research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 330-335

Crystal structures of the water and acetone monosolvates of bis­­[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­manganese(II) bis­­(hexa­fluorido­phosphate)

aCICECO, Chemistry Department, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
*Correspondence e-mail: jafernandes@ua.pt

Edited by P. C. Healy, Griffith University, Australia (Received 28 January 2015; accepted 19 February 2015; online 4 March 2015)

The crystal structures of bis­[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­man­gan­ese(II) bis­(hexa­fluorido­phosphate) monohydrate, [Mn(C20H14N4)2](PF6)2·H2O, (1), and bis­[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­manganese(II) bis(hexa­fluorido­phosphate) acetone monosolvate, (2), [Mn(C20H14N4)2](PF6)2·CH3COCH3, are described. At 150 K, (1) and (2) have monoclinic (P21/c) and ortho­rhom­bic (C2221) symmetries, respectively. Both structures exhibit octahedrally coordinated MnII atoms and disorder. They display weak inter­actions, such as C—H⋯F, C—H⋯N, C—H⋯π, F⋯π and ππ. The twofold rotation axis in the molecule of (2) is coincident with a twofold rotation axis of the crystal.

1. Chemical context

The synthesis of new metal–organic frameworks (MOFs) can be achieved by several ways with different degrees of reaction control. One way of having a tighter control on the reactions is the use of metalloligands. A metalloligand is a kind of ligand in which the bonding capabilities of the ligand are combined with the directionallity of a metal centre (Halper et al., 2006[Halper, S. R., Do, L., Stork, J. R. & Cohen, S. M. (2006). J. Am. Chem. Soc. 128, 15255-15268.]; Kitagawa et al., 2006[Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701-707.]; Noro et al., 2005[Noro, S.-I., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. Commun. 44, 133-146.]).

[Scheme 1]

As it is found from a database survey (dedicated section below), there is already a considerable number of compounds of the type [M(Pyterpy)2n+] [Pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]. However, no equivalent structure is found with Mn2+ as metallic centre. In order to fill this gap, we describe in the present report the crystal structure of the water and acetone monosolvates of bis­[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­manganese(II) bis­(hexa­fluorido­phosphate).

2. Bis[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­man­gan­ese(II) bis­(hexa­fluorido­phosphate) monohydrate, (1)

2.1. Structural commentary

The asymmetric unit of (1) (Fig. 1[link]) comprises a dicationic coordination complex, two highly disordered hexa­fluorido­phosphate charge-balancing anions, and a water mol­ecule distributed among four general locations. The Mn2+ cation is distorted octahedrally coordinated by two κ3N-(4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine) ligands. One of these ligands is spatially disordered over two close, but distinct, locations, with a distribution of occupancies of 0.85:0.15. Concerning only the major contributor for the disordered ligand, we may say that the coordination environment around the metal cation resembles a highly distorted octa­hedron with the Mn—N distances in the 2.193 (4)–2.268 (4) Å range, and the cis and trans octa­hedral angles found in the inter­vals 71.99 (17)–117.68 (17) and 143.36 (15)–169.95 (18)°, respectively. The angle between the medium planes of the terpyridine moieties is 85.76 (14)°, and the angles between the medium planes of non-coordinating pyridines and the terpyridine to which they are attached are 7.9 (2) and 47.1 (3)° (see Table 1[link] for details).

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Mn1—N1 2.231 (4) Mn1—N5 2.259 (5)
Mn1—N2 2.193 (4) Mn1—N6 2.212 (4)
Mn1—N3 2.268 (4) Mn1—N7 2.260 (5)
       
N1—Mn1—N2 72.37 (15) N2—Mn1—N7 117.68 (17)
N1—Mn1—N3 143.36 (15) N3—Mn1—N5 94.0 (3)
N1—Mn1—N5 99.8 (3) N3—Mn1—N6 105.2 (3)
N1—Mn1—N6 111.3 (3) N3—Mn1—N7 96.0 (4)
N1—Mn1—N7 92.2 (4) N5—Mn1—N6 72.45 (17)
N2—Mn1—N3 72.21 (15) N5—Mn1—N7 144.44 (17)
N2—Mn1—N5 97.87 (16) N6—Mn1—N7 71.99 (17)
N2—Mn1—N6 169.95 (18)    
[Figure 1]
Figure 1
View of the molecular species present in the crystal of (1). Displacement ellipsoids are drawn at the 50% probability level and the atomic labelling is provided for all non-H atoms of the components with highest occupancies. Non-H atoms represented by spheres were isotropically refined and H atoms are depicted by spheres with arbitrary radius. The componenents with least occupancies are not numbered for the sake of clarity and represented as transparent.

2.2. Supra­molecular features

The structure of (1) is highly disordered, and the H atoms belonging to water mol­ecules were not found. For this reason, the description of this structure cannot be thorough (see Fig. 2[link] for crystal packing). Nevertheless, many weak inter­actions are present in the crystal structure, namely C—H⋯F, C—H⋯N, C—H⋯π, F⋯π and ππ inter­actions (see Tables 2[link] and 3[link] for details). Additionally, there is a close relation between the disordered water mol­ecules and the entities in their neighbourhoods. While the position of site O3W (occupancy 0.15) is incompatible with the position of N8 (occupancy 0.85) at 2.43 (3) Å, it is foreseeable that it donates a proton to N108 at 2.94 (3) Å. The position of O4W (occupancy 0.85) is also incompatible with the H123 position [occupancy 0.15, distance 1.95 (5) Å]. Other contact distances are in the limit of possible hydrogen-bonding interactions, namely O1W⋯F6B [occupancies 0.4 and 0.3333, distance 2.57 (2) Å], O4W⋯F3A [occupancies 0.1 and 0.6667, distance 2.63 (5) Å] and O4W⋯H23 [occupancies 0.1 and 0.85, distance 2.35 (5) Å]. These relations suggest the water mol­ecule accomodates in the empty spaces left by the disordered organic moieties, or vice versa.

Table 2
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F5Ai 0.95 2.50 3.422 (9) 164
C15—H15⋯F12Aii 0.95 2.46 3.305 (9) 149
C16—H16⋯F7Aiii 0.95 2.38 3.289 (9) 160
C19—H19⋯F5Ai 0.95 2.41 3.328 (10) 162
C29—H29⋯N4iv 0.95 2.35 3.270 (8) 163
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x-1, y, z.

Table 3
Intra­molecular contacts (Å, °) for (1)

DX⋯A X⋯A DX⋯A
C13—H13⋯Cg1vi 2.83 152
P1A—F5ACg2 3.108 (8) 129.0 (4)
P2A—F12ACg3vii 2.906 (9) 131.0 (4)
     
CgCg CgCg  
Cg4⋯Cg5 3.779 (3)  
Cg5⋯Cg6i 3.778 (3)  
Symmetry codes: (i) −x + 1, −y + 1, −z; (vi) x, [{1\over 2}] − y, −[{1\over 2}] + z; (vii) x, [{1\over 2}] − y, [{1\over 2}] + z. Cg1: centroid of {N5, C21—C25}; Cg2: centroid of {N2, C6—C10}; Cg3: centroid of {N6, C26—C30}; Cg4: centroid of {N1, C1—C5}; Cg5: centroid of {N3, C11—C15}; Cg6: centroid of {N4, C16—C20}.
[Figure 2]
Figure 2
The crystal packing of (1) along the [100] direction. The components for the disordered organic ligand and hexa­fluorido­phosphate with the lowest occupation factors are not represented. Supra­molecular inter­actions are not represented for clarity.

3. Bis[4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine]­manganese(II) bis­(hexa­fluorido­phosphate) acetone monosolvate, (2)

3.1. Structural commentary

Except for the type of the co-crystallizing solvent, compound (2) (Fig. 3[link]) is very similar to (1). However, the molecule of (2) exhibits a twofold rotation axis which is coincident to the axis of the coordination complex, which passes through atoms N13, C109, C8, N2, Mn1, N4, C19, C20 and N6. Thus, the asymmetric unit comprises one half of the dicationic coordination compound, one disordered charge balancing hexa­fluorido­phosphate anion and half of an acetone mol­ecule. In the cation, only one of the noncoordinating pyridine moieties is affected by disorder. Nevertheless, the geometrical environment around the metal cation is still a distorted octa­hedron (with a symmetry axis in one of the diagonals), with Mn—N distances in the 2.180 (13)–2.247 (11) Å range, and the cis and trans octa­hedral angles in the inter­vals 72.3 (3)–107.7 (5) and 144.7 (5)–180.0°, respectively. The angle between the medium planes of the terpyridine moieties is 89.5 (3)°, and the angles between the medium planes of non-coordinating pyridines and the terpyridine to which they are attached are 35.3 (non-­disordered), 62.3 (12) and 65.8 (13)° (disordered) (see Table 4[link] for details).

Table 4
Selected geometric parameters (Å, °) for (2)[link]

Mn1—N1 2.210 (10) Mn1—N4 2.187 (14)
Mn1—N2 2.180 (13) Mn1—N5 2.247 (11)
       
N1—Mn1—N1i 144.8 (5) N2—Mn1—N4 180.0
N1—Mn1—N2 72.4 (3) N2—Mn1—N5 107.7 (3)
N1—Mn1—N4 107.6 (3) N4—Mn1—N5 72.3 (3)
N1—Mn1—N5 93.5 (4) N5—Mn1—N5i 144.7 (5)
N1—Mn1—N5i 97.0 (4)    
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A view of the molecular species present in the crystal of (2). Displacement ellipsoids are drawn at the 50% probability level and the atomic labelling is provided for all non-H atoms of the components with highest occupancies. Non-H atoms represented by spheres were isotropically refined and H atoms are depicted by spheres with arbitrary radius. The componenents with least occupancies are not numbered for the sake of clarity and represented as transparent.

3.2. Supra­molecular features

Similarly to (1), in the structure of compound (2) (Fig. 4[link]) there are a considerable number of weak inter­actions present, namely C—H⋯F, C—H⋯O, C—H⋯π, F⋯π and ππ inter­actions (see Tables 5[link] and 6[link] for details).

Table 5
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F25ii 0.95 2.31 3.23 (3) 162
C15—H15⋯O90ii 0.95 2.58 3.53 (3) 177
C18—H18⋯O90iii 0.95 2.57 3.50 (2) 168
C18—H18⋯O90ii 0.95 2.53 3.47 (2) 169
C22—H22⋯F21iv 0.95 2.47 3.42 (2) 175
Symmetry codes: (ii) [x-{\script{1\over 2}}], [-y+{\script{3\over 2}}], -z+1; (iii) [x-{\script{1\over 2}}], [y+{\script{1\over 2}}], z; (iv) -x+1, -y+2, [z+{\script{1\over 2}}].

Table 6
Intra­molecular contacts (Å, °) for (2)

DX⋯A X⋯A DX⋯A
C2—H2⋯Cg1v 2.72 156
P2—F25⋯Cg2vi 3.091 (18) 153.0 (10)
     
CgCg CgCg  
Cg3⋯Cg3vii 3.539 (7)  
Symmetry codes: (v) x, y, z + 1; (vi) −x + [{3\over 2}], −y + [{3\over 2}], z − [{\script{1\over 2}}]; (vii) −x + 1, y, −z + [{5\over 2}]. Cg1: centroid of {N5, C12—C16}; Cg2: centroid of {N2, C6—C8, C6i, C7i}; Cg3: centroid of {N1, C1—C5};
[Figure 4]
Figure 4
The crystal packing of (2) along the [001] direction. The components for the disordered organic ligand and hexa­fluorido­phosphate with the lowest occupation factors are not represented. Supra­molecular inter­actions are not represented for clarity.

4. Database survey

The use of the ligand Pyterpy [described by Constable et al. (2000[Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M. & Zimmermann, Y. (2000). Dalton Trans. pp. 2219-2228.])] as precursor of metalloligands has contributed for the synthesis of several complexes of the form [M(Pyterpy)2]n+(X)n. The metal centres comprise metals with valence +2 of the first transition period, from Fe2+ to Zn2+, as well as Co3+, Ru2+ and Rh3+ (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The charge-balancing anions are PF6, NO3, ClO4, SCN or [Fe(SCN)6]3− (Beves, Bray et al., 2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]; Beves, Constable, Housecroft, Kepert, Neuburger et al., 2007[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2007). CrystEngComm, 9, 1073-1077.]; Beves, Dunphy et al., 2008[Beves, J. E., Dunphy, E. L., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2008). Dalton Trans. pp. 386-396.]; Constable et al., 2000[Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M. & Zimmermann, Y. (2000). Dalton Trans. pp. 2219-2228.], 2006[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Schaper, F. (2006). Inorg. Chem. Commun. 9, 616-619.]; Ding et al., 2009[Ding, Y., Wang, F., Ku, Z.-J., Wang, L.-S. & Zhou, H.-B. (2009). J. Struct. Chem. 50, 1212-1215.]; Indumathy et al., 2007[Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434-443.]; Mehrani et al., 2013[Mehrani, A., Morsali, A. & Ebrahimpour, P. (2013). J. Coord. Chem. 66, 856-867.]; Morsali et al., 2009[Morsali, A., Monfared, H. H., Ramazani, A., Noshiranzadeh, N., Morsali, A. & Zeller, M. (2009). J. Coord. Chem. 62, 2631-2640.]; Paul et al., 2004[Paul, J., Spey, S., Adams, H. & Thomas, J. A. (2004). Inorg. Chim. Acta, 357, 2827-2832.]; Pitarch López et al., 2005[Pitarch López, J., Kraus, W., Reck, G., Thünemann, A. & Kurth, D. G. (2005). Inorg. Chem. Commun. 8, 281-284.]; see Table 7[link] for details).

Table 7
Known structures of the type [M(Pyterpy)2]n+(X)n

Metal Center Anion CCDC code Reference Space Group
Fe2+ PF6 KITFEZ Beves, Dunphy, et al. (2008[Beves, J. E., Dunphy, E. L., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2008). Dalton Trans. pp. 386-396.]) I41/a
Fe2+ ClO4 OFUKAC Beves, Bray et al. (2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]) P[\overline{1}]
Fe2+ SCN UGEKEX Morsali et al. (2009[Morsali, A., Monfared, H. H., Ramazani, A., Noshiranzadeh, N., Morsali, A. & Zeller, M. (2009). J. Coord. Chem. 62, 2631-2640.]) P[\overline{1}]
Fe2+ NO3 WOMXAX Constable et al. (2000[Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M. & Zimmermann, Y. (2000). Dalton Trans. pp. 2219-2228.]) P[\overline{1}]
Fe2+ ClO4 XIQFEJ (a) P21/c
Fe2+ [Fe(SCN)6]3− XIQFIN (a) Pbcn
Fe2+ [Fe(SCN)6]3− XISWUS (a) Pbcn
Co2+ NO3 VEYGIQ Indumathy et al. (2007[Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434-443.]) P[\overline{1}]
Co3+ ClO4 VEYGEM Indumathy et al. (2007[Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434-443.]) P[\overline{1}]
Ni2+ NO3 OFUJUV Beves, Bray et al. (2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]) P[\overline{1}]
Cu2+ PF6 FIYHIF Pitarch López et al. (2005[Pitarch López, J., Kraus, W., Reck, G., Thünemann, A. & Kurth, D. G. (2005). Inorg. Chem. Commun. 8, 281-284.]) P41
Zn2+ NO3 ULAFET Ding et al. (2009[Ding, Y., Wang, F., Ku, Z.-J., Wang, L.-S. & Zhou, H.-B. (2009). J. Struct. Chem. 50, 1212-1215.]) P43
Zn2+ ClO4 BIGDEC Mehrani et al. (2013[Mehrani, A., Morsali, A. & Ebrahimpour, P. (2013). J. Coord. Chem. 66, 856-867.]) C2/c
Ru2+ PF6 OFUKEG Beves, Bray et al. (2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]) I41/a
Ru2+ PF6/NO3 OFUKIK Beves, Bray et al. (2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]) P[\overline{1}]
Ru2+ [Fe(SCN)6]3− OFUKOQ Beves, Bray et al. (2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]) C2/c
Ru2+ PF6/NO3 PEHPOI Constable et al. (2006[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Schaper, F. (2006). Inorg. Chem. Commun. 9, 616-619.]) P21/c
Rh3+ PF6 DAHDOG Paul et al. (2004[Paul, J., Spey, S., Adams, H. & Thomas, J. A. (2004). Inorg. Chim. Acta, 357, 2827-2832.]) P[\overline{4}]21c
(a) Beves, Constable, Housecroft, Kepert, Neuburger et al. (2007[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2007). CrystEngComm, 9, 1073-1077.]).

All the cations exhibit a distorted octa­hedral geometry, with the Pyterpy ligands in a meridional coordination. Some of the crystal structures sharing the same anion are isotypical. This is the case of the nitrate-containing crystals of Fe2+, Co2+ and Ni2+ [Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) refcodes WOMXAX, VEYGIQ and OFUJUV] or the hexa­fluorido­phosphate-containing crystals of Fe2+ and Ru2+ (OFUKEG and KITFEZ). Two different solvates of [Fe(Pyterpy)(PyterpyH)][Fe(SCN)6] are also isotypical (XIQFIN and XIQFEJ). Additionally, two structures of Fe2+ and Ru2+ have similar cell parameters, despite of not sharing the same anion (OFUKIK and UGEKEX). None of compounds described in this work is isotypical with a previously reported structure.

Until now the use of the metalloligand [M(Pyterpy)2n+] is still very limited. Some one-dimensional polymers are known (Beves, Constable et al., 2008[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2008). CrystEngComm, 10, 344-348.]; Yoshida et al., 2009[Yoshida, J., Nishikiori, S.-I. & Kuroda, R. (2009). Bull. Chem. Soc. Jpn, 82, 1377-1385.]; Beves, Constable, Housecroft, Kepert, Price et al., 2007[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J. & Price, D. J. (2007). CrystEngComm, 9, 456-459.]). Among the oligomers we can find linear structures with three (Liu et al., 2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.]) or five metal coordination centres (Beves et al., 2009[Beves, J. E., Constable, E. C., Decurtins, S., Dunphy, E. L., Housecroft, C. E., Keene, T. D., Neuburger, M., Schaffner, S. & Zampese, J. A. (2009). CrystEngComm, 11, 2406-2416.]) and hexa­nuclear cyclic clusters (Liu et al., 2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.]; see Table 8[link] for details).

Table 8
Uses of [M(Pyterpy)2]n+ as metalloligand

Metal 1 Metal 2 CCDC code Type† Reference
Fe2+ Cu2+ GIVDEV polymer Beves, Constable et al. (2008[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2008). CrystEngComm, 10, 344-348.])
Fe2+ Cu2+ OGOTEK 5 (linear) Beves et al. (2009[Beves, J. E., Constable, E. C., Decurtins, S., Dunphy, E. L., Housecroft, C. E., Keene, T. D., Neuburger, M., Schaffner, S. & Zampese, J. A. (2009). CrystEngComm, 11, 2406-2416.])
Ni2+ Co2+ WUTTEL polymer Yoshida et al. (2009[Yoshida, J., Nishikiori, S.-I. & Kuroda, R. (2009). Bull. Chem. Soc. Jpn, 82, 1377-1385.])
Ni2+ Co2+ WUTTIP polymer Yoshida et al. (2009[Yoshida, J., Nishikiori, S.-I. & Kuroda, R. (2009). Bull. Chem. Soc. Jpn, 82, 1377-1385.])
Co2+ Co2+ WUTTOP polymer Yoshida et al. (2009[Yoshida, J., Nishikiori, S.-I. & Kuroda, R. (2009). Bull. Chem. Soc. Jpn, 82, 1377-1385.])
Ni2+ Ir3+ MITQUD 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Ni2+ Rh3+ MITRAK 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Cu2+ Ir3+ MITCEZ 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Cu2+ Rh3+ MITCID 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Zn2+ Ir3+ MITQEN 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Zn2+ Ir3+ MITQIR 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Zn2+ Rh3+ MITQOX 6 (cyclic) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Ni2+ Rh3+ MITCOJ 3 (linear) Liu et al. (2014[Liu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283-1290.])
Ru2+ Ag+ WICSIL polymer (b)
Notes: `Metal 1' coordinated by Pyterpy; `Metal 2' bridging metal. † Polymer or number of metals in the oligomer and respective arrangement; (b) Beves, Constable, Housecroft, Kepert, Price et al. (2007[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J. & Price, D. J. (2007). CrystEngComm, 9, 456-459.]).

5. Synthesis and crystallization

All the reactants were purchased from commercial suppliers and used as received.

5.1. 4′-(Pyridin-4-yl)-2,2′:6′,2′′-terpyridine

The ligand Pyterpy was synthesized by a mechanochemical reaction of 2-acetyl­pyridine, 4-pyridine­carboxaldehyde and NaOH, followed by refluxing with ammonium acetate in acetic acid for 24 h (Cave & Raston, 2001[Cave, G. W. V. & Raston, C. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3258-3264.]).

5.2. Title compounds

A solution of Pyterpy (132.7 mg, 0.42 mmol) in MeOH (50 mL) was added dropwise to a solution of [Mn(CH3COO)2]·4H2O (52.4 mg, 0.21 mmol) in 5 mL of water. The mixture refluxed at 338 K overnight to obtain a complete reaction. After this period, the solution was concentrated until a light-brown solid was obtained. The solid was filtrated and washed with water and ethanol to remove the impurities. The solid was dried at 333 K. Analysis calculated for [C40H28F12MnN8][PF6]2·H2O: C 47.97, H 3.22, N 11.19%; found: C 47.37, H 3.19, N 11.09%.

Suitable crystals for X-ray diffraction were obtained by diffusion of water into a solution of the title compound in acetone. Two types of crystals were harvested corresponding to two different solvates.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9[link].

Table 9
Experimental details

  (1) (2)
Crystal data
Chemical formula [Mn(C20H14N4)2](PF6)2·H2O [Mn(C20H14N4)2](PF6)2·C3H6O
Mr 983.60 1023.66
Crystal system, space group Monoclinic, P21/c Orthorhombic, C2221
Temperature (K) 150 150
a, b, c (Å) 16.2389 (5), 15.3506 (5), 16.5549 (5) 18.0996 (15), 27.470 (2), 8.5734 (6)
α, β, γ (°) 90, 99.3892 (17), 90 90, 90, 90
V3) 4071.5 (2) 4262.7 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.50 0.48
Crystal size (mm) 0.12 × 0.08 × 0.08 0.16 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.960 0.955, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 44958, 7445, 5275 18921, 3908, 2683
Rint 0.085 0.091
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.244, 1.07 0.104, 0.270, 1.07
No. of reflections 7445 3908
No. of parameters 608 292
No. of restraints 78 102
H-atom treatment H-atom parameters constrained H-atom parameters constrained
  w = 1/[σ2(Fo2) + (0.1065P)2 + 15.4857P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0919P)2 + 48.9339P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.98, −1.03 0.71, −1.05
Absolute structure Flack x determined using 836 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.21 (2)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

H atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation, with C—H = 0.95 Å (aromatic C—H) or C—H = 0.98 Å (aliphatic C—H). The isotropic displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent carbon atom. Some parts of the two crystal structures are subjected to spatial disorder.

In (1), the disorder affects one whole ligand which is placed over two close, but not coincident locations, with occupancies 0.85:0.15. The two crystallographically independent PF6 anions are distributed over four distinct orientations with coincidence of the central P atoms, and occupancies 2/3:1/3, 2/3:1/3. The P atoms were refined anisotropically, and the F atoms isotropically with a common Uiso. The water mol­ecule of crystallization was distributed over four distinct locations, which were isotropically refined with a common Uiso, and total occupancy equal to 1. The H atoms of the solvent were not located, but were added in the formula unit.

In (2), the disorder in the organic ligand was limited to a terminal 4-pyridine moiety, which was refined anisotropically over two locations with equal occupancies. The sole PF6 in (2) was distributed among two locations with occupancies 0.6:0.4 with P-atoms not coincident in space. The overall quality of the crystal was not sufficient for a precise determination of the Flack parameter.

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (1); SHELXL97 (Sheldrick, 2008) for (2). For both compounds, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1) Bis[4'-(pyridin-4-yl)-2,2':6',2''-terpyridine]manganese(II) bis(hexafluoridophosphate) monohydrate top
Crystal data top
[Mn(C20H14N4)2](PF6)2·H2OF(000) = 1988
Mr = 983.60Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.2389 (5) ÅCell parameters from 4312 reflections
b = 15.3506 (5) Åθ = 2.3–21.7°
c = 16.5549 (5) ŵ = 0.50 mm1
β = 99.3892 (17)°T = 150 K
V = 4071.5 (2) Å3Block, yellow
Z = 40.12 × 0.08 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5275 reflections with I > 2σ(I)
ω and φ scansRint = 0.085
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 25.4°, θmin = 2.7°
Tmin = 0.953, Tmax = 0.960h = 1919
44958 measured reflectionsk = 1817
7445 independent reflectionsl = 1917
Refinement top
Refinement on F278 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.244 w = 1/[σ2(Fo2) + (0.1065P)2 + 15.4857P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
7445 reflectionsΔρmax = 0.98 e Å3
608 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.23762 (5)0.32425 (5)0.12734 (5)0.0275 (2)
C10.2558 (3)0.3471 (4)0.3199 (3)0.0346 (13)
H10.19690.33970.30920.042*
C20.2943 (4)0.3585 (4)0.3993 (3)0.0416 (15)
H20.26250.36040.44260.050*
C30.3804 (4)0.3672 (4)0.4151 (3)0.0427 (15)
H30.40870.37410.46970.051*
C40.4244 (3)0.3657 (4)0.3509 (3)0.0370 (13)
H40.48350.37150.36080.044*
C50.3820 (3)0.3557 (3)0.2717 (3)0.0249 (11)
C60.4226 (3)0.3574 (3)0.1976 (3)0.0238 (10)
C70.5077 (3)0.3676 (3)0.1992 (3)0.0290 (11)
H70.54430.37180.25010.035*
C80.5394 (3)0.3716 (3)0.1263 (3)0.0283 (11)
C90.4837 (3)0.3648 (3)0.0532 (3)0.0281 (11)
H90.50330.36620.00220.034*
C100.3995 (3)0.3559 (3)0.0556 (3)0.0259 (11)
C110.3337 (3)0.3549 (4)0.0184 (3)0.0300 (12)
C120.3511 (3)0.3682 (4)0.0969 (3)0.0376 (14)
H120.40700.37510.10590.045*
C130.2859 (4)0.3713 (4)0.1616 (4)0.0439 (15)
H130.29650.38220.21540.053*
C140.2048 (4)0.3586 (4)0.1479 (3)0.0408 (14)
H140.15920.35990.19180.049*
C150.1922 (3)0.3440 (4)0.0678 (3)0.0359 (13)
H150.13700.33460.05770.043*
C160.7731 (4)0.3864 (5)0.1888 (4)0.0526 (18)
H160.81300.37560.23640.063*
C170.6904 (4)0.3686 (5)0.1921 (4)0.0511 (18)
H170.67510.34520.24060.061*
C180.6299 (3)0.3849 (4)0.1250 (3)0.0313 (12)
C190.6575 (4)0.4209 (5)0.0581 (4)0.0488 (16)
H190.61870.43550.01060.059*
C200.7424 (4)0.4359 (5)0.0600 (4)0.0577 (19)
H200.75980.46090.01310.069*
N10.2981 (3)0.3460 (3)0.2567 (3)0.0279 (9)
N20.3699 (3)0.3521 (3)0.1267 (3)0.0267 (9)
N30.2550 (3)0.3426 (3)0.0048 (3)0.0290 (10)
N40.8001 (3)0.4173 (4)0.1237 (3)0.0484 (14)
C210.3152 (3)0.1327 (4)0.1204 (8)0.0301 (13)0.85
H210.36610.16410.12430.036*0.85
C220.3177 (4)0.0437 (4)0.1137 (8)0.0398 (16)0.85
H220.36890.01410.11250.048*0.85
C230.2438 (4)0.0015 (5)0.1086 (8)0.0507 (19)0.85
H230.24330.06320.10380.061*0.85
C240.1706 (4)0.0433 (4)0.1104 (8)0.0450 (17)0.85
H240.11940.01260.10730.054*0.85
C250.1721 (3)0.1329 (4)0.1167 (6)0.0295 (13)0.85
C260.0960 (3)0.1864 (4)0.1156 (6)0.0311 (14)0.85
C270.0159 (4)0.1533 (4)0.1074 (4)0.0333 (17)0.85
H270.00700.09210.10690.040*0.85
C290.0365 (3)0.2992 (5)0.1051 (4)0.0332 (18)0.85
H290.08150.33930.10040.040*0.85
C300.0456 (3)0.3287 (4)0.1172 (6)0.0295 (14)0.85
C310.0684 (3)0.4218 (4)0.1253 (7)0.0288 (13)0.85
C320.0107 (4)0.4877 (4)0.1306 (8)0.037 (2)0.85
H320.04690.47450.12740.045*0.85
C330.0385 (4)0.5721 (5)0.1407 (4)0.039 (2)0.85
H330.00010.61810.14420.047*0.85
C340.1223 (4)0.5897 (4)0.1456 (10)0.039 (2)0.85
H340.14240.64780.15240.047*0.85
C350.1759 (4)0.5220 (4)0.1405 (15)0.0365 (15)0.85
H350.23370.53440.14400.044*0.85
N50.2449 (3)0.1775 (3)0.1218 (7)0.0268 (10)0.85
N60.1094 (3)0.2730 (3)0.1208 (6)0.0267 (10)0.85
N70.1508 (3)0.4387 (3)0.1308 (9)0.0282 (16)0.85
C280.0515 (4)0.2103 (5)0.0998 (4)0.0295 (15)0.85
C360.2505 (6)0.0891 (6)0.1153 (6)0.055 (2)0.85
H360.26820.04240.14600.066*0.85
C370.1654 (4)0.1106 (5)0.1289 (5)0.0437 (17)0.85
H370.12660.07860.16670.052*0.85
C380.1400 (4)0.1792 (5)0.0859 (4)0.0362 (15)0.85
C390.1991 (4)0.2225 (5)0.0295 (5)0.0427 (17)0.85
H390.18330.27000.00150.051*0.85
C400.2812 (4)0.1948 (5)0.0196 (5)0.0455 (18)0.85
H400.32090.22370.02000.055*0.85
N80.3080 (4)0.1298 (4)0.0623 (4)0.0504 (16)0.85
C1210.3340 (10)0.1304 (9)0.125 (5)0.0301 (13)0.15
H1210.38350.16420.12910.036*0.15
C1220.3405 (11)0.0416 (10)0.119 (5)0.0398 (16)0.15
H1220.39320.01430.12080.048*0.15
C1230.2683 (11)0.0068 (9)0.112 (5)0.0507 (19)0.15
H1230.27020.06820.10530.061*0.15
C1240.1933 (11)0.0343 (8)0.114 (5)0.0450 (17)0.15
H1240.14350.00120.11130.054*0.15
C1250.1911 (8)0.1238 (7)0.122 (3)0.0295 (13)0.15
C1260.1131 (8)0.1734 (6)0.123 (3)0.0311 (14)0.15
C1270.0362 (10)0.1360 (7)0.126 (3)0.0333 (17)0.15
H1270.03260.07430.12750.040*0.15
C1290.0227 (9)0.2790 (9)0.126 (3)0.0332 (18)0.15
H1290.06850.31740.12660.040*0.15
C1300.0565 (7)0.3130 (7)0.125 (3)0.0295 (14)0.15
C1310.0750 (7)0.4073 (7)0.130 (4)0.0288 (13)0.15
C1320.0134 (8)0.4711 (7)0.119 (5)0.037 (2)0.15
H1320.04390.45560.11310.045*0.15
C1330.0370 (10)0.5570 (8)0.119 (3)0.039 (2)0.15
H1330.00410.60150.10840.047*0.15
C1340.1204 (10)0.5783 (7)0.133 (7)0.039 (2)0.15
H1340.13760.63750.13620.047*0.15
C1350.1779 (9)0.5125 (8)0.143 (9)0.0365 (15)0.15
H1350.23550.52740.15280.044*0.15
N1050.2616 (8)0.1719 (7)0.125 (4)0.0268 (10)0.15
N1060.1221 (7)0.2607 (6)0.124 (3)0.0267 (10)0.15
N1070.1569 (7)0.4278 (7)0.139 (6)0.0282 (16)0.15
C1280.036 (3)0.185 (3)0.127 (3)0.029 (3)*0.15
C1360.2565 (12)0.1536 (15)0.1642 (14)0.029 (3)*0.15
H1360.29540.18030.19350.035*0.15
C1370.1765 (13)0.1876 (13)0.1695 (14)0.029 (3)*0.15
H1370.16070.23740.20230.035*0.15
C1380.1195 (10)0.1486 (15)0.1266 (15)0.029 (3)*0.15
C1390.1425 (12)0.0756 (14)0.0785 (14)0.029 (3)*0.15
H1390.10360.04900.04920.035*0.15
C1400.2226 (13)0.0417 (13)0.0732 (14)0.029 (3)*0.15
H1400.23840.00820.04030.035*0.15
N1080.2796 (11)0.0807 (16)0.1160 (16)0.039 (13)*0.15
P1A0.42327 (11)0.62842 (12)0.19001 (12)0.0535 (5)0.6667
F1A0.3907 (5)0.5541 (6)0.2411 (5)0.0670 (5)*0.6667
F2A0.3333 (4)0.6356 (5)0.1268 (4)0.0670 (5)*0.6667
F3A0.4501 (4)0.7046 (4)0.1273 (4)0.0670 (5)*0.6667
F4A0.5117 (4)0.6332 (5)0.2411 (4)0.0670 (5)*0.6667
F5A0.4558 (4)0.5636 (5)0.1279 (5)0.0670 (5)*0.6667
F6A0.3903 (4)0.7023 (5)0.2432 (4)0.0670 (5)*0.6667
P1B0.42327 (11)0.62842 (12)0.19001 (12)0.0535 (5)0.3333
F1B0.3743 (9)0.5529 (11)0.2303 (10)0.0670 (5)*0.3333
F2B0.3353 (7)0.6633 (9)0.1540 (8)0.0670 (5)*0.3333
F3B0.4753 (8)0.7007 (8)0.1577 (8)0.0670 (5)*0.3333
F4B0.5110 (7)0.5810 (9)0.2381 (8)0.0670 (5)*0.3333
F5B0.4312 (8)0.5591 (9)0.1211 (9)0.0670 (5)*0.3333
F6B0.4290 (9)0.6817 (9)0.2777 (9)0.0670 (5)*0.3333
P2A0.01085 (12)0.34258 (13)0.37053 (11)0.0515 (5)0.6667
F7A0.0799 (4)0.3052 (5)0.3288 (4)0.0670 (5)*0.6667
F8A0.0523 (6)0.2825 (6)0.3097 (6)0.0670 (5)*0.6667
F9A0.1001 (4)0.3682 (4)0.4138 (4)0.0670 (5)*0.6667
F10A0.0116 (4)0.4151 (5)0.4360 (4)0.0670 (5)*0.6667
F11A0.0065 (4)0.4169 (4)0.3052 (4)0.0670 (5)*0.6667
F12A0.0152 (4)0.2618 (5)0.4337 (5)0.0670 (5)*0.6667
P2B0.01085 (12)0.34258 (13)0.37053 (11)0.0515 (5)0.3333
F7B0.0657 (7)0.3666 (9)0.3129 (7)0.0670 (5)*0.3333
F8B0.0417 (11)0.2716 (10)0.3099 (11)0.0670 (5)*0.3333
F9B0.1034 (7)0.3303 (9)0.4304 (8)0.0670 (5)*0.3333
F10B0.0470 (9)0.3850 (9)0.4251 (9)0.0670 (5)*0.3333
F11B0.0566 (8)0.4202 (8)0.3231 (8)0.0670 (5)*0.3333
F12B0.0136 (8)0.2662 (9)0.4254 (9)0.0670 (5)*0.3333
O1W0.5185 (7)0.3890 (7)0.5830 (7)0.0411 (19)*0.4
O2W0.5228 (8)0.4277 (8)0.5626 (8)0.0411 (19)*0.35
O3W0.5531 (17)0.4242 (18)0.5175 (17)0.0411 (19)*0.15
O4W0.637 (3)0.350 (3)0.392 (3)0.0411 (19)*0.1
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0196 (4)0.0389 (5)0.0244 (4)0.0075 (3)0.0051 (3)0.0017 (3)
C10.030 (3)0.046 (3)0.029 (3)0.003 (2)0.009 (2)0.000 (2)
C20.036 (3)0.072 (4)0.018 (3)0.001 (3)0.009 (2)0.000 (3)
C30.037 (3)0.070 (4)0.020 (3)0.003 (3)0.003 (2)0.007 (3)
C40.025 (3)0.057 (4)0.028 (3)0.002 (3)0.002 (2)0.002 (3)
C50.022 (2)0.027 (3)0.025 (3)0.001 (2)0.002 (2)0.000 (2)
C60.022 (2)0.028 (3)0.022 (2)0.002 (2)0.004 (2)0.000 (2)
C70.022 (2)0.038 (3)0.026 (3)0.000 (2)0.000 (2)0.002 (2)
C80.020 (2)0.033 (3)0.032 (3)0.002 (2)0.004 (2)0.001 (2)
C90.025 (3)0.035 (3)0.026 (3)0.006 (2)0.008 (2)0.001 (2)
C100.023 (2)0.031 (3)0.023 (3)0.002 (2)0.004 (2)0.003 (2)
C110.023 (3)0.044 (3)0.022 (3)0.006 (2)0.002 (2)0.002 (2)
C120.026 (3)0.060 (4)0.027 (3)0.012 (3)0.008 (2)0.004 (3)
C130.040 (3)0.066 (4)0.026 (3)0.008 (3)0.006 (3)0.002 (3)
C140.030 (3)0.064 (4)0.027 (3)0.004 (3)0.000 (2)0.002 (3)
C150.028 (3)0.054 (4)0.026 (3)0.012 (3)0.004 (2)0.002 (3)
C160.023 (3)0.086 (5)0.047 (4)0.000 (3)0.001 (3)0.009 (4)
C170.022 (3)0.088 (5)0.043 (4)0.003 (3)0.002 (3)0.011 (3)
C180.020 (3)0.036 (3)0.039 (3)0.004 (2)0.007 (2)0.003 (2)
C190.028 (3)0.074 (5)0.045 (4)0.002 (3)0.008 (3)0.004 (3)
C200.036 (4)0.087 (5)0.054 (4)0.014 (4)0.020 (3)0.002 (4)
N10.024 (2)0.033 (2)0.027 (2)0.0025 (18)0.0052 (18)0.0021 (19)
N20.021 (2)0.034 (2)0.026 (2)0.0023 (18)0.0061 (17)0.0006 (18)
N30.021 (2)0.040 (3)0.025 (2)0.0082 (19)0.0018 (17)0.0023 (19)
N40.022 (2)0.069 (4)0.054 (3)0.000 (2)0.005 (2)0.000 (3)
C210.023 (3)0.042 (3)0.024 (3)0.000 (3)0.001 (4)0.006 (2)
C220.033 (4)0.044 (4)0.041 (4)0.005 (3)0.002 (5)0.006 (3)
C230.041 (5)0.036 (4)0.071 (5)0.003 (3)0.002 (5)0.004 (3)
C240.027 (4)0.050 (4)0.056 (4)0.007 (3)0.002 (5)0.002 (4)
C250.022 (3)0.038 (3)0.029 (3)0.010 (2)0.002 (3)0.000 (3)
C260.024 (3)0.045 (4)0.024 (3)0.012 (3)0.004 (3)0.002 (3)
C270.026 (3)0.043 (4)0.032 (5)0.009 (3)0.007 (3)0.001 (3)
C290.019 (3)0.048 (4)0.034 (5)0.004 (3)0.006 (3)0.008 (3)
C300.019 (3)0.042 (3)0.028 (3)0.006 (2)0.007 (3)0.005 (3)
C310.018 (2)0.045 (3)0.023 (3)0.002 (2)0.004 (2)0.002 (3)
C320.022 (3)0.047 (4)0.043 (5)0.005 (3)0.009 (3)0.012 (4)
C330.029 (3)0.050 (4)0.038 (5)0.002 (3)0.005 (3)0.012 (3)
C340.041 (3)0.034 (3)0.042 (7)0.009 (3)0.005 (3)0.010 (4)
C350.027 (3)0.045 (4)0.040 (4)0.005 (3)0.011 (3)0.002 (4)
N50.024 (3)0.035 (3)0.022 (2)0.003 (2)0.004 (3)0.001 (2)
N60.018 (2)0.036 (3)0.027 (2)0.005 (2)0.006 (2)0.002 (2)
N70.018 (2)0.039 (3)0.028 (5)0.0029 (19)0.005 (2)0.002 (3)
C280.023 (3)0.038 (4)0.028 (4)0.007 (3)0.007 (3)0.001 (3)
C360.040 (5)0.064 (6)0.061 (6)0.015 (4)0.012 (4)0.012 (4)
C370.025 (3)0.052 (4)0.054 (4)0.010 (3)0.004 (3)0.005 (4)
C380.024 (3)0.047 (4)0.038 (4)0.010 (3)0.006 (3)0.007 (3)
C390.031 (4)0.052 (4)0.045 (4)0.010 (3)0.006 (3)0.006 (3)
C400.026 (3)0.058 (5)0.050 (4)0.003 (3)0.001 (3)0.014 (4)
N80.027 (3)0.057 (4)0.067 (4)0.011 (3)0.008 (3)0.004 (4)
C1210.023 (3)0.042 (3)0.024 (3)0.000 (3)0.001 (4)0.006 (2)
C1220.033 (4)0.044 (4)0.041 (4)0.005 (3)0.002 (5)0.006 (3)
C1230.041 (5)0.036 (4)0.071 (5)0.003 (3)0.002 (5)0.004 (3)
C1240.027 (4)0.050 (4)0.056 (4)0.007 (3)0.002 (5)0.002 (4)
C1250.022 (3)0.038 (3)0.029 (3)0.010 (2)0.002 (3)0.000 (3)
C1260.024 (3)0.045 (4)0.024 (3)0.012 (3)0.004 (3)0.002 (3)
C1270.026 (3)0.043 (4)0.032 (5)0.009 (3)0.007 (3)0.001 (3)
C1290.019 (3)0.048 (4)0.034 (5)0.004 (3)0.006 (3)0.008 (3)
C1300.019 (3)0.042 (3)0.028 (3)0.006 (2)0.007 (3)0.005 (3)
C1310.018 (2)0.045 (3)0.023 (3)0.002 (2)0.004 (2)0.002 (3)
C1320.022 (3)0.047 (4)0.043 (5)0.005 (3)0.009 (3)0.012 (4)
C1330.029 (3)0.050 (4)0.038 (5)0.002 (3)0.005 (3)0.012 (3)
C1340.041 (3)0.034 (3)0.042 (7)0.009 (3)0.005 (3)0.010 (4)
C1350.027 (3)0.045 (4)0.040 (4)0.005 (3)0.011 (3)0.002 (4)
N1050.024 (3)0.035 (3)0.022 (2)0.003 (2)0.004 (3)0.001 (2)
N1060.018 (2)0.036 (3)0.027 (2)0.005 (2)0.006 (2)0.002 (2)
N1070.018 (2)0.039 (3)0.028 (5)0.0029 (19)0.005 (2)0.002 (3)
P1A0.0462 (10)0.0529 (11)0.0672 (12)0.0157 (8)0.0263 (9)0.0193 (9)
P1B0.0462 (10)0.0529 (11)0.0672 (12)0.0157 (8)0.0263 (9)0.0193 (9)
P2A0.0512 (10)0.0674 (12)0.0375 (9)0.0224 (9)0.0124 (8)0.0119 (8)
P2B0.0512 (10)0.0674 (12)0.0375 (9)0.0224 (9)0.0124 (8)0.0119 (8)
Geometric parameters (Å, º) top
Mn1—N12.231 (4)C28—C381.496 (9)
Mn1—N22.193 (4)C36—N81.328 (11)
Mn1—N32.268 (4)C36—C371.402 (12)
Mn1—N52.259 (5)C36—H360.9500
Mn1—N62.212 (4)C37—C381.373 (10)
Mn1—N72.260 (5)C37—H370.9500
Mn1—N1052.373 (11)C38—C391.394 (10)
Mn1—N1062.107 (10)C39—C401.384 (9)
Mn1—N1072.090 (16)C39—H390.9500
C1—N11.343 (7)C40—N81.336 (10)
C1—C21.371 (8)C40—H400.9500
C1—H10.9500C121—N1051.336 (7)
C2—C31.387 (8)C121—C1221.372 (8)
C2—H20.9500C121—H1210.9500
C3—C41.374 (8)C122—C1231.377 (9)
C3—H30.9500C122—H1220.9500
C4—C51.388 (7)C123—C1241.377 (9)
C4—H40.9500C123—H1230.9500
C5—N11.352 (6)C124—C1251.380 (9)
C5—C61.484 (7)C124—H1240.9500
C6—N21.338 (6)C125—N1051.356 (7)
C6—C71.388 (7)C125—C1261.481 (8)
C7—C81.388 (7)C126—N1061.348 (7)
C7—H70.9500C126—C1271.382 (7)
C8—C91.393 (7)C127—C1281.40 (5)
C8—C181.487 (7)C127—H1270.9500
C9—C101.380 (7)C129—C1301.391 (7)
C9—H90.9500C129—C1281.47 (5)
C10—N21.343 (6)C129—H1290.9500
C10—C111.489 (7)C130—N1061.336 (7)
C11—N31.346 (6)C130—C1311.478 (8)
C11—C121.389 (7)C131—N1071.351 (6)
C12—C131.378 (8)C131—C1321.391 (8)
C12—H120.9500C132—C1331.374 (9)
C13—C141.385 (8)C132—H1320.9500
C13—H130.9500C133—C1341.375 (8)
C14—C151.393 (8)C133—H1330.9500
C14—H140.9500C134—C1351.368 (9)
C15—N31.334 (7)C134—H1340.9500
C15—H150.9500C135—N1071.343 (7)
C16—N41.315 (8)C135—H1350.9500
C16—C171.381 (8)C128—C1381.46 (5)
C16—H160.9500C136—C1371.3900
C17—C181.380 (8)C136—N1081.3900
C17—H170.9500C136—H1360.9500
C18—C191.376 (8)C137—C1381.3900
C19—C201.393 (8)C137—H1370.9500
C19—H190.9500C138—C1391.3900
C20—N41.322 (9)C139—C1401.3900
C20—H200.9500C139—H1390.9500
C21—N51.336 (7)C140—N1081.3900
C21—C221.372 (8)C140—H1400.9500
C21—H210.9500P1A—F4A1.544 (6)
C22—C231.377 (9)P1A—F1A1.564 (7)
C22—H220.9500P1A—F5A1.582 (7)
C23—C241.377 (9)P1A—F6A1.583 (7)
C23—H230.9500P1A—F2A1.656 (7)
C24—C251.380 (9)P1A—F3A1.669 (7)
C24—H240.9500P1B—F3B1.542 (11)
C25—N51.356 (6)P1B—F2B1.550 (11)
C25—C261.481 (8)P1B—F5B1.581 (11)
C26—N61.348 (7)P1B—F1B1.611 (11)
C26—C271.382 (7)P1B—F6B1.656 (14)
C27—C281.391 (10)P1B—F4B1.679 (11)
C27—H270.9500P2A—F9A1.558 (7)
C29—C281.386 (10)P2A—F11A1.565 (6)
C29—C301.391 (7)P2A—F8A1.593 (7)
C29—H290.9500P2A—F12A1.616 (7)
C30—N61.336 (7)P2A—F7A1.627 (7)
C30—C311.477 (8)P2A—F10A1.636 (7)
C31—N71.351 (6)P2B—F7B1.484 (11)
C31—C321.391 (8)P2B—F10B1.549 (14)
C32—C331.374 (9)P2B—F12B1.573 (11)
C32—H320.9500P2B—F8B1.615 (12)
C33—C341.375 (8)P2B—F11B1.668 (11)
C33—H330.9500P2B—F9B1.670 (11)
C34—C351.368 (9)O1W—O2W0.693 (13)
C34—H340.9500O1W—O3W1.41 (3)
C35—N71.343 (7)O2W—O3W0.96 (3)
C35—H350.9500
N1—Mn1—N272.37 (15)C29—C28—C38118.6 (6)
N1—Mn1—N3143.36 (15)C27—C28—C38122.3 (6)
N1—Mn1—N599.8 (3)N8—C36—C37124.3 (9)
N1—Mn1—N6111.3 (3)N8—C36—H36117.9
N1—Mn1—N792.2 (4)C37—C36—H36117.9
N2—Mn1—N372.21 (15)C38—C37—C36118.0 (7)
N2—Mn1—N597.87 (16)C38—C37—H37121.0
N2—Mn1—N6169.95 (18)C36—C37—H37121.0
N2—Mn1—N7117.68 (17)C37—C38—C39118.7 (6)
N3—Mn1—N594.0 (3)C37—C38—C28121.9 (7)
N3—Mn1—N6105.2 (3)C39—C38—C28119.4 (6)
N3—Mn1—N796.0 (4)C40—C39—C38118.5 (7)
N5—Mn1—N672.45 (17)C40—C39—H39120.7
N5—Mn1—N7144.44 (17)C38—C39—H39120.7
N6—Mn1—N771.99 (17)N8—C40—C39123.9 (7)
N107—Mn1—N10677.6 (5)N8—C40—H40118.1
N107—Mn1—N2118.8 (4)C39—C40—H40118.1
N106—Mn1—N2163.6 (3)C36—N8—C40116.5 (7)
N107—Mn1—N189 (2)N105—C121—C122123.4 (6)
N106—Mn1—N1110.1 (14)N105—C121—H121118.3
N107—Mn1—N3100 (3)C122—C121—H121118.3
N106—Mn1—N3106.5 (14)C121—C122—C123118.0 (6)
N107—Mn1—N105149.2 (10)C121—C122—H122121.0
N106—Mn1—N10572.0 (3)C123—C122—H122121.0
N2—Mn1—N10591.6 (3)C122—C123—C124119.6 (7)
N1—Mn1—N10596.8 (16)C122—C123—H123120.2
N3—Mn1—N10593.3 (17)C124—C123—H123120.2
N1—C1—C2122.4 (5)C123—C124—C125119.6 (6)
N1—C1—H1118.8C123—C124—H124120.2
C2—C1—H1118.8C125—C124—H124120.2
C1—C2—C3118.8 (5)N105—C125—C124120.7 (6)
C1—C2—H2120.6N105—C125—C126116.0 (5)
C3—C2—H2120.6C124—C125—C126123.2 (5)
C4—C3—C2119.2 (5)N106—C126—C127120.5 (6)
C4—C3—H3120.4N106—C126—C125114.9 (5)
C2—C3—H3120.4C127—C126—C125124.5 (6)
C3—C4—C5119.5 (5)C126—C127—C128123 (2)
C3—C4—H4120.3C126—C127—H127118.4
C5—C4—H4120.3C128—C127—H127118.4
N1—C5—C4121.0 (5)C130—C129—C128120.8 (19)
N1—C5—C6114.9 (4)C130—C129—H129119.6
C4—C5—C6124.1 (4)C128—C129—H129119.6
N2—C6—C7121.0 (4)N106—C130—C129121.0 (6)
N2—C6—C5114.7 (4)N106—C130—C131115.7 (4)
C7—C6—C5124.2 (4)C129—C130—C131123.2 (6)
C8—C7—C6119.9 (5)N107—C131—C132121.7 (5)
C8—C7—H7120.1N107—C131—C130115.0 (5)
C6—C7—H7120.1C132—C131—C130123.2 (5)
C7—C8—C9118.2 (5)C133—C132—C131118.8 (5)
C7—C8—C18121.8 (5)C133—C132—H132120.6
C9—C8—C18120.0 (5)C131—C132—H132120.6
C10—C9—C8119.3 (5)C132—C133—C134119.7 (6)
C10—C9—H9120.4C132—C133—H133120.2
C8—C9—H9120.4C134—C133—H133120.2
N2—C10—C9121.8 (5)C135—C134—C133118.6 (6)
N2—C10—C11114.1 (4)C135—C134—H134120.7
C9—C10—C11124.0 (5)C133—C134—H134120.7
N3—C11—C12121.4 (5)N107—C135—C134123.1 (6)
N3—C11—C10115.9 (4)N107—C135—H135118.5
C12—C11—C10122.7 (5)C134—C135—H135118.5
C13—C12—C11118.9 (5)C121—N105—C125118.6 (5)
C13—C12—H12120.6C121—N105—Mn1128.0 (5)
C11—C12—H12120.6C125—N105—Mn1113.4 (4)
C12—C13—C14119.9 (5)C130—N106—C126120.8 (5)
C12—C13—H13120.0C130—N106—Mn1115.5 (5)
C14—C13—H13120.0C126—N106—Mn1123.7 (5)
C13—C14—C15118.0 (5)C135—N107—C131118.0 (5)
C13—C14—H14121.0C135—N107—Mn1125.5 (13)
C15—C14—H14121.0C131—N107—Mn1115.6 (6)
N3—C15—C14122.3 (5)C127—C128—C138125 (3)
N3—C15—H15118.8C127—C128—C129114 (3)
C14—C15—H15118.8C138—C128—C129121 (3)
N4—C16—C17124.0 (6)C137—C136—N108120.0
N4—C16—H16118.0C137—C136—H136120.0
C17—C16—H16118.0N108—C136—H136120.0
C18—C17—C16120.1 (6)C136—C137—C138120.0
C18—C17—H17119.9C136—C137—H137120.0
C16—C17—H17119.9C138—C137—H137120.0
C19—C18—C17115.9 (5)C139—C138—C137120.0
C19—C18—C8121.3 (5)C139—C138—C128118 (2)
C17—C18—C8122.5 (5)C137—C138—C128122 (2)
C18—C19—C20120.0 (6)C140—C139—C138120.0
C18—C19—H19120.0C140—C139—H139120.0
C20—C19—H19120.0C138—C139—H139120.0
N4—C20—C19123.5 (6)C139—C140—N108120.0
N4—C20—H20118.3C139—C140—H140120.0
C19—C20—H20118.3N108—C140—H140120.0
C1—N1—C5119.0 (4)C140—N108—C136120.0
C1—N1—Mn1123.2 (4)F4A—P1A—F1A96.0 (4)
C5—N1—Mn1117.7 (3)F4A—P1A—F5A90.4 (4)
C6—N2—C10119.9 (4)F1A—P1A—F5A94.1 (5)
C6—N2—Mn1119.6 (3)F4A—P1A—F6A91.7 (4)
C10—N2—Mn1120.2 (3)F1A—P1A—F6A92.7 (5)
C15—N3—C11119.4 (4)F5A—P1A—F6A172.7 (4)
C15—N3—Mn1123.8 (3)F4A—P1A—F2A171.2 (4)
C11—N3—Mn1116.8 (3)F1A—P1A—F2A92.8 (4)
C16—N4—C20116.4 (5)F5A—P1A—F2A89.2 (4)
N5—C21—C22123.4 (5)F6A—P1A—F2A87.7 (4)
N5—C21—H21118.3F4A—P1A—F3A89.6 (4)
C22—C21—H21118.3F1A—P1A—F3A173.9 (4)
C21—C22—C23118.0 (6)F5A—P1A—F3A83.5 (4)
C21—C22—H22121.0F6A—P1A—F3A89.5 (4)
C23—C22—H22121.0F2A—P1A—F3A81.5 (3)
C22—C23—C24119.6 (6)F3B—P1B—F2B98.1 (7)
C22—C23—H23120.2F3B—P1B—F5B96.9 (7)
C24—C23—H23120.2F2B—P1B—F5B97.7 (7)
C23—C24—C25119.7 (6)F3B—P1B—F1B175.5 (8)
C23—C24—H24120.2F2B—P1B—F1B85.5 (7)
C25—C24—H24120.2F5B—P1B—F1B85.3 (9)
N5—C25—C24120.8 (5)F3B—P1B—F6B89.6 (7)
N5—C25—C26116.0 (5)F2B—P1B—F6B94.7 (7)
C24—C25—C26123.2 (5)F5B—P1B—F6B165.0 (8)
N6—C26—C27120.5 (6)F1B—P1B—F6B87.3 (9)
N6—C26—C25114.9 (4)F3B—P1B—F4B90.3 (7)
C27—C26—C25124.5 (5)F2B—P1B—F4B171.3 (7)
C26—C27—C28119.4 (6)F5B—P1B—F4B83.5 (7)
C26—C27—H27120.3F1B—P1B—F4B86.0 (7)
C28—C27—H27120.3F6B—P1B—F4B82.9 (7)
C28—C29—C30118.9 (6)F9A—P2A—F11A100.5 (4)
C28—C29—H29120.5F9A—P2A—F8A88.8 (4)
C30—C29—H29120.5F11A—P2A—F8A91.9 (4)
N6—C30—C29121.1 (5)F9A—P2A—F12A87.5 (4)
N6—C30—C31115.7 (4)F11A—P2A—F12A171.9 (4)
C29—C30—C31123.2 (5)F8A—P2A—F12A89.2 (4)
N7—C31—C32121.7 (5)F9A—P2A—F7A173.8 (4)
N7—C31—C30115.0 (5)F11A—P2A—F7A85.1 (4)
C32—C31—C30123.2 (5)F8A—P2A—F7A88.5 (4)
C33—C32—C31118.8 (5)F12A—P2A—F7A86.9 (4)
C33—C32—H32120.6F9A—P2A—F10A79.3 (4)
C31—C32—H32120.6F11A—P2A—F10A85.8 (4)
C32—C33—C34119.7 (6)F8A—P2A—F10A167.3 (4)
C32—C33—H33120.1F12A—P2A—F10A94.8 (4)
C34—C33—H33120.1F7A—P2A—F10A103.7 (4)
C35—C34—C33118.7 (6)F7B—P2B—F10B75.3 (7)
C35—C34—H34120.7F7B—P2B—F12B107.1 (7)
C33—C34—H34120.7F10B—P2B—F12B75.1 (8)
N7—C35—C34123.1 (5)F7B—P2B—F8B94.6 (9)
N7—C35—H35118.4F10B—P2B—F8B157.7 (8)
C34—C35—H35118.4F12B—P2B—F8B89.4 (8)
C21—N5—C25118.6 (5)F7B—P2B—F11B84.9 (7)
C21—N5—Mn1124.3 (4)F10B—P2B—F11B109.5 (7)
C25—N5—Mn1117.1 (4)F12B—P2B—F11B168.1 (7)
C30—N6—C26120.8 (4)F8B—P2B—F11B89.0 (7)
C30—N6—Mn1119.5 (3)F7B—P2B—F9B170.8 (7)
C26—N6—Mn1119.6 (4)F10B—P2B—F9B105.9 (7)
C35—N7—C31118.0 (5)F12B—P2B—F9B82.0 (6)
C35—N7—Mn1124.3 (4)F8B—P2B—F9B87.3 (8)
C31—N7—Mn1117.6 (4)F11B—P2B—F9B86.1 (7)
C29—C28—C27119.1 (6)O1W—O2W—O3W116 (3)
N1—C1—C2—C31.5 (10)C31—C30—N6—C26178.8 (8)
C1—C2—C3—C41.1 (10)C29—C30—N6—Mn1173.7 (7)
C2—C3—C4—C50.1 (10)C31—C30—N6—Mn15.2 (9)
C3—C4—C5—N11.1 (9)C27—C26—N6—C300.7 (12)
C3—C4—C5—C6177.0 (5)C25—C26—N6—C30177.3 (7)
N1—C5—C6—N22.3 (7)C27—C26—N6—Mn1176.8 (7)
C4—C5—C6—N2175.9 (5)C25—C26—N6—Mn11.3 (10)
N1—C5—C6—C7179.3 (5)C34—C35—N7—C310 (2)
C4—C5—C6—C71.1 (8)C34—C35—N7—Mn1177.4 (15)
N2—C6—C7—C80.7 (8)C32—C31—N7—C351.0 (15)
C5—C6—C7—C8177.5 (5)C30—C31—N7—C35178.2 (12)
C6—C7—C8—C90.3 (8)C32—C31—N7—Mn1177.0 (9)
C6—C7—C8—C18178.3 (5)C30—C31—N7—Mn10.3 (10)
C7—C8—C9—C101.2 (8)C30—C29—C28—C270.4 (10)
C18—C8—C9—C10177.5 (5)C30—C29—C28—C38179.3 (7)
C8—C9—C10—N21.2 (8)C26—C27—C28—C293.3 (11)
C8—C9—C10—C11175.0 (5)C26—C27—C28—C38176.4 (7)
N2—C10—C11—N35.8 (7)N8—C36—C37—C381.3 (13)
C9—C10—C11—N3177.8 (5)C36—C37—C38—C391.7 (11)
N2—C10—C11—C12172.5 (5)C36—C37—C38—C28176.3 (7)
C9—C10—C11—C123.9 (9)C29—C28—C38—C37135.8 (8)
N3—C11—C12—C131.9 (9)C27—C28—C38—C3744.4 (10)
C10—C11—C12—C13176.3 (6)C29—C28—C38—C3942.1 (9)
C11—C12—C13—C142.0 (10)C27—C28—C38—C39137.6 (7)
C12—C13—C14—C150.7 (10)C37—C38—C39—C400.4 (11)
C13—C14—C15—N30.6 (10)C28—C38—C39—C40177.6 (6)
N4—C16—C17—C181.4 (12)C38—C39—C40—N81.6 (11)
C16—C17—C18—C191.5 (10)C37—C36—N8—C400.5 (13)
C16—C17—C18—C8176.6 (6)C39—C40—N8—C361.9 (12)
C7—C8—C18—C19155.2 (6)N105—C121—C122—C1231 (11)
C9—C8—C18—C1923.4 (8)C121—C122—C123—C1243 (8)
C7—C8—C18—C1719.7 (9)C122—C123—C124—C1252 (9)
C9—C8—C18—C17161.7 (6)C123—C124—C125—N1051 (8)
C17—C18—C19—C202.1 (10)C123—C124—C125—C126179 (6)
C8—C18—C19—C20177.3 (6)N105—C125—C126—N1062 (5)
C18—C19—C20—N40.1 (12)C124—C125—C126—N106175 (5)
C2—C1—N1—C50.6 (8)N105—C125—C126—C127175 (5)
C2—C1—N1—Mn1178.4 (5)C124—C125—C126—C1277 (6)
C4—C5—N1—C10.8 (8)N106—C126—C127—C1283 (7)
C6—C5—N1—C1177.5 (5)C125—C126—C127—C128180 (4)
C4—C5—N1—Mn1177.2 (4)C128—C129—C130—N1060 (6)
C6—C5—N1—Mn14.5 (6)C128—C129—C130—C131176 (4)
C7—C6—N2—C100.7 (8)N106—C130—C131—N1075 (4)
C5—C6—N2—C10177.8 (5)C129—C130—C131—N107171 (5)
C7—C6—N2—Mn1174.5 (4)N106—C130—C131—C132171 (5)
C5—C6—N2—Mn18.3 (6)C129—C130—C131—C13213 (5)
C9—C10—N2—C60.2 (8)N107—C131—C132—C1331 (7)
C11—C10—N2—C6176.3 (5)C130—C131—C132—C133175 (6)
C9—C10—N2—Mn1173.6 (4)C131—C132—C133—C1344 (6)
C11—C10—N2—Mn19.9 (6)C132—C133—C134—C1354 (9)
C14—C15—N3—C110.7 (9)C133—C134—C135—N1070 (13)
C14—C15—N3—Mn1177.6 (5)C122—C121—N105—C1252 (11)
C12—C11—N3—C150.6 (9)C122—C121—N105—Mn1177 (6)
C10—C11—N3—C15177.7 (5)C124—C125—N105—C1213 (7)
C12—C11—N3—Mn1179.0 (5)C126—C125—N105—C121179 (5)
C10—C11—N3—Mn10.6 (6)C124—C125—N105—Mn1176 (5)
C17—C16—N4—C203.5 (12)C126—C125—N105—Mn12 (5)
C19—C20—N4—C162.9 (11)C129—C130—N106—C1262 (5)
N5—C21—C22—C230.4 (18)C131—C130—N106—C126178 (4)
C21—C22—C23—C240.0 (16)C129—C130—N106—Mn1177 (4)
C22—C23—C24—C250.4 (16)C131—C130—N106—Mn11 (4)
C23—C24—C25—N50.5 (15)C127—C126—N106—C1303 (6)
C23—C24—C25—C26177.4 (10)C125—C126—N106—C130180 (3)
N5—C25—C26—N60.8 (10)C127—C126—N106—Mn1176 (4)
C24—C25—C26—N6178.7 (9)C125—C126—N106—Mn11 (5)
N5—C25—C26—C27177.2 (9)C134—C135—N107—C1313 (11)
C24—C25—C26—C270.7 (12)C134—C135—N107—Mn1165 (9)
N6—C26—C27—C283.6 (12)C132—C131—N107—C1353 (8)
C25—C26—C27—C28174.3 (7)C130—C131—N107—C135179 (6)
C28—C29—C30—N62.5 (11)C132—C131—N107—Mn1167 (5)
C28—C29—C30—C31178.7 (7)C130—C131—N107—Mn19 (5)
N6—C30—C31—N73.5 (10)C126—C127—C128—C138177 (4)
C29—C30—C31—N7175.4 (9)C126—C127—C128—C1291 (7)
N6—C30—C31—C32173.7 (9)C130—C129—C128—C1270 (6)
C29—C30—C31—C327.4 (13)C130—C129—C128—C138179 (4)
N7—C31—C32—C330.9 (13)N108—C136—C137—C1380.0
C30—C31—C32—C33177.9 (9)C136—C137—C138—C1390.0
C31—C32—C33—C340.3 (13)C136—C137—C138—C128177 (3)
C32—C33—C34—C350.2 (16)C127—C128—C138—C13939 (5)
C33—C34—C35—N70 (2)C129—C128—C138—C139140 (4)
C22—C21—N5—C250.4 (17)C127—C128—C138—C137144 (4)
C22—C21—N5—Mn1177.3 (10)C129—C128—C138—C13737 (5)
C24—C25—N5—C210.0 (14)C137—C138—C139—C1400.0
C26—C25—N5—C21177.9 (9)C128—C138—C139—C140177 (3)
C24—C25—N5—Mn1177.9 (8)C138—C139—C140—N1080.0
C26—C25—N5—Mn10.1 (10)C139—C140—N108—C1360.0
C29—C30—N6—C262.3 (12)C137—C136—N108—C1400.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F5Ai0.952.503.422 (9)164
C15—H15···F12Aii0.952.463.305 (9)149
C16—H16···F7Aiii0.952.383.289 (9)160
C19—H19···F5Ai0.952.413.328 (10)162
C29—H29···N4iv0.952.353.270 (8)163
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x1, y, z.
(2) Bis[4'-(pyridin-4-yl)-2,2':6',2''-terpyridine]manganese(II) bis(hexafluoridophosphate) acetone monosolvate top
Crystal data top
[Mn(C20H14N4)2](PF6)2·C3H6ODx = 1.595 Mg m3
Mr = 1023.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 6510 reflections
a = 18.0996 (15) Åθ = 2.7–25.2°
b = 27.470 (2) ŵ = 0.48 mm1
c = 8.5734 (6) ÅT = 150 K
V = 4262.7 (6) Å3Block, yellow
Z = 40.16 × 0.08 × 0.04 mm
F(000) = 2076
Data collection top
Bruker APEXII CCD
diffractometer
3908 independent reflections
Radiation source: sealed tube2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
φ and ω scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2121
Tmin = 0.955, Tmax = 0.981k = 3133
18921 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.104 w = 1/[σ2(Fo2) + (0.0919P)2 + 48.9339P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.270(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.71 e Å3
3908 reflectionsΔρmin = 1.05 e Å3
292 parametersAbsolute structure: Flack x determined using 836 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013)
102 restraintsAbsolute structure parameter: 0.21 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.77635 (9)0.75000.0370 (7)
C10.4292 (7)0.7832 (5)1.0872 (14)0.048 (3)
H10.43070.81721.06650.058*
C20.4020 (7)0.7676 (6)1.2295 (16)0.054 (4)
H20.38660.79021.30690.065*
C30.3980 (7)0.7181 (5)1.2545 (16)0.048 (3)
H30.37840.70621.35000.058*
C40.4219 (7)0.6858 (5)1.1433 (14)0.043 (3)
H40.41970.65171.16210.051*
C50.4488 (7)0.7032 (5)1.0052 (13)0.039 (3)
C60.4751 (6)0.6721 (4)0.8756 (12)0.032 (3)
C70.4750 (7)0.6216 (5)0.8755 (15)0.048 (3)
H70.45730.60460.96440.058*
C80.50000.5958 (6)0.75000.044 (4)
C120.3343 (7)0.7696 (6)0.6153 (14)0.050 (4)
H120.33870.73570.63660.060*
C130.2723 (8)0.7871 (6)0.5405 (16)0.056 (4)
H130.23420.76510.51200.068*
C140.2645 (8)0.8344 (7)0.5069 (18)0.061 (4)
H140.22170.84570.45390.073*
C150.3211 (7)0.8675 (6)0.5515 (17)0.054 (4)
H150.31800.90120.52790.064*
C160.3811 (7)0.8483 (5)0.6310 (14)0.040 (3)
C170.4424 (7)0.8814 (5)0.6884 (13)0.039 (3)
C180.4412 (7)0.9303 (5)0.6864 (14)0.041 (3)
H180.40020.94680.64170.049*
C190.50000.9574 (6)0.75000.046 (4)
C200.50001.0098 (7)0.75000.054 (5)
C210.4345 (8)1.0377 (5)0.7816 (19)0.058 (4)
H210.38921.02170.80400.069*
C220.4377 (9)1.0875 (5)0.779 (2)0.071 (5)
H220.39351.10510.79900.085*
N10.4541 (6)0.7520 (4)0.9758 (11)0.039 (3)
N20.50000.6970 (5)0.75000.035 (3)
N40.50000.8560 (5)0.75000.041 (3)
N50.3898 (6)0.8012 (4)0.6593 (11)0.039 (2)
N60.50001.1129 (5)0.75000.070 (5)
C1090.50000.5411 (6)0.75000.049 (4)0.5
C1100.4556 (18)0.5139 (11)0.646 (4)0.058 (6)0.5
H1100.42510.52880.56950.070*0.5
C1110.460 (2)0.4652 (12)0.663 (4)0.061 (6)0.5
H1110.42700.44750.59770.074*0.5
N130.50000.4386 (6)0.75000.080 (6)0.5
C2090.50000.5411 (6)0.75000.049 (4)0.5
C2100.4316 (18)0.5177 (10)0.765 (4)0.058 (6)0.5
H2100.38630.53470.77850.070*0.5
C2110.436 (2)0.4708 (10)0.758 (4)0.061 (6)0.5
H2110.38940.45450.75880.074*0.5
N230.50000.4386 (6)0.75000.080 (6)0.5
P10.7697 (4)0.8833 (3)0.4862 (10)0.0683 (16)*0.4
F110.7203 (7)0.8354 (4)0.4710 (17)0.0978 (19)*0.4
F120.7479 (8)0.8984 (5)0.3127 (13)0.0978 (19)*0.4
F130.8190 (7)0.9311 (4)0.5015 (17)0.0978 (19)*0.4
F140.7915 (8)0.8681 (5)0.6597 (13)0.0978 (19)*0.4
F150.8393 (7)0.8541 (5)0.4211 (17)0.0978 (19)*0.4
F160.7000 (7)0.9124 (5)0.5513 (17)0.0978 (19)*0.4
P20.7698 (5)0.8722 (3)0.4736 (11)0.0683 (16)*0.6
F210.7250 (10)0.8513 (7)0.330 (2)0.0978 (19)*0.6
F220.7976 (10)0.9225 (7)0.422 (2)0.0978 (19)*0.6
F230.8155 (10)0.8818 (7)0.635 (2)0.0978 (19)*0.6
F240.7524 (10)0.8204 (7)0.557 (2)0.0978 (19)*0.6
F250.8441 (10)0.8478 (7)0.396 (2)0.0978 (19)*0.6
F260.6985 (10)0.8939 (7)0.548 (2)0.0978 (19)*0.6
O900.8075 (9)0.5064 (8)0.520 (3)0.066 (6)*0.5
C910.746 (2)0.4862 (10)0.754 (3)0.126 (10)*0.5
H91A0.78060.45870.75960.188*0.5
H91B0.69560.47450.76970.188*0.5
H91C0.75860.51000.83500.188*0.5
C900.7521 (10)0.5095 (4)0.599 (2)0.126 (10)*0.5
C920.6893 (17)0.5377 (10)0.534 (5)0.126 (10)*0.5
H92A0.64320.52000.55330.188*0.5
H92B0.69620.54210.42180.188*0.5
H92C0.68700.56960.58530.188*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0534 (15)0.0331 (13)0.0246 (11)0.0000.0046 (13)0.000
C10.055 (8)0.054 (9)0.036 (6)0.007 (7)0.017 (6)0.010 (6)
C20.051 (8)0.072 (10)0.039 (8)0.006 (7)0.007 (6)0.010 (8)
C30.052 (7)0.066 (9)0.028 (5)0.003 (6)0.008 (6)0.006 (9)
C40.053 (8)0.048 (8)0.026 (6)0.004 (6)0.001 (6)0.003 (6)
C50.046 (7)0.047 (8)0.024 (6)0.002 (6)0.001 (5)0.003 (5)
C60.039 (7)0.038 (7)0.020 (5)0.001 (5)0.001 (5)0.001 (5)
C70.059 (9)0.052 (8)0.034 (6)0.009 (6)0.000 (6)0.009 (6)
C80.055 (11)0.032 (9)0.044 (10)0.0000.011 (12)0.000
C120.036 (7)0.082 (11)0.033 (6)0.013 (7)0.004 (6)0.004 (7)
C130.040 (7)0.083 (8)0.046 (8)0.017 (8)0.006 (6)0.010 (7)
C140.035 (7)0.091 (9)0.056 (9)0.004 (8)0.008 (7)0.004 (8)
C150.029 (7)0.080 (11)0.053 (8)0.002 (7)0.001 (6)0.011 (8)
C160.033 (6)0.050 (8)0.036 (6)0.007 (6)0.002 (5)0.003 (6)
C170.046 (7)0.042 (8)0.027 (5)0.006 (6)0.004 (5)0.008 (5)
C180.039 (7)0.046 (8)0.039 (7)0.005 (6)0.004 (6)0.002 (5)
C190.042 (10)0.035 (9)0.060 (11)0.0000.003 (12)0.000
C200.045 (10)0.057 (12)0.059 (12)0.0000.012 (13)0.000
C210.053 (9)0.054 (9)0.066 (11)0.008 (7)0.005 (8)0.003 (8)
C220.065 (10)0.044 (8)0.105 (16)0.012 (7)0.011 (10)0.002 (9)
N10.057 (7)0.039 (6)0.022 (5)0.002 (5)0.002 (5)0.004 (4)
N20.051 (8)0.035 (7)0.020 (6)0.0000.005 (8)0.000
N40.049 (8)0.047 (8)0.027 (7)0.0000.010 (8)0.000
N50.047 (6)0.038 (6)0.030 (5)0.007 (5)0.007 (5)0.001 (4)
N60.061 (11)0.032 (9)0.116 (15)0.0000.007 (14)0.000
C1090.075 (13)0.029 (9)0.042 (9)0.0000.003 (13)0.000
C1100.069 (15)0.046 (12)0.060 (14)0.004 (10)0.017 (13)0.012 (12)
C1110.086 (18)0.046 (12)0.052 (16)0.001 (11)0.002 (14)0.005 (14)
N130.132 (18)0.034 (10)0.075 (12)0.0000.027 (16)0.000
C2090.075 (13)0.029 (9)0.042 (9)0.0000.003 (13)0.000
C2100.069 (15)0.046 (12)0.060 (14)0.004 (10)0.017 (13)0.012 (12)
C2110.086 (18)0.046 (12)0.052 (16)0.001 (11)0.002 (14)0.005 (14)
N230.132 (18)0.034 (10)0.075 (12)0.0000.027 (16)0.000
Geometric parameters (Å, º) top
Mn1—N12.210 (10)C21—C221.37 (2)
Mn1—N22.180 (13)C21—H210.9500
Mn1—N42.187 (14)C22—N61.351 (18)
Mn1—N52.247 (11)C22—H220.9500
Mn1—N1i2.210 (10)N2—C6i1.353 (13)
Mn1—N5i2.247 (11)N4—C17i1.361 (15)
C1—N11.358 (16)N6—C22i1.351 (18)
C1—C21.384 (18)C109—C1101.41 (3)
C1—H10.9500C109—C110i1.41 (3)
C2—C31.379 (19)C110—C1111.35 (4)
C2—H20.9500C110—H1100.9500
C3—C41.372 (18)C111—N131.27 (3)
C3—H30.9500C111—H1110.9500
C4—C51.366 (16)N13—C111i1.27 (4)
C4—H40.9500C209—C210i1.40 (3)
C5—N11.370 (16)C209—C2101.40 (3)
C5—C61.480 (15)C210—C2111.29 (4)
C6—N21.353 (13)C210—H2100.9500
C6—C71.387 (18)C211—N231.46 (3)
C7—C81.364 (16)C211—H2110.9500
C7—H70.9500N23—C211i1.46 (3)
C8—C7i1.364 (16)P1—F141.594 (7)
C8—C1091.50 (2)P1—F161.594 (7)
C8—C2091.50 (2)P1—F111.594 (7)
C12—C131.38 (2)P1—F131.594 (7)
C12—N51.380 (16)P1—F121.594 (7)
C12—H120.9500P1—F151.594 (7)
C13—C141.34 (2)P2—F221.54 (2)
C13—H130.9500P2—F261.557 (19)
C14—C151.42 (2)P2—F211.578 (19)
C14—H140.9500P2—F241.62 (2)
C15—C161.386 (18)P2—F231.634 (19)
C15—H150.9500P2—F251.644 (19)
C16—N51.326 (16)O90—C901.209 (4)
C16—C171.517 (17)C91—C901.481 (4)
C17—C181.344 (18)C91—H91A0.9800
C17—N41.361 (15)C91—H91B0.9800
C18—C191.408 (16)C91—H91C0.9800
C18—H180.9500C90—C921.482 (4)
C19—C18i1.408 (16)C92—H92A0.9800
C19—C201.44 (3)C92—H92B0.9800
C20—C21i1.437 (17)C92—H92C0.9800
C20—C211.437 (17)
N1—Mn1—N1i144.8 (5)C6i—N2—C6119.3 (14)
N1—Mn1—N272.4 (3)C6i—N2—Mn1120.4 (7)
N1—Mn1—N4107.6 (3)C6—N2—Mn1120.4 (7)
N1—Mn1—N593.5 (4)C17i—N4—C17118.3 (15)
N1—Mn1—N5i97.0 (4)C17i—N4—Mn1120.9 (7)
N2—Mn1—N4180.0C17—N4—Mn1120.9 (7)
N2—Mn1—N5107.7 (3)C16—N5—C12118.6 (12)
N4—Mn1—N572.3 (3)C16—N5—Mn1117.6 (8)
N5—Mn1—N5i144.7 (5)C12—N5—Mn1123.4 (9)
N2—Mn1—N1i72.4 (3)C22—N6—C22i117.6 (17)
N4—Mn1—N1i107.6 (3)C110—C109—C110i116 (3)
N2—Mn1—N5i107.7 (3)C110—C109—C8121.9 (14)
N4—Mn1—N5i72.3 (3)C110i—C109—C8121.9 (14)
N1i—Mn1—N5i93.5 (4)C111—C110—C109115 (3)
N1—C1—C2122.8 (14)C111—C110—H110122.5
N1—C1—H1118.6C109—C110—H110122.5
C2—C1—H1118.6N13—C111—C110132 (3)
C3—C2—C1117.5 (14)N13—C111—H111114.1
C3—C2—H2121.3C110—C111—H111114.1
C1—C2—H2121.3C111—N13—C111i110 (3)
C4—C3—C2120.9 (14)C210i—C209—C210125 (3)
C4—C3—H3119.6C210i—C209—C8117.3 (13)
C2—C3—H3119.6C210—C209—C8117.3 (13)
C5—C4—C3119.2 (13)C211—C210—C209114 (3)
C5—C4—H4120.4C211—C210—H210123.1
C3—C4—H4120.4C209—C210—H210123.1
C4—C5—N1121.8 (12)C210—C211—N23131 (3)
C4—C5—C6124.3 (12)C210—C211—H211114.7
N1—C5—C6113.9 (11)N23—C211—H211114.7
N2—C6—C7120.3 (11)C211i—N23—C211106 (3)
N2—C6—C5114.4 (11)F14—P1—F1690.00 (6)
C7—C6—C5125.2 (10)F14—P1—F1190.00 (6)
C8—C7—C6121.3 (12)F16—P1—F1190.00 (6)
C8—C7—H7119.4F14—P1—F1390.00 (6)
C6—C7—H7119.4F16—P1—F1390.00 (6)
C7i—C8—C7117.5 (16)F11—P1—F13180.00 (10)
C7i—C8—C109121.2 (8)F14—P1—F12180.0 (3)
C7—C8—C109121.2 (8)F16—P1—F1290.00 (6)
C7i—C8—C209121.2 (8)F11—P1—F1290.00 (6)
C7—C8—C209121.2 (8)F13—P1—F1290.00 (6)
C13—C12—N5119.9 (14)F14—P1—F1590.00 (6)
C13—C12—H12120.1F16—P1—F15180.0 (10)
N5—C12—H12120.1F11—P1—F1590.00 (6)
C14—C13—C12121.8 (14)F13—P1—F1590.00 (6)
C14—C13—H13119.1F12—P1—F1590.00 (6)
C12—C13—H13119.1F22—P2—F2692.5 (11)
C13—C14—C15119.1 (15)F22—P2—F21105.8 (12)
C13—C14—H14120.5F26—P2—F2191.9 (10)
C15—C14—H14120.5F22—P2—F24168.3 (12)
C16—C15—C14116.9 (15)F26—P2—F2489.7 (11)
C16—C15—H15121.5F21—P2—F2485.7 (10)
C14—C15—H15121.5F22—P2—F2386.1 (11)
N5—C16—C15123.6 (12)F26—P2—F2390.6 (11)
N5—C16—C17116.1 (11)F21—P2—F23167.8 (12)
C15—C16—C17120.3 (13)F24—P2—F2382.4 (10)
C18—C17—N4122.1 (12)F22—P2—F2589.0 (11)
C18—C17—C16125.6 (12)F26—P2—F25178.5 (12)
N4—C17—C16112.2 (11)F21—P2—F2587.5 (10)
C17—C18—C19120.6 (13)F24—P2—F2588.9 (10)
C17—C18—H18119.7F23—P2—F2589.7 (10)
C19—C18—H18119.7C90—C91—H91A109.5
C18i—C19—C18116.3 (16)C90—C91—H91B109.5
C18i—C19—C20121.8 (8)H91A—C91—H91B109.5
C18—C19—C20121.8 (8)C90—C91—H91C109.5
C21i—C20—C21115.5 (18)H91A—C91—H91C109.5
C21i—C20—C19122.2 (9)H91B—C91—H91C109.5
C21—C20—C19122.2 (9)O90—C90—C91122 (3)
C22—C21—C20119.7 (15)O90—C90—C92118 (2)
C22—C21—H21120.1C91—C90—C92120 (3)
C20—C21—H21120.1C90—C92—H92A109.5
N6—C22—C21123.7 (15)C90—C92—H92B109.5
N6—C22—H22118.1H92A—C92—H92B109.5
C21—C22—H22118.1C90—C92—H92C109.5
C1—N1—C5117.7 (11)H92A—C92—H92C109.5
C1—N1—Mn1123.3 (9)H92B—C92—H92C109.5
C5—N1—Mn1118.9 (8)
N1—C1—C2—C32 (2)C4—C5—N1—C12 (2)
C1—C2—C3—C41 (2)C6—C5—N1—C1178.3 (11)
C2—C3—C4—C51 (2)C4—C5—N1—Mn1179.1 (10)
C3—C4—C5—N11 (2)C6—C5—N1—Mn10.5 (15)
C3—C4—C5—C6179.0 (12)C7—C6—N2—C6i0.0 (8)
C4—C5—C6—N2179.5 (11)C5—C6—N2—C6i179.6 (11)
N1—C5—C6—N20.1 (15)C7—C6—N2—Mn1180.0 (8)
C4—C5—C6—C71 (2)C5—C6—N2—Mn10.4 (11)
N1—C5—C6—C7179.5 (12)C18—C17—N4—C17i0.2 (8)
N2—C6—C7—C80.1 (17)C16—C17—N4—C17i177.4 (11)
C5—C6—C7—C8179.6 (10)C18—C17—N4—Mn1179.8 (9)
C6—C7—C8—C7i0.0 (8)C16—C17—N4—Mn12.6 (11)
C6—C7—C8—C109180.0 (8)C15—C16—N5—C123.8 (19)
C6—C7—C8—C209180.0 (8)C17—C16—N5—C12177.4 (10)
N5—C12—C13—C141 (2)C15—C16—N5—Mn1169.0 (10)
C12—C13—C14—C151 (2)C17—C16—N5—Mn19.8 (13)
C13—C14—C15—C161 (2)C13—C12—N5—C161.5 (17)
C14—C15—C16—N54 (2)C13—C12—N5—Mn1170.9 (9)
C14—C15—C16—C17177.6 (12)C21—C22—N6—C22i0.4 (14)
N5—C16—C17—C18172.7 (12)C7i—C8—C109—C11064.7 (18)
C15—C16—C17—C188.5 (19)C7—C8—C109—C110115.3 (18)
N5—C16—C17—N44.9 (14)C7i—C8—C109—C110i115.3 (18)
C15—C16—C17—N4174.0 (10)C7—C8—C109—C110i64.7 (18)
N4—C17—C18—C190.5 (17)C110i—C109—C110—C1112 (2)
C16—C17—C18—C19176.9 (10)C8—C109—C110—C111178 (2)
C17—C18—C19—C18i0.2 (8)C109—C110—C111—N135 (6)
C17—C18—C19—C20179.8 (8)C110—C111—N13—C111i3 (3)
C18i—C19—C20—C21i40.0 (9)C7i—C8—C209—C210i61.4 (18)
C18—C19—C20—C21i140.0 (9)C7—C8—C209—C210i118.6 (18)
C18i—C19—C20—C21140.0 (9)C7i—C8—C209—C210118.6 (18)
C18—C19—C20—C2140.0 (9)C7—C8—C209—C21061.4 (18)
C21i—C20—C21—C220.4 (12)C210i—C209—C210—C2112 (3)
C19—C20—C21—C22179.6 (12)C8—C209—C210—C211178 (3)
C20—C21—C22—N61 (3)C209—C210—C211—N235 (6)
C2—C1—N1—C53 (2)C210—C211—N23—C211i3 (3)
C2—C1—N1—Mn1178.6 (10)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F25ii0.952.313.23 (3)162
C15—H15···O90ii0.952.583.53 (3)177
C18—H18···O90iii0.952.573.50 (2)168
C18—H18···O90ii0.952.533.47 (2)169
C22—H22···F21iv0.952.473.42 (2)175
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x1/2, y+1/2, z; (iv) x+1, y+2, z+1/2.
Intramolecular contacts (Å, °) for (1) top
D—X···AX···AD—X···A
C13—H13···Cg1vi2.83152
P1A—F5A···Cg23.108 (8)129.0 (4)
P2A—F12A···Cg3vii2.906 (9)131.0 (4)
Cg···CgCg···Cg
Cg4···Cg53.779 (3)
Cg5···Cg6i3.778 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (vi) x,1/2-y,-1/2+z; (vii) x,1/2-y,1/2+z. Cg1: centroid of {N5, C21–C25}; Cg2: centroid of {N2, C6–C10}; Cg3: centroid of {N6, C26–C30}; Cg4: centroid of {N1, C1–C5}; Cg5: centroid of {N3, C11–C15}; Cg6: centroid of {N4, C16–C20}.
Intramolecular contacts (Å, °) for (2) top
D—X···AX···AD—X···A
C2—H2···Cg1v2.72156
P2—F25···Cg2vi3.091 (18)153.0 (10)
Cg···CgCg···Cg
Cg3···Cg3vii3.539 (7)
Symmetry codes: (v) x, y,z+1; (vi) -x+3/2,-y+3/2,z-1/2; (vii) -x+1,y,-z+5/2. Cg1: centroid of {N5, C12-C16}; Cg2: centroid of {N2, C6-C8, C6i, C7i}; Cg3: centroid of {N1, C1-C5};
Known structures of the type [Mn+(Pyterpy)2](X-)n top
Metal CenterAnionCCDC codeReferenceSpace Group
Fe2+PF6-KITFEZBeves, Dunphy, et al.,(2008)I41/a
Fe2+ClO4-OFUKACBeves, Bray, et al., (2008)P1
Fe2+SCN-UGEKEXMorsali et al. (2009)P1
Fe2+NO3-WOMXAXConstable et al. (2000)P1
Fe2+ClO4-XIQFEJ(a)P21/c
Fe2+[Fe(SCN)6]3-XIQFIN(a)Pbcn
Fe2+[Fe(SCN)6]3-XISWUS(a)Pbcn
Co2+NO3-VEYGIQIndumathy et al. (2007)P1
Co3+ClO4-VEYGEMIndumathy et al. (2007)P1
Ni2+NO3-OFUJUVBeves, Bray et al. (2008)P1
Cu2+PF6-FIYHIFPitarch López et al. (2005)P41
Zn2+NO3-ULAFETDing et al. (2009)P43
Zn2+ClO4-BIGDECMehrani et al. (2013)C2/c
Ru2+PF6-OFUKEGBeves, Bray, et al., (2008)I41/a
Ru2+PF6-/NO3-OFUKIKBeves, Bray et al. (2008)P1
Ru2+[Fe(SCN)6]3-OFUKOQBeves, Bray et al. (2008)C2/c
Ru2+PF6-/NO3-PEHPOIConstable et al. (2006)P21/c
Rh3+PF6-DAHDOGPaul et al. (2004)P421c
(a) Beves, Constable, Housecroft, Kepert, Neuburger et al. (2007).
Uses of [Mn+(Pyterpy)2] as metalloligand top
Metal 1Metal 2CCDC codeType†Reference
Fe2+Cu2+GIVDEVpolymerBeves, Constable et al. (2008)
Fe2+Cu2+OGOTEK5 (linear)Beves et al. (2009)
Ni2+Co2+WUTTELpolymerYoshida et al. (2009)
Ni2+Co2+WUTTIPpolymerYoshida et al. (2009)
Co2+Co2+WUTTOPpolymerYoshida et al. (2009)
Ni2+Ir3+MITQUD6 (cyclic)Liu et al. (2014)
Ni2+Rh3+MITRAK6 (cyclic)Liu et al. (2014)
Cu2+Ir3+MITCEZ6 (cyclic)Liu et al. (2014)
Cu2+Rh3+MITCID6 (cyclic)Liu et al. (2014)
Zn2+Ir3+MITQEN6 (cyclic)Liu et al. (2014)
Zn2+Ir3+MITQIR6 (cyclic)Liu et al. (2014)
Zn2+Rh3+MITQOX6 (cyclic)Liu et al. (2014)
Ni2+Rh3+MITCOJ3 (linear)Liu et al. (2014)
Ru2+Ag+WICSILpolymer(b)
"Metal 1" coordinated by Pyterpy; "Metal 2" bridging metal. † Polymer or number of metals in the oligomer and respective arrangement; (b) Beves, Constable, Housecroft, Kepert, Price et al. (2007).
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT Portugal) for general financial support to CICECO (PEst-C/CTM/LA0011/2013) and the R&D project, including grant for LMOL, EXPL/QEQ-QUI/0199/2013 (FCOMP-01–0124-FEDER-041445), for postdoctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationBeves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582–2590.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Decurtins, S., Dunphy, E. L., Housecroft, C. E., Keene, T. D., Neuburger, M., Schaffner, S. & Zampese, J. A. (2009). CrystEngComm, 11, 2406–2416.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2007). CrystEngComm, 9, 1073–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J. & Price, D. J. (2007). CrystEngComm, 9, 456–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2008). CrystEngComm, 10, 344–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Dunphy, E. L., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2008). Dalton Trans. pp. 386–396.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCave, G. W. V. & Raston, C. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3258–3264.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M. & Zimmermann, Y. (2000). Dalton Trans. pp. 2219–2228.  Web of Science CSD CrossRef Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Schaper, F. (2006). Inorg. Chem. Commun. 9, 616–619.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, Y., Wang, F., Ku, Z.-J., Wang, L.-S. & Zhou, H.-B. (2009). J. Struct. Chem. 50, 1212–1215.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalper, S. R., Do, L., Stork, J. R. & Cohen, S. M. (2006). J. Am. Chem. Soc. 128, 15255–15268.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIndumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Unni Nair, B. (2007). J. Inorg. Biochem. 101, 434–443.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707.  Web of Science CrossRef Google Scholar
First citationLiu, J.-J., Lin, Y.-J. & Jin, G.-X. (2014). Organometallics, 33, 1283–1290.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrani, A., Morsali, A. & Ebrahimpour, P. (2013). J. Coord. Chem. 66, 856–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A., Monfared, H. H., Ramazani, A., Noshiranzadeh, N., Morsali, A. & Zeller, M. (2009). J. Coord. Chem. 62, 2631–2640.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S.-I., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. Commun. 44, 133–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaul, J., Spey, S., Adams, H. & Thomas, J. A. (2004). Inorg. Chim. Acta, 357, 2827–2832.  Web of Science CSD CrossRef CAS Google Scholar
First citationPitarch López, J., Kraus, W., Reck, G., Thünemann, A. & Kurth, D. G. (2005). Inorg. Chem. Commun. 8, 281–284.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYoshida, J., Nishikiori, S.-I. & Kuroda, R. (2009). Bull. Chem. Soc. Jpn, 82, 1377–1385.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 330-335
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds