—C4—C5—C6176.7 (2)
N3—C23—C18—C174.2 (3)C9—C4—C5—C60.8 (3)
C22—C23—C18—C17175.7 (2)C9—C8—C7—C61.0 (4)
N3—C23—C18—C19178.1 (2)C5—C6—C7—C80.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and C1–C3/C10–C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.932.873.718 (3)152
C7—H7···Cg2ii0.932.973.688 (2)145
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Professor M. Periasamy, School of Chemistry, University of Hyderabad, for providing laboratory facilities and are also grateful to the UGC Networking Resource Centre, School of Chemistry, University of Hyderabad, for providing characterization facilities.

References

First citationArchana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDíaz, J. L., Villacampa, B., López-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationHartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97–105.  Web of Science CrossRef PubMed CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139–o140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 421-423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds